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ABSTRACT 
Poisson regression has been widely used to model count data. However, it is often criticized for its restrictive 
assumption of equi-dispersion, meaning equality between the variance and the mean. In real-life applications, count 
data often exhibits over-dispersion and excess zeroes. While Negative binomial regression is able to model count 
data with over-dispersion, both Hurdle (Mullahy, 1986) and Zero-inflated (Lambert, 1992) regressions address the 
issue of excess zeroes in their own rights. Different modeling strategies for count data and various statistical tests for 
model evaluation are illustrated through an example of healthcare utilization. The purpose of this paper is to provide 
by far the most complete survey of count data modeling strategy in SAS for the user group.   
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1. INTRODUCTION 
How to model count data as the dependent variable in a regression has become a popular topic in statistics, 
econometrics, and epidemiology. Deb and Trivedi (1997) modeled the demand for healthcare utilization by the elderly 
using a finite mixture negative binomial regression. Gurmu (1997) evaluated the impact of managed care program on 
healthcare utilization using hurdle model. Winkelmann (2004) studied the effect of healthcare reform on the number 
of doctor visits in Germany using a number of modified count data models. For more detailed discussions about 
recent development in count data models, please refer to Cameron and Trivedi (2001), Winkelmann and 
Zimmermann (1995), and Greene (2002).  
 
To illustrate models covered in this paper, we use the same data analyzed by Deb and Trivedi (1997). This data is 
originally obtained from National Medical Expenditure Survey (NMES) conducted in 1987 and includes 4406 
respondents who were aged 66 or older and covered by Medicare program. In our example, the number of hospital 
stays (HOSP) is used as the dependent variable and three types of measures are included in the explanatory 
variables, which are self-perceived health status (EXCLHLTH, POORHLTH, and NUMCHRON), demographic data 
(AGE and MALE), and socio-economic information (SCHOOL and PRIVINS). The summary statistics of all variables 
are given in Table 1. 
 
Table 1.1, Variables Used with Summary Statistics 
 

Variable Definition Obs Mean Std. Dev. Min Max

HOSP # of hospital stays 4406 0.2960 0.7464 0 8

EXCLHLTH 1 if self-perceived health is excellent 4406 0.0778 0.2680 0 1

POORHLTH 1 if self-perceived health is poor 4406 0.1257 0.3316 0 1

NUMCHRON # of chronic conditions 4406 1.5420 1.3496 0 8

AGE age in years (divided by 10) 4406 7.4024 0.6334 6.6 10.9

MALE 1 if the person is male 4406 0.4035 0.4907 0 1

SCHOOL # of years of education 4406 10.2903 3.7387 0 18

PRIVINS 1 if the person is covered by private insurance 4406 0.7764 0.4167 0 1  
 
As shown in Table 1.1, the variance of HOSP is about two times of the mean, implying the possibility of over-
dispersion. A further screening on the data also shows that more than 80% of the respondents, 3541 out of 4406, 
have no hospital admission, indicating excess zeroes.  
 
A good starting point of count data modeling is to compare the empirical distribution of observed counts to the 
univariate Poisson distribution with the mean estimated from the data. Probabilities from two distributions are plotted 
in Figure 1.1. 
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Figure 1.1, Comparison between Observed Probability and Univariate Poisson Probability 

 
 

The plot in Figure 1.1 clearly shows that univariate Poisson distribution underestimates the probability at 0 and 
overestimates the probability at 1. Since Poisson distribution assumes the same mean across the whole sample and 
doesn’t consider the heterogeneity in each member, it is not surprising to see that the predicted probability does not 
fit the observed data well. In the next section, we will allow the observed heterogeneity in the conditional mean of 
each sample member by including explanatory variables.  
 
 
2. POISSON REGRESSION 
Poisson regression is the simplest regression model for count data and assumes that each observed count Yi is 
drawn from a Poisson distribution with the conditional mean ui on a given vector Xi for case i. Therefore, the density 
function of Yi can be expressed as 
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Given independent observations with the density function in (2.1), the log likelihood function can be obtained by  
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The maximum likelihood estimation of Poisson regression is straightforward using the log likelihood function in (2.2).  
 
