
Automated Testing of SAS System GUI Applications
Brad L. Chisholm, SAS Institute Inc., Cary, NC

ABSTRACT

Graphical User Interface (GUI) applications present a
number of challenges to software testers, including test
execution time, result verification, and repeatability. This
paper will give an overview of some techniques and tools
used by SAS Institute’s Quality Assurance (QA) department
to automate testing of SAS/AF and other SAS System GUI
products, such as SAS/GIS and SAS/SPECTRAVIEW .
Included will be a discussion of SAS Institute’s interactive
test capture and replay procedure, techniques for verifying
on-screen objects, and screen image captures and
comparisons using the Image Data Model Class. Finally,
there will be a discussion of industry standard GUI test
automation products, such as Mercury Interactive’s
XRunner and Segue’s QA Partner, and their applicability for
testing SAS System GUI applications.

INTRODUCTION

For software users, the advent of GUI-based applications
has represented a huge leap forward in software
friendliness and ease of use. For software testers, however,
GUI-based applications generate a whole new class of
testing challenges.

First, GUI applications are designed for user driven events,
such as mouse clicks and keyboard input. Since those
events may be performed on any object at any time, a
complex web of interaction is possible. Since a tester must
simulate the actions of a user, the time needed to test a GUI
application manually is enormous, especially if all possible
paths need to be tested. For the Quali ty Assurance
department at SAS Insti tute, this problem is further
magnified by the need to test the application on multiple
hardware platforms simultaneously.

Another troublesome facet of interactive testing is the need
to verify the underlying task of the application, as well as the
interaction of the GUI itself. For example, clicking on a
pushbutton may cause a report to be generated (underlying
task), as well as cause the pushbutton to change color, and
cause a message to be displayed on the screen (GUI
changes). Interactively verifying all system responses to
each event places a tremendous burden on the software
tester, especially as tests are repeated with different data
values.

Consistency is also an important issue. As the underlying
software undergoes changes during the software
development process, it is vital that the process used to test
the application remains consistent. Otherwise, it may be
impossible to determine if differences are due to software
changes, or test irregularities. With manual testing, this is
extremely difficult, especially when different people are
responsible for performing the tests for later software
revisions.

The answer to these problems is finding a way to automate
testing of GUI-based applications. The software testing
groups at SAS Institute have developed a number of tools
and techniques to help achieve this goal, including:

1. PROC FSBATCH,an internal procedureused to capture
and replay interactionswith SAS full screen applications,
and to provide some simple screen verification.

2. The DUMP and DUMPMODE commands, used to list
attribute information for SAS/AF objects.

3. Screen captures, using the _SNAPSHOT_Widget Class
method, and image comparison and verification using
the Image Extensions to SAS/Graph software.

THE FSBATCH PROCEDURE

Although many powerful GUI test automation packages are
now available, when SAS Institute first faced the challenge
of automating the testing of GUI-based SAS System
products, choices were limited. One particular obstacle was
the need to test on a wide variety of hardware platforms and
opera t i ng syst ems , inc lud ing ma in f rames and
minicomputers. In order to meet these unique needs,
developers at SAS Institute created a procedure that allows
an interactive user session with the SAS Display Manager
System to be recorded, and later played back. This
record/playback mechanism allows testers to perform an
interactive test once, and have that test played back on
almost any later release of the SAS System on any platform.
The procedure, PROC FSBATCH, is commonly referred to
at SAS Institute as ‘‘the batch driver’’.

In record, or capture, mode, PROC FSBATCH sits in the
background and generates a file describing the user’s
interaction with the SAS Display Manager, including mouse
clicks and keyboard input. Additional PROC FSBATCH
commands can be entered during the capture phase to
capture the message line, individual fields, or a textual
representation of the entire screen. These commands can
be entered on the command line, or assigned to function
keys. The table below lists a few of the availablecommands.

Table 1: Additional PROC FSBATCH Commands

CMD DESCRIPTION
@DA dump all fields.
@DF dump current field(row,col,color,attr,text)
@DL dump legend window and its fields.
@DM generate dumpmode type dump on every

object in the frame.
@DZ force an abnormal end by dividing by zero.
@PL print legend window.
@PM print only the message line.
@PR print current screen; dump object info if

frame screen.

1

In playback mode, PROC FSBATCH takes a file that was
output during a capture session, and replays the recorded
interactions, thus rerunning the test exactly as it was
captured. Also during playback, PROC FSBATCH outputs
a log file that chronicles the execution of the test. This log
file contains essentially the same information as the input
capture file, as well as any screen or field dumps that were
requested.

