
Advanced Techniques for Reading Difficult and Unusual Flat Files
Kim L. Kolbe Ritzow of Systems Seminar Consultants, Kalamazoo, MI

Abstract the necessary fields and holds the record with the
This paper will discuss the various tricks and single trailing @. The record is then checked with
techniques that can be used to read more difficult the subsequent logic to determine if the record
types of flat files. Topics to be discussed will should be kept or not. If the record meets the
include: reading multiple layout files, strategies for criterium it will continue on to the next INPUT
reading hierarchical files, advanced input pointers, statement and will eventually be output to the data
and the various uses of the SCAN, INDEX and set via the implicit output at the bottom of the Data
INDEXC functions to assist in reading data. Step. If the record does not meet the criterium, it

Selectively Reading Data the top of the data step to grab a new record.
The single trailing @ used on the INPUT statement Thus, minimizing the amount of initial information
is not only useful for selectively reading data, but is that is read in before the data is subset.
also an important tool in reading multiple layout
files. Reading Multiple File Layouts

One way to use the single trailing @ is to selectively useful is to read flat files which contain multiple file
read data. The following code is not bad, but it is layouts within a single flat file. This type is identified
also not very efficient because it reads in all the by the fact that each line requires a different type of
fields and then determines if it wants the record or input statement and that there is no predictability to
not: the order in which the record will appear (the first

DATA CONSUMER; 5 record and another time there could be two type
 INFILE 'C:\FLATFILE\EAT.DAT'; 5 records first and then a type 21 record, and so
 INPUT on).
 @1 ID $5.
 @6 GENDER $1.
 @7 AGE 2.
 @9 MEAL1 $2.
 @11 MEAL2 $2.
 @13 MEAL3 $2.;
 IF GENDER='1' AND MEAL1='30';
RUN;

However, the following code using the single
trailing @ to selectively read the data is a lot more
efficient than the previous code:

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT.DAT';
 INPUT
 @6 GENDER $1.
 @9 MEAL1 $2. @;
 IF GENDER='1' AND MEAL1='30';
 INPUT
 @1 ID $5.
 @7 AGE 2.
 @11 MEAL2 $2.
 @13 MEAL3 $2.;
RUN;

This code is more efficient because it first reads in

continues no further and control is sent back up to

Another way in which the single trailing @ can be

record could be a type 15 record, and then a type

+)))))))))))))))))))))))))))))))))))),
*05 PRODPAYR J1981 05/19/91 10:31:02 *
*15 PROD.MONTHLY.PAYROLL 3380 *
*15 PROD.MONTHLY.BACKUP 3400 *
*21 1B1 145664 *
*05 TSTCOMPL J1982 05/19/91 10:32:02 *
*15 SYS1.LINKLIB 3380 *
.))))))))))))))))))))))))))))))))))))-

DATA JOBS(KEEP=JNAME JNUM JDATE
 JTIME)

 DSNS(KEEP=DSN UNIT)
 TAPE(KEEP=ADDR VOLUME);
 INFILE 'C:\FLATFILE\SYSTEM.DAT';
 INPUT @1 TYPE $2. @;
 IF TYPE='05' THEN
 DO;
 INPUT @4 JNAME $8.

@13 JNUM $5.
@19 JDATE MMDDYY8.
@28 JTIME TIME8.;

 OUTPUT JOBS;
 END;

 ELSE IF TYPE='15' THEN
 DO;
 INPUT @4 DSN $22.

