
Advanced MATCH-MERGING: Techniques, Tricks, and Traps

Malachy J. Foley

University of North Carolina at Chapel Hill, NC

ABSTRACT

Match-merging, or BY merging, is the most common
merging technique used in SAS**. Yet, how it works is
not always obvious. This tutorial shows many of the
technique’s nuances and subtleties, gives examples of
merges where even experienced programmers have been
tripped up, and demonstrates defensive programming
strategies.

INTRODUCTION

Several times a year you hear it. It might be in a SAS
users group, at the office, or in the SAS-L. What you hear
goes like this: “The SAS merge is a subtle thing”; or
“Merge should be made to work better in this situation”;
or “Be very carefid with using merge in this case because
you get unexpected results!”

This paper is meant to clear up some of the mystery that
surrounds the match-merge. It shows some interesting
examples of merges where even experienced programmers
have been tripped up. It also covers the basics. By the
end of this paper the reader should have a strong
foundation in match-merging and know how to avoid
most of the basic problems programmers typically have
with merge.

WHAT ISA MERGE?

There are many definitions for merge. All of them talk
about taking two or more sorted input files and combining
them into one output file. Of course, sorted means that
the input files have a common key and that the records in
each file are ordered according to the key field(s).
Consider the following two input files, as an example.

FILE ONE FILE TWO
--------- -------------
10 NAME IO AGE SEX
--------- --------.----
AO1 SUE AO1 58 F
A02 TOM A02 20 M
A05 KAY A04 47 F
AlO JIM AlO 11 M

These two files have a common key field called ID.
The records in both files are sorted by ID. A Match-
merge in SAS means that records from the one file will be
matched up with the records of the second file that have
the same ID. The information in the matched records is
combined to form one output record. Match-merging the
above two input files would give the following result.

FILE ONE TWO
-----------:-------
10 NAME AGE SEX
-----------......--
AO1 SUE 58 F
A02 TOM .2! M
A04 F
A05 KAY
AlO JIM 11 M

Even with this simple example, there is already a hint of
problems. Observe that the records A05 (file ONE) and
A04 (file TWO) did not have a matching record. As a
result there is missing data for records A04 and A05 in the
output file called ONE_TWO. This case is rather obvious
and intuitive. But the cases that we will examine become
increasingly more complex.

A COMMON MISTAKE

The SAS code needed to merge the files as described
above is:

PROC SORT OATA=ONE: BY IO: RUN;
PROC SORT OATA=TWO: BY IO: RUN:
OATA ONE TWO;
tllR~~ONE TWO;

RUN: ‘

This code is simple enough, but it could be made even
simpler. If one knows, for sure, that the input data sets are
already sorted then the SAS code could be reduced to:

DATA ONE TWO;
t44R~~ONE TWO;

RUN; ‘

Now, what could be simpler? Well, not much. But this
is probably one of the traps: the match-merge is
deceivingly simple.

For example, a common error made in coding a match-
merge is to inadvertently forget to include the BY
statement. To do so will beget the following unexpected
results with no warning or error messages.

OATA ONE TWO;
MERGE LINETWO:

RUN;

FILE ONE_TWO

IO NAME AGE SEX
-------..---------.
AO1 SUE 58 F
A02 TOM 20 M
A04 I(AY 47 F
AlO JIM 11 M

Notice that the A05 ID is lost in this merge and the
Name Kay is moved fi-om ID=A05 to ID=A04, and one
does not even get a note to say that something is wrong

1

with the code. All one gets is a bad output file. The
reason for this is that SAS recognizes the above code as a
valid one-to-one merge rather than the intended match-
merge.

The one-to-one merge is another type of a SAS merge
process. It is a DATA step which never has a BY
statement. The match-merge, on the other hand, is a
DATA step that always has a BY statement. This is the
reason a match-merge is also called a BY merge.

BY VARIABLES AND ASSOCIATED TRAPS

In the SAS match-merge, the matching process is
controlled by the BY variables. BY variables are the
variables listed in the BY statement. As we have just
seen, one can not have a match-merge without a BY
statement. There can be one or many BY variables in the
BY Statement. To perform a match-merge, the input files
must be sorted on the BY variables.