In SAS, several procedures in both STAT and ETS modules can be used to estimate Poisson regression. While 
GENMOD, GLIMMIX, and COUNTREG are easy to use with standard MODEL statement, NLMIXED, MODEL, NLIN 
provide great flexibility to model count data by specifying the log likelihood function explicitly. An illustration of both 
NLMIXED and COUNTREG procedures is given below. More detailed examples on how to use all mentioned 
procedures can be found on author’s blog at statcompute.spaces.live.com.  
 

/* METHOD 1: PROC NLMIXED  */ 
proc nlmixed data = tblNMES; 
  parms b0 = 0 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5 = 0 b 6 = 0 b7 = 0; 
  mu = exp(b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
           b5 * MALE + b6 * SCHOOL + b7 * PRIVINS);  
  ll = -mu + HOSP * log(mu) - log(fact(HOSP)); 
  model HOSP ~ general(ll); 
  predict mu out = poi_out (rename = (pred = Yhat)) ;  
run; 
 
/* METHOD 2: PROC COUNTREG */ 
proc countreg data = tblNMES type = poisson;  
  model HOSP = EXCLHLTH POORHLTH NUMCHRON AGE MALE SCHOOL PRIVINS; 
run;   
 
/* SAMPLE OUTPUT OF PROC COUNTREG: 
                               Model Fit Summary 
                    Log Likelihood                    -3046 
                    AIC                                6108 
                    SBC                                6159 
 
                              Parameter Estimates 
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                                         Standard                 Approx 
        Parameter        Estimate           Error    t Value    Pr > |t| 
        Intercept       -3.329044        0.339728      -9.80      <.0001 
        exclhlth        -0.723412        0.175644      -4.12      <.0001 
        poorhlth         0.626157        0.067858       9.23      <.0001 
        numchron         0.264462        0.018277      14.47      <.0001 
        age              0.186406        0.042014       4.44      <.0001 
        male             0.103186        0.056274       1.83      0.0667 
        school          -0.000206        0.007871      -0.03      0.9791 
        privins          0.108652        0.069251       1.57      0.1167 
*/  

 
While Poisson regression is often used as a baseline model for count data, its assumption of equi-dispersion is too 
restrictive for many empirical applications. In practice, the variance of observed count data usually exceeds the mean, 
namely over-dispersion, due to the unobserved heterogeneity and/or excess zeroes. With the similar consequences 
of heteroskedasticity in the linear regression, over-dispersion in a Poisson regression will lead to deflated standard 
errors of parameter estimates and therefore inflated t-statistics. After the development of Poisson regression, it is 
always a sound practice to do an additional analysis for over-dispersion. In our example, we will consider two 
statistical tests based on the alternative Negative binomial model, which will be covered in our next section.  
 
Cameron and Trivedi (1996) introduced a simple test for over-dispersion based on an auxiliary OLS regression 
without the intercept, which can be formulated as 
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The significance of t-statistics for the coefficient implies the existence of over-dispersion. Please note that (2.3) is 
specific for Negbin 2 form, the most common setting for Negative binomial. For Negbin 1 form, a different formulation 
of OLS regression should be used.  
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The implementation in SAS with Reg procedure based on (2.3) is given below. 
 

data ols_tmp; 
  set poi_out;  
  dep = ((HOSP - Yhat) ** 2 - HOSP) / Yhat;  
run; 
 
proc reg data = ols_tmp; 
  model dep = Yhat / noint;              /* FIT A OLS REGRESSION WITHOUT INTERCEPT */  
run; quit; 
 
/* OUTPUT OF AUXILIARY OLS REGRESSION: 
                              Parameter Estimates 
                                    Parameter     S tandard 
  Variable   Label            DF     Estimate        Error  t Value  Pr > |t| 
  Yhat       Predicted Value   1      1.63419      0.22609     7.23    <.0001 
*/  

 
The second test for over-dispersion introduced by Greene (2002) is based on the Lagrange multiplier (LM) statistics. 
If we consider Poisson regression a parametric restriction of Negative binomial regression with the mean equal to the 
variance, the LM statistics can be simply expressed as 
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Under the null hypothesis of Poisson regression, the LM statistics follows the chi-squared distribution with one degree 
of freedom. The computation is extremely simple with SAS IML procedure or any other matrix languages. 
 

proc iml; 
  use poi_out;  
  read all var {HOSP} into y; 
  read all var {Yhat} into yhat; 
  close poisson_out; 
  e      = (y - yhat); 
  n      = nrow(y); 
  ybar   = y`[, :]; 
  LM     = (e` * e - n * ybar) ** 2 / (2 * yhat` * yhat);  
  Pvalue = 1 - probchi(LM, 1); 
  print LM Pvalue; 
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quit; 
 
/* OUTPUT OF LM STATISTICS: 
                                     LM    PVALUE 
                              794.14707         0 
*/  

 
Both tests come up with the same conclusion and confirm our suspicion of over-dispersion.  
 