@28 UNIT $4.;

 OUTPUT DSNS; 2. One input statement, one semicolon, and
 END; forward slash pointers:
 ELSE IF TYPE='21' THEN
 DO; DATA CONSUMER;
 INPUT @4 ADDR $3. INFILE 'C:\FLATFILE\EAT2.DAT';

@13 VOLUME $6.; INPUT
 OUTPUT TAPE; @1 NAME $5.
 END; @7 GENDER $1.
RUN; @9 AGE 2. /

Reading Multi-Line Per Observation Files @3 HEL_DIET $1.
Multi-line per observation files are similar to @5 WEIGHT 3.
multiple layout files (demonstrated above) in that @9 DIABETIC $1. /
both types of files have differing types of record @1 MEAL1 $3.
layouts for each line of data. The main difference @5 BEV1 $1.;
between the two is that a multi-line per observation RUN;
file will have the same number of lines for each
observation and they will always come in the same, 3. One input statement, one semicolon, and
predictable order. The multiple layout files on the pound pointers (this method is the most
other hand, do not always have the same number flexible because you can selectively read
of lines, nor do they have any predictability in the cards of data in, but it also is the least
order in which the information will appear. efficient because the input buffer contains
Because of the predictability in the multi-line per all three lines of data at once whereas the
observation files, they are relatively easy to read. other two methods only ever have one line

An example of what the data looks like coming in:

+))))))))))),
* MARY F 29*
* Y N 132 N *
* 109 3 *
* JOHN M 38*
* N N 280 Y *
* 003 9 *
.)))))))))))-

Multi-line per observation files, can be read one of
three ways:

1. Separate input statements for each line:

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT2.DAT';
 INPUT
 @1 NAME $5.
 @7 GENDER $1.
 @9 AGE 2.;

 INPUT
 @1 MED_DIET $1.
 @3 HEL_DIET $1.
 @5 WEIGHT 3.
 @9 DIABETIC $1.;
 INPUT
 @1 MEAL1 $3.
 @5 BEV1 $1.;
RUN;

 @1 MED_DIET $1.

at a time in the buffer):

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT2.DAT';
 INPUT #1
 @1 NAME $5.
 @7 GENDER $1.
 @9 AGE 2.
 #2
 @1 MED_DIET $1.
 @3 HEL_DIET $1.
 @5 WEIGHT 3.
 @9 DIABETIC $1.
 #3
 @1 MEAL1 $3.
 @5 BEV1 $1.;
RUN;

Regardless of which style of input statement you
use, the resulting output SAS data set will look the
same.

Hierarchical Files
Hierarchical files are simply a variation on the multi-
line per observation files (as demonstrated above).
Multi-line per observation files always have a fixed
number of line per observation (in my example
three lines per observation, but it could have just as
easily been five lines or six lines of information for
each observation. The key here is that it is always
the same number of lines- whatever the number
may be). Hierarchical files on the other hand, have

a varying number of lines per observation. One The key to reading this type of file is to first identify
observation may have two lines of the data, the what type of record you have (by reading in that
next observation may have four lines, and so on. field, holding it and checking its value), making sure
Because of this variability, they are much like the you RETAIN the header record's information so it
multiple layout files that we saw a while back, but will appear on the same line as the detail record's
are different in that we are dealing with A SINGLE information, and making sure you output the record
OBSERVATION which has a varying number of each time after you have read in a detail record.
lines associated with it, whereas in the multiple
layout files, there were different types of This solution will work for those types of
observations residing on the same incoming data hierarchical files which have a header record and
set that were split off into separate outgoing SAS a varying number of detail records each on a
data sets after having been read in. separate line. As a result, this code will "flatten

Hierarchical files usually have a record type (or line for each detail record with the header record
card reference) on each record to help distinguish information being repeated on each of the lines of
what type of record, or card, you are dealing with. detail data.
Hierarchical files typically consist of a header
record and a varying number of detail records. An example of what the data looks like by the time

An example of what the data looks like coming in:

+)))))))))))))))))))))),
* 1345601 29 Y N 134 Y * <=== Header record

* 1345602 004 1 * <=== Detail record

* 1345602 098 5 * <=== Detail record

* 1345602 111 9 * <=== Detail record

* 3989201 63 Y Y 290 N * <=== Header record

* 3989202 208 1 * <=== Detail record

* 3989202 035 1 * <=== Detail record

* 3838201 43 N N 132 N * <=== Header record

* 3838202 084 1 * <=== Detail record

.))))))))))))))))))))))-

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT3.DAT';
 INPUT
 @1 ID $5.
 @6 TYPE $2. @;
 IF TYPE='01' THEN
 DO;
 RETAIN AGE MED_DIET HEL_DIET
 WEIGHT DIABETIC;