BY variables should be key variables. Key variables
are either character or numeric variables that uniquely
identi~ or label the records or observations within the
input data sets. Typically, there is only one key variable
and it identifies the unit of data the record is associated
with, such as a patient, account number, transaction
number, household, interviewee, etc.. So, good BY
variables are key variables that EXACTLY identi~ to
whom or what the record belongs.

BY variables must be chosen and controlled carefi,dlyto
have a successfid merge. Programmers have been know to
spend hours trying to figure out what was wrong with
their SAS code, only to find out that they had faulty BY
variables.

There are at least two kinds of traps associated with BY
variables: (1) the BY variable does not uniquely identifi
the record (ambiguous identification); and (2) the BY
variables in the input tiles have significantly different
characteristics.

AMBIGUOUS BY VARIABLE

Data items such as name, time, and date are ambiguous,
or difficult to obtain correctly. As such, these types of
items do not reliably identi~ records for matching and
therefore should not be used as BY variables.

Dates, for example, are notoriously bad identifiers. As
an illustration, let’s say in a clinical trial, patients need to
come into a clinic for a blood draw on a particular date.
An intuitive and logical choice for a key variable in this
situation would be the visit date.

However, in practice, using the date as the key variable
to identi~ the patient’s visit does not work very well. The
nurse filling out the form can forget exactly what date it is
and record a different day. Even if a computer date is
used, such dates have been known to be mis-set. The

patient might be unable to come in on the specified day
and actually come in the next day. Of course, someone
can always transcribe a date incorrectly. How often do
people forget exactly what year it is during kumary? And
the list goes on.

Now imagine trying to match two records, one tiom the
lab and another the clinic, when the visit dates are
reported differently for the same visit.

Suffice it to say that dates are unreliable key variables.
In our particular illustration, a blood draw number or visit
number with a check digit would have been a much more
reliable choice as a key variable and the resulting merge
would have abetter chance of matching the records fi-oma
lab and a clinic.

BY VARIABLE CHARACTERISTICS

Another pitfall associated with BY variables is having
different characteristics connected to the same BY
variable in the different input data sets. Some of the
characteristics to be on the lookout for are:

- Manipulation History
- Type (numeric or character)
- Justification (for character variables only, usually left)
- Stability
- Length

The following sections will explore each of these
characteristics and how they can cause the demise of a
match-merge.

BY VARIABLE HISTORY

Each BY variable has a processing history, i.e., how it
was created, initialized, and later manipulated before it
gets to be a BY variable in an input file to a match-merge.

BY variables are key variables, and key variables are
essentially labels. Labels, as a rule, are attached to their
product and are never changed. And so it should be with
record or observation labels. In other words, the ideal
history of a BY variable is short and sweet.

A variable which has been derived numerically,
manipulated, or changed, in any way, is oflen a poor
candidate as a BY variable. The reason is that to match
input records, the BY variables must have EXACTLY
identical values in all the input files. Approximately the
same value will not match the record (unless you are
doing a fuzzy merge which is neither discussed here nor
recommended).

Because the values must be EXACTLY the same, we
suggest that, like all good labels, a BY value be attached
once to each record and never altered. If this is
impossible, and only if it is impossible, we suggest they
have EXACTLY the same history of manipulation. For
example, if one file has a numerical BY variable, say

2

IDx=ll, and it is multiplied by 10, then it should be
multiplied by 10 in the other file. Multiplying by 10 in
one file, anddividing bylOand multiplying by 100 in the
other tile is mathematically identical, but in practice
ll*lOis notequal to(ll/10)*100. This difference has to
do with decimal-to-binary conversion and the
characteristics of fractions. But the moral to the story is
to use exactly the same manipulation on the BY variables
ofallfiles, or expect disaster. To put it another way, the
BY variables in each input file should have identical
histories of manipulation (including numeric
manipulation and LENGTH manipulation).

BY VARIABLE TYPE,
JUSTIFICATION, AND STABILITY

SAS is not designed to handle different-typed key
variables. Each BY variable must be of the same type
(numeric or character) in all the input data sets. Thus, if a
specific BY variable, say ID3, is numeric in one input data
set, it must be numeric in all the data sets. If this is not the
case SAS will give an error message like “ERROR:
Variable ID3 has been defined as both character and
numeric.”