To evaluate the goodness-of-fit of a regression for count data, the most popular but somewhat problematic practice is 
to compare the predicted and observed values of the dependent variable. However, a measure of goodness-of-fit 
solely based upon the expected value is unable to address the improvement achieved by a model with less restrictive 
variance assumption. A better alternative is to compare the predicted and observed probabilities of each count 
outcome by taking the probability distribution into consideration. In Figure 2.1 below, a plot comparing observed 
probabilities to predicted probabilities side by side is given.   
 
Figure 2.1, Comparison between Observed and Predicted Probability from Poisson Regression 
 

 
 

Compared with Figure1.1, we can see a moderate improvement shown in Figure 2.1 after considering the observed 
heterogeneity in Poisson regression. However, the under-prediction at 0 and over-prediction at 1 suggest that a 
further improvement is still possible. In the next section, we will discuss an alternative model with less restrictive 
assumption, namely Negative binomial regression. 
 
 
3. NEGATIVE BINOMIAL REGRESSION 
As the most common alternative to Poisson regression, Negative binomial regression addresses the issue of over-
dispersion by including a dispersion parameter to accommodate the unobserved heterogeneity in the count data. 
While there are many variants of Negative binomial, we will only focus on the Negbin 2 form in our paper.  
 
Negative binomial regression can be considered a generalization of Poisson regression and assumes that the 
conditional mean ui of Yi is not only determined by Xi but also a heterogeneity component ei unrelated to Xi. The 
formulation can be expressed as 
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As a result, the density function of Yi can be derived as  
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And the corresponding log likelihood function becomes 
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Similar to Poisson regression, Negative binomial regression can be modeled by SAS either directly with GENMOD, 
GLIMMIXED, and COUNTREG procedures or through log likelihood function in (3.3) with NLMIXED, MODEL, and 
NLIN procedures. A brief example of SAS code and related output is given below.  
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/* METHOD 1: PROC NLMIXED  */ 
proc nlmixed data = tblNMES; 
  parms b0 = 0 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5 = 0 b 6 = 0 b7 = 0; 
  mu = exp(b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
           b5 * MALE + b6 * SCHOOL + b7 * PRIVINS);  
  ll = lgamma(HOSP + 1 / alpha) - lgamma(HOSP + 1) - lgamma(1 / alpha) + 
       HOSP * log(alpha * mu) -  
       (HOSP + 1 / alpha) * log(1 + alpha * mu); 
  model HOSP ~ general(ll); 
  predict mu out = nb_out (rename = (pred = Yhat));   
run; 
 
/* METHOD 2: PROC COUNTREG     */ 
proc countreg data = tblNMES type = negativebinom m ethod = qn;  
  model HOSP = EXCLHLTH POORHLTH NUMCHRON AGE MALE SCHOOL PRIVINS; 
run; 
 
/* SAMPLE OUTPUT OF PROC COUNTREG: 
                               Model Fit Summary 
                    Log Likelihood                    -2857 
                    AIC                                5731 
                    SBC                                5789 
 
                              Parameter Estimates 
                                         Standard                 Approx 
        Parameter        Estimate           Error    t Value    Pr > |t| 
        Intercept       -3.752640        0.446835      -8.40      <.0001 
        exclhlth        -0.697875        0.193318      -3.61      0.0003 
        poorhlth         0.613926        0.095392       6.44      <.0001 
        numchron         0.289418        0.026470      10.93      <.0001 
        age              0.238444        0.055265       4.31      <.0001 
        male             0.153862        0.073033       2.11      0.0351 
        school          -0.002271        0.010203      -0.22      0.8238 
        privins          0.093922        0.090494       1.04      0.2993 
        _Alpha           1.766727        0.160492      11.01      <.0001 
*/  