INPUT
 @9 AGE 2.
 @12 MED_DIET $1.
 @14 HEL_DIET $1.
 @16 WEIGHT 3.
 @20 DIABETIC $1.;
 END;
 ELSE IF TYPE='02' THEN
 DO;
 INPUT
 @9 MEAL $3.
 @13 BEV $1.;
 OUTPUT;
 END;
 DROP TYPE;
RUN;

out" the hierarchical structure into a file with one

it makes it to the SAS data set:

+)))))))))))))))))))))))))),
* 13456 29 Y N 134 Y 004 1 *
* 13456 29 Y N 134 Y 098 5 *
* 13456 29 Y N 134 Y 111 9 *
* 39892 63 Y Y 290 N 208 1 *
* 39892 63 Y Y 290 N 035 1 *
* 38382 43 N N 132 N 084 1 *
.))))))))))))))))))))))))))-

Other Variations on a Hierarchical File
Hierarchical files can come in different varieties.
For example, rather than having one header record
with a varying number of detail records on separate
lines as we saw in the previous example, one could
also have a hierarchical file that has a header
record with a varying number of detail records on
the SAME line as the header record. Typically
these files are not fixed block in their length, but
rather, are variable length files.

There are many different ways in which these types
of hierarchical files can be read. Which way you
read them, largely depends on how the file was
created and what information you can use to key
off of to determine if you are on a header or detail
record, or when there are no more detail records
left to be read. The following are some of the
possible scenarios for these types of files:

1. In the header record there is information
indicating how many detail records are to
be expected:

An example of what this type of data might look
like:

+)),
* 13456 29 Y N 134 Y 44 082 3 004 1 098 5 111 9 *
* 39892 63 Y Y 112 N 33 011 5 104 8 051 3+))))))-
* 38382 43 N N 221 N 22 131 2 021 8 +))))-
.))))))))))))))))))))))))))))))))))-

DATA CONSUMER; it makes it to the SAS data set:
 INFILE 'C:\FLATFILE\EAT4.DAT';
 INPUT
 @1 ID $5.
 @7 AGE 2.
 @10 MED_DIET $1.
 @12 HEL_DIET $1.
 @14 WEIGHT 3.
 @18 DIABETIC $1.
 @20 HOWMANY 2. @;
 DO I=1 TO HOWMANY;
 INPUT
 MEAL $CHAR4.
 BEV $CHAR2. @;
 OUTPUT;
 END;
 DROP I HOWMANY;
RUN;

In this solution, it is important to hold the record at
the end of reading in the header record because
the detail information will be located on the same
line and a subsequent INPUT statement has to be
coded with a DO loop surrounding it. The DO loop
will simply control how many times the detail
information will be read on a given line.
On the second INPUT statement (the one within
the DO loop), it is EXTREMELY important that the
INPUT statement not be coded with any pointers or
column references. If it is, you will hang the pointer
up in a given spot and you will never read in
anything but the first detail record's information. It
is the width of the informats that advance the
pointer. It is also extremely important that within
this second INPUT statement a single trailing @ be
coded at the end of the INPUT statement so that
the current line will be held in order for additional
detail records to be read. If the single trailing @ is
forgotten, the record will be released and
information from the subsequent observations will
appear on the same line as the first observations
data on the output SAS data set. The current line
will be released at the end of the DO loop.

Finally, it is important that the record be OUTPUT
within the DO loop so that each detail record will be
output, one at a time. A RETAIN is not required in
this solution, as in the previous solution, because
the header record information is on the same line
as the detail record's information, whereas in the
previous example it was physically located on a

different line and therefore its value needed to be
retained to get the information on the same line as
the detail record prior to outputing the data.