This problem can be corrected by converting a given
key variable to the same type in all the input files before
the MERGE is attempted. However, before trying such a
conversion, it is wise to find out why the same-named
variable has a different TYPE in different files. While
they have the same name, they obviously do not have the
same manipulation history and may not even be the same
variable. In other words, they could be two different
types of data which, by coincidence, were named the
same.

SAS will not give any message for character BY
variables with different justifications (Iefl or right) in the
input data sets. Nor will SAS be able to reliably match
the records flom input data sets based on such a BY
variable. If a BY variable called ACCT_NUM has a
length of 5, for example, SAS will not match the left-
justified value of “A05 “ from one data set with the right-
justified value of” A05° from a second data set.

The solution to a justification mismatch problem is to
similarly justi~ all character BY variables before they are
merged using the LEFT and RIGHT fimctions. However,
once again, one would be well advised to find out why
same-named variables have different justifications before
attempting a merge.

And a word about stability. Decimal fractions have a
way of changing their values ever so slightly without a
programmer being aware of the change. Only a very
knowledgeable and carefil programmer can use BY
variables with decimal fi-action values and know, with
certainty, that they will match properly. It is
recommended that only integers and character variables be
used as BY variables. Any variable whose value is a
fraction, or derived from fi-actions, is inherently unstable
and should not be used as BY variables.

BY VARIABLE LENGTH

Another characteristic (and attribute) of BY variables is
LENGTH. One should make sure that the LENGTHs of
the BY variables are the same in all the input files and that
the manipulation history of the LENGTHs, if they have
changed, are the same. Look at the following example.

CODE OUTPUT
---------------------- ------..----
DATA SOS 1:
INPUT ID-$ 1-3 V_8 6-7:
CARDS ;
A22 12
A38 88
A51 33

RUN:

DATA SDS 2;
INPUT ID-$ 1-4 V_9 6-7;
CARDS ;
A22 72
A38 31
A41 11
A511 58 FILE SOS_l_2

RUN: ID V_8 V_9

------..----
DATA SDS 1 2; A22 12 72
MERGE SDS 1 SDS_2 ; A38 88 ;;

RUN,8Y ID: - A41
A51 33 58

---------------------- .-----------

In this example, the variable, ID, has a LENGTH=3 in
the first file and a LENGTH=4 in the second tile. At
compile time, the program data vector, for the output file,
the attributes of each variable is determined by the first
input data set where they appear. Thus, in this case, the
after first file in the merge statement is scanned, the data
vector is (ID $3, V_8). Then, the second tile is scanned
and new variables added to the vector, so that the final
output data is (ID$3 V_8 V_9). Since the ID has a
LENGTH=3 in the data vector, the valueofID=511 in the
second file is clipped to A51 and matched with the record
A51 from the first file. This is an example of how, when
the LENGTHs are different, one can get undesired results.

When the data files are reversed in the merge statement,
the desired results are obtained!

-------------------- FILE SDS 2 1
DATA SDS 2 1; --------:.:-
MERGE SDS 2 SDS_l: ID V9V8

~uN,8Y ID; - -----:----:.
A22 72 12

-------------------- A38 37 88
,44; 11

33
A511 58

This last example, shows how reversing the order of the
data sets in the merge statement can sometimes change the
values and records in the output file.

MATCH-MERGE TYPES

The whole idea of a match-merge is to match records
from two or more input files. Records are matched based
on the key variables. In SAS the key variables are
identified in the BY statement. To understand the
subtleties of SASS match-merge, it is crucial to know
three terms that are related to each other. These terms are

3

the BY Variable (which was examined in a previous --------------------------------------

section), the BY Value, and the BY Group.
A96 90 A96 37 many-to few 3
A96 25 A96 28
A96 93

The BY variables are the variables named in the BY
statement of the merge. There can be one or many BY
variables in the BY Statement. The input files must be
sorted on the BY variables.

The BY value is the value a BY variable has in a
particuku record or observation. The BY group is all the
records in a sorted data set that have the same BY values
for all the BY variables. The following two SAS data
sets, named ALPHA and BETA, will be used to illustrate
the different types of BY groups.