 
Please note that Negative binomial regression is the extension of Poisson with a more liberal variance assumption 
and could collapsed into Poisson regression with the dispersion parameter equal to 0. This important fact provides a 
possibility to do the model comparison between Poisson and Negative binomial regressions. First of all, we can 
looked at the reported t-statistics of dispersion parameter, Alpha, to assess the significance of over-dispersion. Then 
a likelihood ratio (LR) test, which follows Chi-square distribution with 1 degree of freedom, between 2 regressions can 
be used to determine the preferred model for the data. In our example, the t-statistics of Alpha is 11.01 and the LR 
test is -2(LLPoisson - LLNegbin) = -2[-3046 – (-2857)] = 378, both of which are highly significant and indicate that Negative 
binomial regression is preferred over Poisson regression. This result is also consistent with our findings of over-
dispersion in Section 2.  
 
The goodness-of-fit of Negative binomial regression can be visualized in the similar way to Figure 2.1, as shown in 
Figure 3.1.  
 
Figure 3.1, Comparison between Observed and Predicted Probability from Negative Binomial Regression 
 

 

Statistics and Data AnalysisSAS Global Forum 2008

 



 6 

 
Compared with Figure 1.1 and 2.1, we can clearly see the significant improvement made by Negative binomial 
regression in Figure 3.1, a nearly complete overlap between predicted and observed probabilities. However, Negative 
binomial regression is not without criticism. The inclusion of unobserved heterogeneity will increase the probabilities 
of both zero counts and high counts but might not yield a good fit for the distribution of count outcome with excess 
zeroes. In the next two sections, we will introduce two alternative models to handle excess zeroes, which are Hurdle 
regression (Mullahy 1986) and Zero-inflated regression (Lambert 1992).  
 
 
4. HURDLE REGRESSION 
Originally developed by Mullahy (1986), Hurdle regression is also known as two-part model. Instead of assuming that 
count outcome comes from a single data generating process, Hurdle regression considers count outcome generated 
by two systematically different statistical processes, a binomial distribution determining if a count outcome is zero or 
nonzero and a truncated-at-zero distribution for count data governing all positive counts conditional on nonzero 
outcomes. The attraction of Hurdle regression is that it reflects a two-stage decision-making process in most human 
behaviors and therefore has an appealing interpretation. For instance, it is patient’s decision whether to contact the 
doctor’s office and to make the initial visit. However, after the patient’s first visit, doctor plays a more important role in 
determining if the patient needs to make follow-up visits. Therefore, in a regression setting, the first decision might be 
reflected by a Logit or Probit regression, while the second one can be analyzed by a truncated Poisson or Negative 
binomial regression. Moreover, different explanatory variables are allowed to have different impacts at each decision 
process. 
 
The most popular formulation of a Hurdle regression is called Logit-Poisson model, which is the combination of a 
Logit regression modeling zero vs. nonzero outcomes and a truncated Poisson regression modeling positive counts 
conditional on nonzero outcomes. Its probability density function is given as  
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The log-likelihood function of a Logit-Poisson regression therefore can be expressed as the sum of log-likelihood 
functions of two components as below  
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Unlike Poisson and Negative binomial regressions, Hurdle regression can only be modeled through log-likelihood 
function with NLMIXED, MODEL, and NLIN procedures in SAS. For the simplicity, we use the same explanatory 
variables in both components of Logit-Poisson regression. However, in practice, two sets of explanatory variables do 
not have to coincide. An example of NLMIXED is given below.  
 

/* METHOD 1: PROC NLMIXED  */ 
proc nlmixed data = tblNMES tech = dbldog; 
  parms a0 = 0 a1 = 0 a2 = 0 a3 = 0 a4 = 0 a5 = 0 a 6 = 0 a7 = 0 
        b0 = 0 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5 = 0 b 6 = 0 b7 = 0; 
  eta0 = a0 + a1 * EXCLHLTH + a2 * POORHLTH + a3 * NUMCHRON + a4 * AGE +  
         a5 * MALE + a6 * SCHOOL + a7 * PRIVINS; 
  exp_eta0 = exp(eta0); 
  p0 = exp_eta0 / (1 + exp_eta0); 
  etap = b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
         b5 * MALE + b6 * SCHOOL + b7 * PRIVINS; 
  exp_etap = exp(etap); 
  if HOSP = 0 then ll = log(p0); 
  else ll = log(1 - p0) - exp_etap + HOSP * etap - lgamma(HOSP + 1) 
            - log(1 - exp(-exp_etap)); 
  model HOSP ~ general(ll); 
  predict exp_etap out = hdl_out1 (keep = pred HOSP  rename = (pred = Yhat)); 
  predict p0 out = hdl_out2 (keep = pred rename = ( pred = p0)); 
run; 
 