PROC FSBATCH has been an essential tool for SAS
Insti tute’s GUI testing efforts, but it has a number of
limitations as well.

1. Screen locations are based on row and column offsets
for cross-system compatibility. As a result, tests must
use a lowest common denominator resolution of 24 rows
x 80 columns.

2. Although some simple text validation can be performed,
selectionsare typically positionbased, rather than object
based. This means that if an object is moved, the test
may not replay properly.

3. GUI validation is limited to simple text-based field and
screen dumps. Additional methods, as described in the
following sections, are needed for full SAS/AF object
validation and graphics validation.

As of this writing, PROC FSBATCH is internal to SAS
Institute, and is not currently available to customers of the
SAS System.

OBJECT VALIDATION

As mentioned above, it is not simply enough to be able to
record a test session and play it back later, you must be able
to validate that the test worked properly. In an interactive
session, such validation is performed by visual inspection:

Did the correct list item get selected?
Was an appropriate message displayed on the message
line?
Did a correct graph get produced?

In an automated session, it is necessary to capture the state
of objects of interest, and compare the state information
when the test is later played back.

Within SAS/AF applications, the DUMP command can be
used to print all the attributes and instance variables of an
object to the SAS LOG Window.The DUMP commandtakes
one parameter, the object id of the object to be output. For
example, Figure 1 shows a typical listbox, and Listing 1
shows the output from the DUMP command for that listbox.

Figure 1: Sample List Box Object

Listing 1: DUMP Command Output for Sample List Box

LSTBOX1(
NAME=’LSTBOX1’ {P}
LABEL=’LSTBOX1’ {P}
USERATTR=()[31] {L}
LENGTH=12 {S}
ROW=10 {S}
COL=24 {S}
UNIQUE=’Y’ {P}
POPULATE=’DATASET’ {P}
NUM=5 {S}
NROWS=9 {S}
LOCATE=’SASHELP.PRDSALE PRODUCT’ {T}
TITLE=’Products’ {T}
LISTLST=(

L1=()[35] {L}
L2=()[37] {L}
L3=()[39] {L}
L4=()[41] {L}
L5=()[43] {L}

)[33] {L}
CLASS=1013 {I}
CLASSNAME=’LISTBOX.LISTBOX’ {T}
LEN=0 {I}
COLOR=28 {K}
ATTR=0 {K}
SELTYPE=’SINGLE’ {K}
_ALLOW_DESEL_=’N’ {K}
SGLCLICK=’Y’ {K}
DBLCLICK=’Y’ {K}
NSEL=1 {K}
BCOLOR=28 {K}
REGION=()[1893] {L}
DESC=’List Box’ {K}
CMDPROC=1 {K}
POPUP=1 {K}
CMD=’’ {K}
VBAR=0 {K}
HBAR=0 {K}
FRAME=45 {I}
ITEMS=(

’SOFA’ {P}
’BED’ {P}
’TABLE’ {P}
’CHAIR’ {P}
’DESK’ {P}

)[1901] {L}

CURSEL=(
TEXT=(

’TABLE’ {P}
)[1897] {L}
ID=(

3 {I}
)[1899] {L}
ALL=(...)[1901] {L}

)[1895] {L}

VALUE=(...)[1895] {L}
EVENT=’ ’ {P}

)[29]

While invaluable for validating SAS/AF objects, the DUMP
command has a few drawbacks. First, as you can see from
the length of Listing 1, it can return more information than
you need for your testing purpose. For this listbox example,
if you were only interested in validating the item that was
selected, the information in the _CURSEL_ list (highlighted)
would be sufficient.

It is also inconvenient that you must supply the object id to
the dump command. This information is not normally
available to a tester, and cannot be queried at run time. In
order to use the DUMP command effectively, you need to
maintain a reference of the object ids for all objects in your
application.

2

These drawbacks for testing using the DUMP command are
addressed by the DUMPM ODE command. The
DUMPMODE command refers to a data set listing the
attributes that should be printed for each object class. There
is a master data set with default attributes listed, but the
tester can subset the information by creating a custom data
set listing only the attributes in which he or she is interested.
For example, Figure 2 shows the listbox entries in the
master data set. If only the _CURSEL_ information is
wanted, a new data set with only the highlighted item can
be created.