ALPHA BETA
--------
ID V_l ID V_4
-------- --------
AO1
A02
A05
A1O
A25
A25
A32
A55
A55
A55
A92
A92
A96
A96
A96

23
99
56
88
24
22

u

#

;:

25
93

AO1
A02
A04
A1O
A25
A25
A32
A32
A32
A55
A92
A92
A92
A96
A96

58
20
47
11

9;

22
61
88

+:

37
28

Notice that in the above two input files, there are many
different values for the BY variable called ID. The first
value for ID is AO1. The second value for ID is A02. For
each value of the BY variable in the above two files, there
is a correspond set of records. Each set of records is
called a BY group. Hence, there are two records for
ID=AO1, one record from the ALPHA file and one record
from the BETA file.

The next table is a copy of the above two input files
with a line separating each BY group of records.

INPUT FILE

ALPHA BETA NUM
------- ------- MAT~W~ERGE ~~~
IDV1 ID V_4
-----:. -------- ----------.. ...

AO1 23 AO1 58 one-to-one 1
. -------------------------------------
A02 99 A02 20 one-to-one 1
----------------------------------- .

A04 47 zero-to-one 1

A05 56 one-to-zero 1

A1O 88 A1O 11 one-to-one 1

A25 24 A25 4 many-to-many 2
A25 22 A25 91

A32 91 A32 1 one-to-many 3
A32 22
A32 61

A55 83 A55 88 many-to-one 3
A55 19
A55 42

A92 70 A92 14 few-to-many 3
A92 46 A92 72

A92 7

Match-merging is accomplished one BY group at a
time. The above table also names eight types of match-
merging. Each type is associated with a BY group. The 8
different types of merges illustrated in the previous table
are:

1) zero-to-one
2) one-to-zero
3) one-to-one
4) one-to-many
5) many-to-one
6) few-to-many
7) many-to-few
8) many-to-many

The way SAS matches records depends upon how many
records are in each of the input files for a given BY group.
For this reason, it is very important to be able to recognize
BY groups and the corresponding type of match-merge.

In theory, all types of match-merges can coexist in the
input files, and they can be arranged in any order and
combination. In practice, one usually only finds one or
several types of match-merges appearing in the input files.

The number of output records from a match-merge is
determined by looking at each of the input BY groups.
The previous table shows the number of output records
(see the column entitled NUM OUT REC) that would
result ffom match-merging the ALPHA and BETA files
for each BY group. The table implies that the number of
output records for a given BY group is equal to the largest
number of records in any of the corresponding input files
for that BY group. For example, look at the group of
records for ID=A92 in the above table. For ID=A92,
there are 2 input records in the ALPHA data set and 3
input records in the BETA data set, thus, the number of
output records for a merge of the two data sets is 3.

BY groups are at the very heart of the SAS match-
merge process. The number of output records depends on
the characteristics of the BY group. Variables are
initialized and retained by BY groups. The value of the
IN= data option can be easily ascertained by observing the
BY groups. The automatic variables FIRST.variable and
LAST.variable are controlled by BY groups.

Furthermore, the match-merge process itself looks at the
input records on a BY group by BY group basis, i.e., SAS
looks at the first BY group and processes it. Then, it
looks at the second BY group and processes it. And, so
on.

For each BY group there is a specific type of match-
merge.

The following sections will examine how each type of
match-merge is processed and how the corresponding
output records are formed.

4

l-TO-l, O-TO-1,AND l-TO-O MATCH-MERGE

The workings of one-to-one, zero-to-one, and one-to-
zero match-merge are fairly intuitive and have already
been examined in the first example given in this paper.

(IMPORTANT: Please note that this paper
distinguishes between a one-to-one merge and a one-to-
one Match-merge. The one-to-one merge is a SAS DATA
step with *no* BY statement. Whereas the match-merge
is a DATA step WITH a BY statement. A one-to-one
match-merge is a name given to that part of a match-
merge which corresponds to a BY group with only one
record in each of the input data sets.)