/* SAMPLE OUTPUT OF PROC NLMIXED: 
                            Fit Statistics 
               -2 Log Likelihood                 57 58.4 
               AIC (smaller is better)           57 90.4 
               AICC (smaller is better)          57 90.6 
               BIC (smaller is better)           58 92.7 
 
                         Parameter Estimates 
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                        Standard 
 Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 
 a0            4.2311     0.4889   4406      8.65     <.0001     0.05 
 a1            0.5826     0.1991   4406      2.93     0.0035     0.05 
 a2           -0.6953     0.1073   4406     -6.48     <.0001     0.05 
 a3           -0.3078    0.02890   4406    -10.65     <.0001     0.05 
 a4           -0.2752    0.06061   4406     -4.54     <.0001     0.05 
 a5           -0.1948    0.08008   4406     -2.43     0.0151     0.05 
 a6          -0.00593    0.01126   4406     -0.53     0.5982     0.05 
 a7          -0.01924    0.09944   4406     -0.19     0.8466     0.05 
 b0           -0.4693     0.5627   4406     -0.83     0.4043     0.05 
 b1           -0.9422     0.4949   4406     -1.90     0.0570     0.05 
 b2            0.3373     0.1008   4406      3.35     0.0008     0.05 
 b3            0.1426    0.02967   4406      4.81     <.0001     0.05 
 b4          -0.01229    0.06834   4406     -0.18     0.8573     0.05 
 b5          -0.03854    0.09227   4406     -0.42     0.6762     0.05 
 b6          -0.01815    0.01290   4406     -1.41     0.1597     0.05 
 b7            0.2589     0.1139   4406      2.27     0.0231     0.05            */  

 
Similarly to Negative binomial regression, Hurdle regression might become Poisson regression with the restriction of 
parameters and therefore they can be considered nested models. Thus, it is straightforward to use the Likelihood 
Ratio (LR) test discussed in the previous section to compare Hurdle regression and Poisson regression. In our case, 
the LR test is given as -2(LLPoisson - LLHurdle) = -2[-3046 - (-2879)] = 334, which is highly significant and suggests that 
Hurdle regression is preferred to Poisson regression.  
 
While Hurdle regression and Poisson regression are nested, Hurdle regression and Negative binomial regression are 
not. As a result, the LR test cannot be used to compare these non-nested models. In statistics literature, two methods 
are generally used to compare non-nested models. The first approach is to use information criteria such as AIC or 
BIC. However, due to its more parsimonious parameterization and higher log likelihood function, Negative binomial 
regression is often reported to be favored over Hurdle regression. The second one is to use Vuong test, as proposed 
by Greene (1994). Since more comprehensive introduction about Vuong test is given in the next section, we will skip 
the detailed discussion here.  
 
Again, Figure 4.1 visualizes the goodness-of-fit of Hurdle regression, which looks as good as the one provided by 
Negative binomial regression.  
 
Figure 4.1, Comparison between Observed and Predicted Probability from Hurdle Regression 
 

 
 
 
5. ZERO-INFLATED REGRESSION 
Introduced by Lambert (1992), Zero-inflated regression is another way to model count data with excess zeros. Similar 
to Hurdle regression, Zero-inflated regression can also be considered a mixture of two statistical processes, one 
always generating zero counts and the other generating both zero and nonzero counts. However, it is slightly different 
from Hurdle regression with all zero counts from a single statistical process and assumes that zero counts might 
come from two different sources. More specifically, in a Zero-inflated regression, a Logit model with binomial 
assumption is used to determine if an individual count outcome is from the always-zero or the not-always-zero group 
and then a model for count data, either Poisson or Negative binomial, to model outcomes in the not-always-zero 
group. In the paper, we will limit our discussion to Zero-inflated Poisson (ZIP) regression with formulation 
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where Zi and Xi are covariate matrix. However, the same idea can be easily generalized to Zero-inflated Negative 
Binomial (ZINB) regression.  
 