An example of what this data looks like by the time

+)))))))))))))))))))))))))),
* 13456 29 Y N 134 Y 082 3 *
* 13456 29 Y N 134 Y 004 1 *
* 13456 29 Y N 134 Y 098 5 *
* 13456 29 Y N 134 Y 111 9 *
* 39892 63 Y Y 112 N 011 5 *
* 39892 63 Y Y 112 N 104 8 *
* 39892 63 Y Y 112 N 051 3 *
* 38382 43 N N 221 N 131 2 *
* 38382 43 N N 221 N 021 8 *
.))))))))))))))))))))))))))-

2. Another variation on this type of file is that
it may tell you when there ARE NO MORE
records rather than how many records to
expect:

An example of what this type of data might look
like:

+)),
* 13456 29 Y N 134 Y 082 3 004 1 098 5 111 9 $ *
* 39892 63 Y Y 112 N 011 5 104 8 051 3 $+))))))-
* 38382 43 N N 221 N 131 2 021 8 $ +))))-
.))))))))))))))))))))))))))))))))))-

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT5.DAT';
 INPUT
 @1 ID $1.
 @7 AGE 2.
 @10 MED_DIET $1.
 @12 HEL_DIET $1.
 @14 WEIGHT 3.
 @18 DIABETIC $1. @;
 DO UNTIL(EOFLAG='$');
 INPUT MEAL $
 BEV $
 EOFLAG $2. +(-1) @;
 OUTPUT;
 END;
 DROP EOFLAG;
RUN;

Here too, it's important that the second INPUT
statement does not contain any pointer or column
references and that the OUTPUT statement is
coded within the DO loop. The use of a DO UNTIL

is important, because it does not check the While the initial data coming in to this data step
condition until the BOTTOM of the DO loop, at (EAT6.DAT) looks slightly different than the data in
which time the indicator being checked has already the previous example (EAT5.DAT), the resulting
been read in. output SAS data set would look exactly the same

While the initial data coming in to this data step accordingly to accommodate the different structure
(EAT5.DAT) looks slightly different than the data in of the data coming in.
the previous example (EAT4.DAT), the resulting
output SAS data set would look exactly the same Variable Length Files
because the data step's syntax was adjusted Sometimes hierarchical files are the source of
accordingly to accommodate the different structure variable length files, but not all variable length files
of the data coming in. have to be hierarchical. A variable length file has

3. Finally, you know neither how many detail records physically end in different positions.
records to expect, nor when there are no Without some special tricks and techniques these
more detail records. Rather, you must files can be difficult to read. There are several
figure this out yourself: ways in which a variable length file can be read, but

An example of what this type of data might look option in addition to the PAD option on the INFILE
like: statement. The purpose of the LRECL= option is

+))),
* 13456 29 Y N 134 Y 082 3 004 1 098 5 111 9*
* 39892 63 Y Y 112 N 011 5 104 8 051 3+)))))- the documentation on the file or through the use of
* 38382 43 N N 221 N 131 2 021 8+)))))-
.)))))))))))))))))))))))))))))))-

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT6.DAT'
 LENGTH=LRECL;
 INPUT
 @1 ID $5.
 @7 AGE 2.
 @10 MED_DIET $1.
 @12 HEL_DIET $1.
 @14 WEIGHT 3.
 @18 DIABETIC $1. @;
 HOWMANY=INT((LRECL-18)/5);
 DO I=1 TO HOWMANY;
 INPUT MEAL $
 BEV $ @;
 OUTPUT;
 END;
 DROP I HOWMANY;RUN;

The LENGTH= option on the INFILE statement will
return to the pseudo-variable you defined as
LRECL which will contain the length of each record
at compile time. Knowing that each header record
has a fixed length of 18 bytes, or characters, it can
be subtracted from the total length of the record
and then divide by the length of the detail records
to determine how many detail records are on the
file (notice one the number of detail records is
determined, the solution is much like what was
done when that information is actually provided on
the file, as we saw in an earlier example).