Figure 2: Listbox Class Entries in Master DUMPMODE
Data Set

The DUMPMODE command also allows the tester to select
the object to be dumpedby clicking on it, rather than passing
the underlying object id as a parameter like the DUMP
command. This makes DUMPMODE much more
convenient when testing a finished application. There are
also some extensions in PROC FSBATCH to allow a more
seamless interface with the DUMPMODE command, such
as the @DM command (see Table 1).

As with PROC FSBATCH, however, the DUMPMODE
command is internal to SAS Institute, and is not currently
supported for customers of the SAS System.

VALIDATION USING IMAGE CAPTURE

While attribute information may be sufficient for validation of
many objects, some (such as graphics) still require visual
verification. Automating visual verification requires that
bitmaps of screen images be saved and compared. This
task is well suited to the Image Extensions to SAS/Graph
software.

For SAS/AF-based applications, bitmaps of screen objects
can be captured using the _SNAPSHOT_ Widget Class
method (documented on pages 55-57 of the Widget Class
section of SAS/AF Software: FRAME Class Dictionary,
Version 6, First Edition). Listing 2 gives an example of using
the _SNAPSHOT_ method to capture an image of a
displayed object.

Listing 2: Image Capture using _SNAPSHOT_

/* Create an instance of the Image Data Model Class*/
/* to hold the captured image. */
classid=loadclass(’sashelp.fsp.imgdat’);
imgid=instance(classid);

/* Call the _SNAPSHOT_ method on the object. */
call notify(’graphobj’,’_SNAPSHOT_’,imgid);

/* Write the captured image out to a catalog entry */
/* for later comparison with a validated image. */
call send(imgid,’_write_catalog_’,

’work.result.graphobj.image’);

For this example, the object to be captured was explicitly
specified. However, if this code is defined as a method and
used to extend the Widget Class, any object can be
captured by specifying _SELF_. In practice, this code is
typically tied to a pushbutton or function key for ease of use.

Since the _SNAPSHOT_approach requires SAS/AF Frame
applications, other products, such as SAS/GIS and
SAS/SPECTRAVIEW, require a slightly different approach.
For SAS/GIS, the developers added functionality similar to
SNAPSHOT to allow an image of the map display to be
captured at any time. A macro variable is used to determine
the catalog to which the captured images are written.

SAS/SPECTRAVIEW, on the other hand, already provides
the functionality to save any of its views to a TIFF file. Rather
than require additional functionality, the QA Graphics
Product group wrote a small SCL program to import all of
the TIFF fi les into Image catalog entries after each
SAS/SPECTRAVIEWtest completed. Once the images are
in catalogs, the process is identical for all products.

To validate the images, the test result catalogs are
compared to va l ida ted base l ine ca ta logs on a
picture-by-picture basis using the _DIFF_IMAGE_ Image
Data Class method. The _DIFF_IMAGE_ method performs
a pixel level comparison of the two images, and outputs a
difference image if the images do not match. An example
of using _DIFF_IMAGE_ is shown is Listing 3.

Listing 3: Comparing Images Using the _DIFF_IMAGE_
Method

/* Create instances of the Image Data Model Class */
/* to hold the test result, baseline, and diff */
/* images. */
imgclass=loadclass(’sashelp.fsp.imgdat’);
imgtest=instance(imgclass);
imgbase=instance(imgclass);
imgdiff=instance(imgclass);

/* Read the test result and baseline images. */
testname=’grtest1’;
pic=’graph1’;
call send(imgtest,’_read_catalog_’,

’testlib.’||tstname||’.’||trim(pic));
call send(imgbase,’_read_catalog_’,

’baselib.’||tstname||’.’||trim(pic));

/* Compare the images using _DIFF_IMAGE_. */
call send (imgdiff,’_diff_image_’,imgbase,imgtest);

/* Check return code, and output appropriate message.*/
rc=sysrc();
if rc=0 then

put ’Images compared identically:’ testname pic;
else

put ’Images had differences:’ testname pic;

Since image comparison is done on a pixel-by-pixel basis,
it is very sensitive to changes in the test environment. In
particular, tests must always run at the same resolution, use
the same font, use the same color resources, etc. In

3

practice, the QA Graphics Products group has found that
tests run on different platforms using similar display
technologies will have images that match,if care is taken to
preserve the test environment. For example, all Unix
platforms (e.g. HPUX, Solaris, AIX, Digital UNIX) using X
Windows will have images that match between them.
Similarly, Microsoft Windows hosts (Windows 3.1, Windows
95, Windows NT) will have matching images.