The density function of a ZIP model is given as 
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And its log-likelihood function is expressed as 
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In SAS, ZIP can be fitted either through log-likelihood function or directly with experimental COUNTREG procedure in 
ETS module.  
 

/* METHOD 1: PROC COUNTREG */ 
proc countreg data = tblNMES type = zip; 
  model HOSP = EXCLHLTH POORHLTH NUMCHRON AGE MALE SCHOOL PRIVINS 
  / zi(link = logistic, var = EXCLHLTH POORHLTH NUM CHRON AGE MALE SCHOOL PRIVINS); 
run; 
 
/* METHOD 2: PROC NLMIXED  */ 
proc nlmixed data = tblNMES tech = dbldog; 
  parms a0 = 0 a1 = 0 a2 = 0 a3 = 0 a4 = 0 a5 = 0 a 6 = 0 a7 = 0 
        b0 = 0 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5 = 0 b 6 = 0 b7 = 0; 
  eta0 = a0 + a1 * EXCLHLTH + a2 * POORHLTH + a3 * NUMCHRON + a4 * AGE +  
         a5 * MALE + a6 * SCHOOL + a7 * PRIVINS; 
  exp_eta0 = exp(eta0); 
  p0 = exp_eta0 / (1 + exp_eta0); 
  etap = b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
         b5 * MALE + b6 * SCHOOL + b7 * PRIVINS; 
  exp_etap = exp(etap); 
  if HOSP = 0 then ll = log(p0 + (1 - p0) * exp(-ex p_etap)); 
  else ll = log(1 - p0) + HOSP * etap - exp_etap - lgamma(HOSP + 1); 
  model HOSP ~ general(ll); 
  predict exp_etap out = zip_out1 (keep = pred HOSP  rename = (pred = Yhat)); 
  predict p0 out = zip_out2 (keep = pred rename = ( pred = p0)); 
run; 
 
/* SAMPLE OUTPUT OF PROC COUNTREG: 
                          Model Fit Summary 
               Log Likelihood                    -2 878 
               AIC                                5 788 
               SBC                                5 890 
 
                         Parameter Estimates 
                                      Standard                 Approx 
 Parameter            Estimate           Error    t  Value    Pr > |t| 
 Intercept           -0.366506        0.572032      -0.64      0.5217 
 exclhlth            -0.919990        0.458460      -2.01      0.0448 
 poorhlth             0.324926        0.101157       3.21      0.0013 
 numchron             0.127746        0.033867       3.77      0.0002 
 age                 -0.024359        0.068806      -0.35      0.7233 
 male                -0.059629        0.099133      -0.60      0.5475 
 school              -0.012473        0.013520      -0.92      0.3562 
 privins              0.229208        0.114004       2.01      0.0444 
 Inf_Intercept        4.265976        0.971218       4.39      <.0001 
 Inf_exclhlth        -0.369944        0.717395      -0.52      0.6061 
 Inf_poorhlth        -0.589745        0.195174      -3.02      0.0025 
 Inf_numchron        -0.280116        0.062396      -4.49      <.0001 
 Inf_age             -0.405962        0.119765      -3.39      0.0007 
 Inf_male            -0.334773        0.162429      -2.06      0.0393 
 Inf_school          -0.019390        0.022126      -0.88      0.3808 
 Inf_privins          0.224859        0.196133       1.15      0.2516 
*/  
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Please note that in a ZIP regression, explanatory variables used in two components do not need to be the same. 
However, when all covariates in both sub-models are identical, ZIP regression can become a more parsimonious 
model by assuming that the coefficient vector in Logit component are the product between the coefficient vector in 
Poisson component and a scalar parameter � (tau), namely ZIP(tau) model. Its formulation can be expressed as 

βτ
ω

ω
i

i

i XLog =








−1
 and ( ) βii XuLog = .                                      (5.4) 

And the estimation of ZIP(tau) in SAS is straightforward with NLMIXED procedure given below. 
 