because the data step's syntax was adjusted

differing lengths for each record on the file. The

one of the easiest ways is to use the LRECL=

to specify the length of the longest record being
read in (this information can usually be found with

some system utility). The PAD option will then pad
out the remaining bytes on the file out to the length
specified on the LRECL= with blanks. These two
options essentially turn an

otherwise variable length file into a fixed length file
which we can then read like we would any other
fixed length file.

An example of what this type of data might look
like:

+))))))))))))))))))))))))))))))),
*13456 29 Y N 134 Y CHANGED MEDS.)))))),
*39892 63 Y Y 112 N FOLLOW UP IN 2 MOS *
*38382 43 N N 221 N CHECK HDLS+))))))))-
.)))))))))))))))))))))))))))))-

DATA CONSUMER;
 INFILE 'C:\FLATFILE\EAT7.DAT'
 LRECL=45 PAD;
 INPUT
 @1 ID $5.
 @7 AGE 2.
 @9 MED_DIET $1.
 @10 HEL_DIET $1.
 @12 WEIGHT 3.
 @18 DIABETIC $1.
 @20 DESCRIB1 $24.;
RUN;

Free Form Files
A lot of times people confuse variable length files
with free form files, each of which require different

types of solutions in order to read them. If you fail to accommodate for the tab delimiters in
Variable length files typically have columns of the file, the tabs will prematurely release the
information that start in the same place but the last current line's information even before its done
variable's value physically ends in a different place reading in all of its data.
for each record. A free form file, on the other
hand, has information that does not begin and end
in nice, neat columns but does have the same
length for each record. This type of data requires
the use of list input and oftentimes, a bunch of
other special tricks and techniques to get the data These types of files are often misleading because
read in correctly. they look like they are blank delimited when they

An example of what this type of data might look INFILE statement to handle this problem, what will
like: be type in quotes is the hex equivalent of a tab

+)))))))))))))))))))))))))))))),
* SUE H 12 3239.12 123.83 *
* JENNIFER S 14 5692.10 388.38 *
* MARK H 24 1928.23 28.12 *
.))))))))))))))))))))))))))))))-
DATA SOFTSALE;
 INFILE 'C:\FLATFILE\SOFTSALE.DAT';
 INPUT NAME $
 DIVISION $
 YEARS
 SALES
 EXPENSE;
RUN;

This style of input does assume that the fields are
blank delimited. If they are delimited by something
other than a blank, such as commas and double
quotes (as if often the case when reading in an
export file from a spreadsheet package like Lotus,
Excel, or Symphony) then the DLM= option needs
to be used on the INFILE statement:

+)))))))))))))))))))))))))))))))))))))),
* "SUE", "H", 12, 3239.12, 123.83 *
* "JENNIFER", "S", 14, 5692.10, 388.38 *
* "MARK", "H", 24, 1928.23, 28.12 *
.))))))))))))))))))))))))))))))))))))))-

DATA SOFTSALE;
 INFILE 'C:\FLATFILE\SOFTSAL2.DAT'
 DLM='",';
 INPUT NAME $
 DIVISION $
 YEARS
 SALES
 EXPENSE;
RUN;

Tab Delimited Files
Files that are tab delimited can be read one of two
ways by either using the DLM= or the
EXPANDTABS options on the INFILE statement.