When differencesoccur, however, it is necessary to visually
inspect the images to determine the cause of the difference.
The QA Graphics Products group created a Frame
application to manage the image results. The application,
called ‘‘ImgVer’’, uses the Image Class to display the test
result, baseline, and difference images side-by-side. The
tester can scroll through all the images in a test, and push
new baseline ‘‘benchmarks’’ from test results if warranted.
Figure 3 shows a sample screen shot of the ImgVer
application.

Figure 3: Sample Screen from ImgVer Application

THIRD-PARTY GUI TEST AUTOMATION
PRODUCTS

While the Quality Assurance department at SAS Institute
primarily uses internal SAS-based tools for GUI testing,
there are many powerful GUI test automation tools available
from companies that specialize in GUI testing. Some of the
more popular packages include Segue’s QA Partner,
Mercury Interactive’s XRunner and WinRunner, SQA’s
Suite (including SQA Robot), and Rational’s Visual Test.
Most of these products are based on an object oriented
approach to GUI testing, and offer convenient interactive
test capturing, as well as powerful test scripting languages.

Since these tools recognize screen objects as objects, the
tests can be made fairly robust with respect to incidental
differences. For example, you could define a pushbutton
named ‘‘QUITBUTN’’ that would be recognized if it moved
from the top of the screen to the bottom, or even if the
caption changed from ’Quit’ to ’Exit’ or ’Go Back’. Validation
of objects is flexible, and is based on attribute information
retrieved from the GUI itself. This attribute information is
very similar to the information returned by the DUMP and

DUMPMODE commands discussed above.

Most of these tools also suppor t bi tmap capture,
comparison, and difference verification for graphical
images. As with the image capture discussion above,
however, bitmaps are very sensitive to changes in the
testing environment, especially display resolution, video
driver, or color depth differences.

Although these testing products offer many benefits, since
they are external to the SAS System, there can be problems
using them to test SAS GUI-based applications. First, many
of the hardwareplatforms supported by the SAS System are
not supported by GUI testing vendors. In general, Microsoft
Windows based systems enjoy the widest support, Unix X
Windows is next best supported, and only a few vendors
support other systems, such as OS/2 or Macintosh. Even if
the hardware platform is supported, the products may not
work directly with the SAS System. For example, many X
Windows testing products require a custom library to be
linked with the application to be tested (i.e. the SAS System)
in order to use the full power of the object based testing.

Another stumbling block with using these products to test
SAS applications is the fact that the SAS System has
defined many custom widget and object classes. Since the
3rd party tools rely on object definitions from the underlying
GUI tool set (such as Motif, or Microsoft Foundation
Classes) to identify screen objects, the custom SAS widgets
are often not recognized. Most testing tools do allow limited
definition of custom widgets, but it is generally difficult and
less effective than the native widget support. In these cases,
it may be useful to use a hybrid approach by employing the
DUMP command to output the object attributes to the SAS
log, then using the GUI testing tool to validate the SAS log
file.

CONCLUSION

This paper gave a glimpse at some of the tools and
techniques used by the testing community at SAS Institute.
Some of those tools, such as PROC FSBATCH and the
DUMPMODE command, are not available outside the
Institute. Others, such as the DUMP command and the
_DIFF_IMAGE_method, are available, but not documented
nor officially supported for customers of the SAS System.
If you feel someof these tools would be useful in testing your
own SAS GUI applications, contact your SAS Institute
Technical Support representativeabout nominatingan entry
for the SASWare ballot.

Third-party GUI test automation products provide another
solution to automating SAS testing. These products offer a
rich set of tools for GUI testing, but getting effective results
with the SAS System can be difficult due to integration and
custom class considerations.

Regardless of the part icular techniques employed,
however, an automated testing strategy is clearly crucial for
effectively testing GUI-based applications.

4

REFERENCES

SAS Institute Inc. (1995), SAS/AF Software: FRAME Class
Dictionary, Version 6, First Edition, Cary, NC: SAS Institute
Inc.

ACKNOWLEDGMENTS

The author wishes to thank Shearin Bizzell and Brendan R.
Bailey for their technical review.

S A S , S A S / A F , S A S / G R A P H , S A S / G I S , a n d
SAS/SPECTRAVIEW are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. indicates USA registration.

OS/2 is a registered trademark or trademark of International
Business Machines Corporation.

Other brand and product names are registered trademarks
or trademarks of their respective companies.

AUTHOR CONTACT INFORMATION

Brad L. Chisholm
SAS Campus Drive
Cary, NC 27513
Phone: (919) 677-8000 x7061
Email: sasblc@unx.sas.com

5

	Main TOC