MANY-TO-MANY MATCH-MERGE

The many-to-many type of match-merge occurs when,
for a given BY group, there are the same number of
records in all the input data sets. A 2-to-2 merge, a 3-to-3
merge, a 6-to-6-to-6 merge, or a 10-to-10 merge are all
examples of the many-to-many merge. In this type of
merge, the 1st record fi-om each input data set is
combined with the first record fi-om each of the other
input data sets to forma single output record. Then all the
second records within the BY group are combined. This
process continues until all the last records in the BY group
are combined into one last output record. The following
is an example of a many-to-many match-merge for one
BY group.

---------------- .
DATA ALPH BET;
~~R~~ ALPHA BETA;

RUN; ‘

---------- ...------ --------.----
FILE ALPHA FILE BETA FILE ALPH_BET
---------- --------- --..--.------
ID V_l ID V_4 ID V_l V_4
-------- .------ -------.-.-.-
A25 24 A25 4 A25 24
A25 22 A25 91 A25 22 9!
A25 76 A25 38 A25 76 38

The many-to-many match-merge is essentially a one-to-
one (non-BY, non-match) merge and has the same
drawbacks and dangers. Specifically, one has very little
control over the actual order of the records within the BY
group for each of the input data sets.

For example, how does one know that the first value of
V_l (24) is supposed to be matched with the first value of
v_4 (4). Why shouldn’t V_l=24 be matched with
V_4=91 (the second value of V_4)? If great care is not
taken, a many-to-many merge can result in random
matching of variable values.

A many-to-many match-merge is DANGEROUS and
often unreliable. Having this type of BY group in an
input data set oflen points to a key variable that does not
sufficiently identify/label/distinguish the different records
in at least one of the input data sets. Perhaps additional
BY variables are required to make a proper match, or

perhaps the BY variables themselves are faulty (see the
BY VARIABLE and associated traps section for a
discussion of faulty BY variables).

FEW-TO-MANY MATCH-MERGE

The few-to-many and the many-to-few merges are
essentially the same type of merge. Both types of merges
are akin to a many-to-many merge and both are
DANGEROUS.

The few-to-many type of match-merge occurs when for
a given BY group, there is more than one record in the
first input data set, and the second input data set has more
records than the first. A 2-to-3 merge, a 3-to-5 merge, a
S-to-IO, or a x-to-y (where y>x>l) merge are all examples
of the few-to-many match-merge.

In this type of merge the “few” (=x) records are
matched using one-to-one correspondence. For all
practical purposes, few-to-many (or x-to-y merge) match-
merge is the same as a many-to-many merge (or a 1-to-1
non-match non-BY merge) for the first “few” records. For
the last y-x+l records in the BY group, the match-merge
acts like a one-to-many match-merge which is described
later. An example of a few-to-many match-merge
follows. (This merge is performed using the code given in
the MANY-TO-MANY MATCH-MERGE section.)

---------- --------- ------..-----
FILE ALPHA FILE BETA FILE ALPH_BET

ID VI
------:.
A92 70
A92 46

ID V_4

A92 14
A92 72
A92 7

-.-..--------
ID V1V4
------:----:-
A92 70 14
A92 46 7;
A92 46

Since essentially the first few records in the BY group
of a few-to-many perform a many-to-many match-merge,
the few-to-many has the same dangers and the many-to-
many match-merge. Both merges are dangerous for the
same reasons. Please see the Many-To-Many Match-
merge section for a discussion of the dangers and possible
solutions.

Additionally, since the last part of a few-to-many is a 1-
to-many match-merge, the few-to-many has the danger
that the order of the data sets in the MERGE statement can
be significant. See the next section for a discussion of this
danger.

ONE-TO-MANY MATCH-MERGE

The simplest, and most useilid, merge after the one-to-
one match-merge is the one-to-many match-merge. Please
consider the following example.

-------...--------
DATA ALPH BET;
]~R~~ A[PHA BETA;

RUN; ‘

5

---------- .-------- -------------
FILE ALPHA FILE BETA FILE ALPH_BET
---------- ---------:---
ID V_l ID V_4 ID V_l V 4—

A32 5 A32 15
A35 3

A32 5
A32 22 A32 5 ;:
A32 61 A32 5 61

A35 3

In this merge there are two BY groups. The first output
record is the same as in a one-to-one match-merge. But
for the second record in the BETA file there is no
corresponding ALPHA record, so SAS retains the V_l
value from the first ALPHA record and passes it to the
second output record.