/* METHOD 1: PROC NLMIXED  */ 
proc nlmixed data = tblNMES; 
  parms b0 = 0 b1 = 0 b2 = 0 b3 = 0 b4 = 0 b5 = 0 b 6 = 0 b7 = 0 tau = 1; 
  eta0 = tau * (b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
                b5 * MALE + b6 * SCHOOL + b7 * PRIV INS); 
  exp_eta0 = exp(eta0); 
  p0 = exp_eta0 / (1 + exp_eta0); 
  etap = b0 + b1 * EXCLHLTH + b2 * POORHLTH + b3 * NUMCHRON + b4 * AGE +  
         b5 * MALE + b6 * SCHOOL + b7 * PRIVINS; 
  exp_etap = exp(etap); 
  if HOSP = 0 then ll = log(p0 + (1 - p0) * exp(-ex p_etap)); 
  else ll = log(1 - p0) + HOSP * etap - exp_etap - lgamma(HOSP + 1); 
  model HOSP ~ general(ll); 
  predict exp_etap out = zip_out1 (keep = pred HOSP  rename = (pred = Yhat)); 
  predict p0 out = zip_out2 (keep = pred rename = ( pred = p0)); 
run;  
 
/* SAMPLE OUTPUT OF PROC NLMIXED: 
                            Fit Statistics 
               -2 Log Likelihood                 57 68.7 
               AIC (smaller is better)           57 86.7 
               AICC (smaller is better)          57 86.7 
               BIC (smaller is better)           58 44.2 
 
                         Parameter Estimates 
                        Standard 
 Parameter   Estimate      Error     DF   t Value   Pr > |t|    Alpha 
 b0           -1.3944     0.2698   4406     -5.17     <.0001     0.05 
 b1           -0.2685    0.09606   4406     -2.80     0.0052     0.05 
 b2            0.3223    0.05980   4406      5.39     <.0001     0.05 
 b3            0.1391    0.02195   4406      6.34     <.0001     0.05 
 b4            0.1040    0.02789   4406      3.73     0.0002     0.05 
 b5           0.07254    0.03383   4406      2.14     0.0321     0.05 
 b6          -0.00039   0.004641   4406     -0.08     0.9331     0.05 
 b7           0.04292    0.04216   4406      1.02     0.3087     0.05 
 tau          -1.8406     0.4585   4406     -4.01     <.0001     0.05               */  

 
In Figure 5.1 and 5.2 below, plots between observed probability and predicted probability are used to visualize the 
goodness-of-fit of ZIP and ZIP(tau) regressions. It is clear that both models fit the observed count outcomes as well 
as Negative binomial and Hurdle regression. 
 
Figure 5.1, Comparison between Observed and Predicted Probability from ZIP Regression 
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Figure 5.2, Comparison between Observed and Predicted Probability from ZIP(�) Regression 
 

 
 
While plotting the prediction can be used as an informal way to assess goodness-of-fit, Vuong test is considered a 
better method to compare ZIP regression to other non-nested models for count data, such as Poisson regression, 
Negative Binomial regression, or Hurdle regression. If we define 
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where PN(Yi|Xi) is the predicted probability of observed count for case i from model N, then Vuong statistic to test the 
hypothesis E(mi = 0) is expressed as 
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                                                                                 (4.4) 

If V > 1.96, the first model is preferred. If V < -1.96, then the second one is preferred. SAS implementation of Vuong 
test to compare ZIP regression to Poisson regression is given below.  
 

data poi_pred (keep = poi_prob);  
  set poi_out;                         /* OUTPUT FROM POISSON REGRESSION */  
  do i = 0 to 8; 
    poi_prob = pdf('poisson', i , Yhat); 
    if hosp = i then output; 
  end; 
run; 
 
data zip_pred (keep = zip_prob); 
  merge zip_out1 zip_out2;             /* OUTPUT FROM ZIP REGRESSION */  
  do i = 0 to 8; 
    if i = 0 then zip_prob = p0 + (1 - p0) * pdf('p oisson', i, Yhat); 
    else zip_prob = (1 - p0) * pdf('poisson', i, Yh at); 
    if hosp = i then output; 
  end; 
run; 
 
data compare; 
  merge poi_pred zip_pred; 
  m = log(zip_prob / poi_prob); 
run; 
 
proc sql; 
select 
  mean(m)                           as mbar, 
  std(m)                            as s, 
  sqrt(count(*)) * mean(m) / std(m) as v 
from 
  compare; 
quit; 
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/* RESULT OF VUONG TEST: 
                              mbar         s     v 
                          0.038138  0.375956  6.733 444                               */  

 
From the above result of Vuong test, it is clearly shown that ZIP regression fit the data better than Poisson regression.  
 