+))),
* SUE H 12 3239.12 123.83 *
* JENNIFER S 14 5692.10 388.38*
* MARK H 24 1928.23 28.12 *
.)))-

really are not. If you use the DLM= option on the

which is a non-displayable character in order to
read the data:

DATA SOFTSALE;
 INFILE 'C:\FLATFILE\SOFTSAL3.DAT'
 DLM=' ';

 INPUT NAME $
 DIVISION $
 YEARS
 SALES
 EXPENSE;RUN;

Another possibility is to use the EXPANDTABS
option on the INFILE statement. This option is only
useful in reading files that contain tabs which were
created on the same host system as it's trying to be
read in on:

DATA SOFTSALE;
 INFILE 'C:\FLATFILE\SOFTSAL3.DAT'
 EXPANDTABS;
 INPUT NAME $
 DIVISION $
 YEARS
 SALES
 EXPENSE;
RUN;

Advanced input pointers
There are a variety of advanced features available
on the input statement which can help read certain
types of data:

N=5;
INPUT @N NAME $CHAR10.;

N=2;
INPUT @(N+3) NAME $CHAR10.;

INPUT @'Mr.' NAME $CHAR10.;

SEARCH='Mr.'; 200 or to the length of the record, whichever
INPUT @SERACH NAME $CHAR10.; comes sooner". Then, through the use of SCAN

SEARCH='Mr'; variables are created as a result.
INPUT @(SEARCH!!'.') NAME $CHAR10.;

N=4; as is being done in this example, one runs the risk
INPUT +N NAME $CHAR10.; of the report's format changing and the code

INPUT +(-5) NAME $CHAR10.; when you need access to a certain statistic's value

We also have the ability to use formatted lists with data set, this may be the next best alternative.
pointers, which are useful when you need to read
in a bunch of data that has an identifiable and A couple more examples of the $VARYING
repetitive pattern associated with it: informat using the INDEX and INDEXC functions

+)))))))))))))))))))))))))))))))))))))),
AK065 AZ101 AL092 AR078..........WY054
.))))))))))))))))))))))))))))))))))))))-
DATA TEMPS;
 INFILE 'C:\FLATFILE\TEMPDATA.DAT';
 INPUT @1 (STATE1-STATE50) ($2. +4)
 @3 (TEMP1-TEMP50) (3. +3);
RUN;

Using the $VARYING Informat
One client I currently work for reads in a lot of data
that isn't truly a flat file, rather it's a report stored as
a text file. These files come either from the user
creating them by using PROC PRINTTO (a SAS
procedure used to capture procedural output see
the bibliographic reference for "Customized Report
Writing Using PROC PRINTTO" for an example of
why they might be doing this); or, these files can
come from some other software that the company
owns which allows them to track competitor's
sales. This software product cannot build a flat file
of the information, rather it builds a report which the
analyst then saves to disk. Once its been saved to
disk it is then reads in, a SAS data set is built, and
it is merged with other internal information for
reporting purposes.

Reading reports as an incoming flat file can
sometimes be tricky, but using the $VARYING
informat can make the process a lot easier.

Lets first take the case attempting to read in
procedural output created by using PROC
PRINTTO (see Tables 1 and 2 for examples of
what the data looks like coming in and the code
used to read it in, respectively).

In this example, each line of the report's text is read
in as a varying length record. The $VARYING200.
with the LRECL option says, "read to a length of

function, the line of text is parsed apart and macro

Obviously, whenever scanning the text of a report,

suddenly no longer working. However, sometimes

that you cannot otherwise obtain through a SAS

will be shown during the presentation, but will
not appear within the paper due to limitations
on the number of pages.

In Summary
This paper has demonstrated a number of
advanced techniques that can be used to read
more difficult types of flat files.

I have never, in my many years of SAS
programming, found a flat file that I cannot read in
SAS. Oftentimes, it just requires rethinking the
problem, approaching it in a different and perhaps
unfamilar way, and introducing some new and
unusual techniques to get the data read in
correctly. When in doubt, ask for some help and
chances are someone can come up with alternate
idea as to how to approach the problem.

Trademark Notice
SAS is a registered trademark of the SAS Institute
Inc., Cary, NC, USA and other countries.