It is as if there were a RETAIN statement for all the
variables in the input data sets. This automatic retain
stays in effect during the BY group. When a new BY
group is started the value of all the merged variables is set
to missing.

The fact that all the values of all the merge variables are
retained throughout the execution of the BY group is
important and makes the one-to-many match-merge a
little tricky. Consider the same example with one
additional line in the DATA step.

DATA ALPH BET;
tj:R~~AEPHA BETA;

v 1=V:1*2;
RUNT

---------- ---------
FILE ALPHA FILE BETA FILE ALPH BET
---------- —----.---- .---------..-
ID V_l ID V_4 ID V_l V_4
.------- .------ -------------
A32 5 A32 15
A35 3

A32 10 15
A32 22 A32 20 22
A32 61 A32 4: 61

A35

See how the V_l variable is changing in value for
ID=A32! This may be counter-intuitive, but is exactly
what is supposed to happen when a value of a variable is
retained.

If the intention is for V_l to have the same value (in
this case, 10) for the whole BY group, the following code
would provide such a result, provided that there is always
exactly one record in the ALPHA data set for each of the
BY groups.

DATA ALPH BET;
MERGE AEPHA BETA;
BY ID;
IF FIRSTS THEN V_l=V_l*2;

RUN;
----------------- .

When writing code predicated on some assumption
about the data, it is always good programming practice to
write additional code to check that the assumption is
actually true. All too frequently the actual data one
receives in a file does not conform with the file

specifications.

We illustrate this principle by applying it to the
previous example. There, a line of code (IF FIRSTS
THEN V_l=V_l *2;) was added to force V_l to behave as
desired. However, that line of code was added based on
the assumption that all the BY groups had exactly one
record in the first input file. Thus, the code would execute
properly on a 1-to-Oand a l-to- 1 BY group as well as a 1-
to-many (missing values for V_l will be accepted). The
following code adds a statement that checks that there is
one, and only one, ALPHA record in each BY group:

DATA ALPH BET;
i44R~~A[PHA(IN=INA) BETA;

IF FIRSTS THEN V l=V 1*2;
IF INA=O & FIRSTS ‘OR

IMAM & first.ID=O THEN
PUT “Tiff than 1 Alpha Rec

RUN:

OVERLAPPING VARIABLES:
MATCH-MERGE

for By group”:

A ONE-TO-MANY

The classical idea of a match-merge is to take some
variables from one file and ADD them (or tack them on)
to a second file. But with SAS, it is possible to have the
same variables in both input files. When two input files
have some non-key variables in common, those variables
are called overlapping variables.

Let’s look at another example of a one-to-many merge.
This example is the same as the first one-to-many merge
we saw. The only difference is this has one overlapping
variable, V_4. “

FILE ALPHA

ID V_l V_4

A32 5 10
A35 3 6

.----------..-..--
DATA ALPH BET;
~:R~~,AEPHA BETA;

RUN; ‘

FILE BETA FILE ALPH_BET

l.—

—.--------.---
ID V_4 ID V_l V_4
------- -------------
A32 15 A32 5 15
A32 22 A32 5 22
A32 61 A32 5 61

A35 3 6

Please note how the value of V 4 in the second merge
file overwrites the value of V 4 ~n the first merge file.
Even a missing value can ovem~ite a valid value.

Since overlapping variables cause SAS to overwrite
values, the merit of the overlapping variable is often
dubious. Obviously, it is a potentially dangerous situation
to have values overwriting each other.

If two input files legitimately have several variables in
common, in most situations they would also have the
same values in both files. If these two files were to be
merged, a good defensive strategy would be to check that
the two files do indeed have the same values during the
merge. This can easily be accomplished by renaming the

6

THE BIGGEST TRICK OF ALLcommon variables in one file, comparing the two values
during the merge, and dropping the renamed variables.

Sometimes a variable in one file inadvertently has the
same name as in a second file, and the two variables have
different information in them. When this happens one
gets inadvertent overlapping and overwriting variables. A
simple way to avoid this situation is to compare the
number of input variables with the number of output
variables. If there are two files and no overlapping
variables, the number of output variables (0) should be
the sum of number of input variables (11+12) less the
number of BY variables (B). In formula form, 0=(11 +12)-
B. If there are n files and no overlapping variables, then
0=(11 +...InB*(n(1)l).