 
6. MODELS EVALUATION 
In previous sections, five models for count data have been built with the healthcare utilization data: Poisson 
regression, Negative binomial regression, Hurdle regression, ZIP regression, and ZIP(tau) regression. In practice, it is 
often an interest to compare these models both in statistical sense and in business sense.  
 
Table 6.1, Estimated Coefficients of Four Models 
 

Logit Poisson Logit Poisson
INTERCEPT -3.3290 -3.7526 4.2311 -0.4693 4.2660 -0.3665 -1.3944
EXCLHLTH -0.7234 -0.6979 0.5826 -0.9422 -0.3700 -0.9200 -0.2685
POORHLTH 0.6262 0.6139 -0.6953 0.3373 -0.5897 0.3249 0.3223
NUMCHRON 0.2645 0.2894 -0.3078 0.1426 -0.2801 0.1277 0.1931
AGE 0.1864 0.2384 -0.2752 -0.0123 -0.4060 -0.0243 0.1040
MALE 0.1032 0.1539 -0.1948 -0.0385 -0.3348 -0.0596 0.0725
SCHOOL -0.0002 -0.0023 -0.0059 -0.0182 -0.0194 -0.0125 -0.0004
PRIVINS 0.1087 0.0939 -0.0192 0.2589 0.2249 0.2292 0.0429

alpha 1.7667
tau -1.8406

Log Likelihood -3046 -2857 -2887
# of Parameters 8 9 9
AIC 6108 5732 5792
BIC 6159 5790 5850
Vuong Test 6.616.73

-2879
16

5790
5892

-2878
16

5788
5890

AIC = -2 * LL + 2 * # of Parameters, BIC = -2 * LL + Log(# of cases) * # of Parameters

Highlighted Coefficients are significant at 5%.

ZIP (tau)
Poisson 

Regresson
Neg Bin 

Regresson
Hurdle Zero-Inflated

 
 
Estimated coefficients of all five models together with related statistics are listed in Table 6.1. While Poisson 
regression provides a baseline model for count data, the other four demonstrate the better fit than the basic Poisson 
regression. It is interesting to see that although Negative binomial and ZIP(tau) regressions have very different 
assumption and specification, they all indicate that the information related health status and demographic determines 
the frequency of hospital admissions but socio-economic variables do not. But if we take a look at Hurdle and ZIP 
regressions, we should see a different story from these composite models. First of all, the coefficient significance in 
the Logit component suggests that whether an individual is admitted in the hospital depends on the health status and 
demographics information. However, the Poisson component indicates that the frequencies of hospital admissions 
are related to both the heath status and insurance status. A potential interpretation is that if the individual with health 
problem is covered by the private insurance, he/she might be admitted into a hospital more often than the one without 
the coverage of private insurance.   
 
If we make the justification of best model solely based on the statistical tests reported in Table 6.1, it is very tempting 
to conclude that Negative binomial regression out-performs its counterparts for the lower AIC and BIC. On the other 
hand, composite models such as Hurdle and ZIP regressions provide a greater flexibility of modeling zero outcomes 
and a more intuitive interpretation. The major difference between Hurdle and ZIP regressions is that the Logit 
component in Hurdle regression describes the probability of a zero count, while the Logit component in ZIP 
regression estimates the probability of a zero count from the always-zero or the not-always-zero group. In general, 
these two models might lead to the similar goodness-of-fit and close interpretation. However, due to the complex 
parameterization, they share the same limitation and would often suffer from the over-fitting.  
 
 
7. CONCLUSION 
In this paper, we have reviewed several modeling strategies for count data and their implementations in SAS. Basic 
Poisson models with and without the consideration of observed heterogeneity is a good starting point for count data 
modeling. For count data with the evidence of over-dispersion, Negative Binomial regression with a more liberal 
assumption on variance is able to provide a better solution. If the over-dispersion results from a high frequency of 
zero counts, advanced composite models such as Hurdle regression and ZIP regression might give more satisfactory 
fit to the data. An example in healthcare utilization has been used in our paper to demonstrate the usage of various 
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models for count data and related statistical tests. However, successfully applications can also be extended to other 
business problems, such as database marketing, credit risk, and quality control. 
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