Useful Publications
Kolbe Ritzow, Kim (1996), "Customized Report
Writing Using PROC PRINTTO", Proceedings of
the 7th Annual MidWest SAS Users Group
Conference

Any questions or comments regarding the paper
may be directed to the author:

Kim L. Kolbe Ritzow
Systems Seminar Consultants
Kalamazoo Office
927 Lakeway Avenue
Kalamazoo, MI 49001
Phone: (616) 345-6636
Fax: (616) 345-5793
E-mail: KRITZOW@AOL.COM

+)),
* Model: MODEL1 *
* Dependent Variable: RESULT *
* *
* Analysis of Variance *
* *
* Sum of Mean *
* Source DF Squares Square F Value Prob>F *
* *
* Model 1 4224476.4575 4224476.4575 1466.742 0.0001 *
* Error 19 54723.35203 2880.17642 *
* C Total 20 4279199.8095 *
* *
* Root MSE 53.66728 R-square 0.9872 *
* Dep Mean 458.09524 Adj R-sq 0.9865 *
* C.V. 11.71531 *
* *
* Parameter Estimates *
* *
* Parameter Standard T for H0: *
* Variable DF Estimate Error Parameter=0 Prob > |T| *
* *
* INTERCEP 1 62.314059 15.61882273 3.990 0.0008 *
* CONC 1 1.168974 0.03052305 38.298 0.0001 *
* *
.))-

Table 1Table 1

FILENAME OUTFILE 'C:\OUTFILE'; *point to external flat file ;

OPTIONS NOCENTER NODATE; *whenever using PRINTTO its a good idea
 to turn off centering and suppress the date
 for ease of scanning later on ;

TITLE; *also a good idea to turn off title;

PROC PRINTTO NEW PRINT=OUTFILE; *turn on capture facility ;
RUN;

PROC REG; *capture output of regression ;
 MODEL RESULT=CONC;
RUN;

PROC PRINTTO; *turn off capture facility ;
RUN;

DATA _NULL_; *no need to build SAS data set ;
 INFILE OUTFILE LENGTH=LRECL; *find the length of each rec. read;
 INPUT LINE $VARYING200. LRECL; *reads a varying length field ;
 IF SCAN(LINE,1)='Root' THEN
 DO; *search string is case sensitive ;
 CALL SYMPUT('ROOTMSE',SCAN(LINE,3,' ')); *assign macro var. values ;
 CALL SYMPUT('RSQUARE',SCAN(LINE,5,' ')); *third parameter on scan ;
 END; *function tells SAS only use blanks as valid

 delimiters ;
 ELSE IF SCAN(LINE,1)='Dep' THEN
 CALL SYMPUT('DEP_MEAN',SCAN(LINE,3,' '));
 ELSE IF SCAN(LINE,1)='INTERCEP' THEN
 DO;
 CALL SYMPUT('INTERCPT',SCAN(LINE,3,' '));

 CALL SYMPUT('INTERLNE',LINE);
 IF SCAN(LINE,6,' ') < .05 THEN
 CALL SYMPUT('INTERPRB','YES');
 ELSE CALL SYMPUT('INTERPRB','NO');
 END;
 ELSE IF SCAN(LINE,1)='CONC' THEN
 DO;
 CALL SYMPUT('SLOPE',SCAN(LINE,3,' '));
 CALL SYMPUT('SLOPELNE',LINE);
 IF SCAN(LINE,6,' ') < .05 THEN
 CALL SYMPUT('SLOPEPRB','YES');
 ELSE CALL SYMPUT('SLOPEPRB','NO');
 END;
RUN; *write macro vars out to make sure I got

 the right values ;

 %PUT ROOTMSE=&ROOTMSE RSQUARE=&RSQUARE DEP_MEAN=&DEP_MEAN
 INTERCPT=&INTERCPT INTERLNE=&INTERLNE SLOPE=&SLOPE SLOPELNE=&SLOPELNE
 INTERPRB=&INTERPRB SLOPEPRB=&SLOPEPRB;

Table 2Table 2

	Main TOC