ORDER OF DATA SETS IN MERGE STATEMENT

In the section BY VARIABLE LENGTH, we have
already seen how the order of the data sets in the merge
statement altered the results when the characteristics of
the key variables were different.

Let’s look at another example of a one-to-many merge
to examine another case of where the order of the data sets
in the MERGE statement alters the results. This example
is similar the to the kist example. The only difference is
that the order of the data sets in the MERGE statement is
reversed.

DATA BET ALPH ;
MERGE BETA ALPHA;
BY ID;

RUN:

FILE BETA
.-.------
IDV4 —-------
A32 15
A32 22
A32 61

FILE ALPHA
----.--..---
ID V_l V_4

A32 5 10
A35 3 6

----.-..---.-
FILE BET ALPH
--------:----
ID V_4 V_l

A32 10 5
A32 22 5
A32 61 5
A35 6 3

Note that the value of V_4 is different for the first
output record! This puts to rest the common
misconception that the order of the data sets in the
MERGE statement has no effect on the value of the
resulting variables. As can be seen from this example the
order can have a lot to do with the values of the output
data set. Whenever there is variable overlap and at least
one record in each data set for a BY group, the order of
the files in the MERGE statement is significant.

There is a second, and less important, effect of the order
of the data sets in the MERGE statement. Specifically, the
position of the variables in the output data set is
determined by the order of the data sets in the MERGE
statement. Observe that in last example the output
variables are positioned (in the description part of the data
set) as ID V_4 V_l, where as in the second last example,
the output variables were positioned as ID V_l V_4.

This paper’s title offers tricks on SAS Merging. The
biggest trick of all is to know the SAS Algorithm for the
match-merge. Whoever studies the algorithm and gets it
down cold, comes a long way in avoiding ALL the traps
in the Merge.

The match-merge is just a special type of a DATA Step.
So if one knows the DATA Step algorithm, it is fairly
easy to take the DATA Step algorithm and embellish it a
little to have the MERGE algorithm.

There are many ways to describe the algorithm. One
description is given on page 151 of SAS Language:
Reference (Version 6, First Edition), under the title
“DATA Step Processing during Match-Merging”.

This paper has examined most of the more tricky aspects
of the algorithm. The next section summarizes what to
look out for.

CONCLUSION

Sometimes the way the match-merge works is counter-
intuitive.

To insure a successful merge , it is always good to
know what types of match-merges are going to be
involved and anticipate how records in those kinds of
merges are handled. Few-to-many, many-to-few, and
many-to-many match-merges should be avoided. To avoid
unexpected types of merges, code should be added to the
match-merge DATA step to check that only the expected
types are occurring in the actual merge.

Overlapping variables should be avoided. Whenever
there is variable overlap and at least one record in each
data set for a BY group, the order of the files in the
MERGE statement is significant. Inadvertent overlapping
variables (including inadvertently same-named variables)
can be checked for by comparing the variable counts in
the input and output data sets.

The order of the data sets in the merge statement will
change the position of the variables in the output data set.

The attributes (ex: LENGTH, position) of overlapping
variables (including the key variables) are determined by
the first input data set in which they appear. Different
attributes and characteristics (ex:justification) in the
overlapping variables can cause unexpected matching of
records. Thus, the attributes and characteristics of all
overlapping (including key) variables in all of the input
files should be checked to be sure that they are the same.

BY variables should be designed and chosen carefilly,
so that they truly and unambiguously identi~, label, and
distinguish each record in a data set.

Finally, always check that the match-merge DATA step
has a BY statement.

7

REFERENCE

SAS Institute, Inc. (1990), SAS Language: Reference,
Version 6, First Edition, Carry, NC: SAS Institute Inc.

TRADEMARKS

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USE and other countries. ** indicates
USE registration.

Other brand and product names are registered trademarks
or trademark of their respective companies.

AUTHOR CONTACT

The author welcomes comments, questions, corrections
and suggestions.

Malachy J. Foley
2502 Foxwood Dr.
Chapel Hill, NC 27514

Email: FOLEY@unc.edu

	Main TOC

