“Y OU WANT THIS NEW APPLICATION TO RUN ON OUR VAX, PC AND SUN COMPUTERS??2?11I”

(OR CROSSPLATFORM APPLICATION

DEVELOPMENT USING SAS®)

David Franklin, Mainridge Management Ltd, London, UK

ABSTRACT

The need for cross-platform applications is increasing as
individuals and companies are becoming aware that the
future of their own in-house or packaged applications

need to be able to work on two or more operating

systems, or migrate from one operating system to another
quickly and with ease. Investment in time and resources
to develop a new application on an existing operating

system is often lost when a new operating system is
brought in. Rather than loose that investment many adopt
the attitude of keep the old operating system going while
new software is to be developed on the new operating
system. Others though spend significant amounts of time
and resources often rewriting from scratch new

applications doing the same job that the old application

did but in the new operating system.

SAS®, though its software and MiVendor Support
environment, addresses these problems and brings
together the opportunity of creating a sin§lAS/AF®
application on one operating system and distributing that
single master to any one of the numerous other operating
systems that the SAS® System supports, and have it
running in a matter of minutes, and not days, or even
months as occasionally occurs in other development
environments.

INTRODUCTION

So you have just had a meeting with your manager and
she wants you to build a data warehouse and mining
system. The databases are in Boston and Los Angles,
USA; Glasgow and Edinburgh, Scotland; Nice, France;
and Singapore. A usual enough request, but for one thing
- she wants the new application to run on the Digital
Alpha and VAX opeating systems in the UK, the Sun
UNIX operating systems in the US, and local Windows
on network and standalone PCs. There were also one or
two more things that were said as you were walking out
the door in a daze, “That system has to last ten years; |
don’t want to spend any money on development when we
change operating systems in the applications’ lifetime; |
don’t want it crashing at 00:01 on the 1st January 2000;
and those people in the UK want to use that odd-ball
operating system of theirs in 18 months time”. Quite a
tall order for any solution, whether it IBAS®, C, Java,
Visual Basic, or any other of the myriad of development
languages.

For the purposes of this paper | will concentrate on a
SAS® solution and give a brief introduction to some of
the challenges that arise.

WHY SAS®?
Why even look at SAS® as a solution to this challenge?

Due to the initial requirements, our goal is to write not an
application for every operating system, but a single
application that will run omLL the operating systems
asked for. With only minor code additions and proper
planning, it is possible for the initial application on its
host operating system to be up and running on a different
operating system thaAS® supports now and in the
future, within minutes.

There is another factor that makes SAS® a good option
for business use - 00:01 on the 1st January 2000, or more
commonly known as the millennium bug. AZAS®
stores the full date as the number of days from a base of
1st January 1960, the 1st January 2000 will be stored as
just another day from that base date. Just as a note
though, SAS® W have a problem with dates on the
current SAS® version releases, around the middle of the
seventh millennium, about 5500 years from now. As a
result there is no problem with SAS®ati@ag with the
year 2000.

Two OPERATING SYSTEM VARIABLES AND A
FUNCTION

When designing a single application that will work on
different platforms planning is critical. Planning will
either make a new application ceessful or lead it to

disaster.

The analogy of a designer designing an “off the shelf” kit
set house is a good one. The dimensions will be the same,
the windows will be the same, they will be painted the
same but there is always that littlee@e of the kit that
makes each house look alike but just has that little
something different, whether it be a shower instead of a
bath, or the latest dishwasher instead of the standard
model.

This is the same way a Developer designs an application
which is to go on two or more operating systems - the
tasks that will be performed and the look and feel will be
the same and it is only the operating system features that

will be different. WithSAS® though, the list of opating
system features is few and usually restricted to operating
system file and print management facilities. The rest of
the application code will be operating system
independent. It is crucial that in order to build a single
application which will work on two or more operating
systems, the developer identify what is dependant and
independent modules and place them correctly within the
application so that the dependant modules can be easily
edited to accept new opging system dependant code
without having to edit modules that contain independent
code.

Fortunately with SAS® there can exist two or more
operating system dependant code modules within the one
application. The operating system in action at the time
will determine automatically which module should run.
The value of the SYSSCP antatic macro variable
displays an abbreviation for the operating system in use
and it is this that will determine which module should
run. Below is a fragment of a program creating a
directory whose name is stored in the local variable
_DRCTRY under a Windows or VAX operating system.

if &sysscp eq ‘WIN’ then
_cmdtext="md ‘||_drctry;
else if &sysscp eq ‘VAX' then
_cmdtext=‘create/dir
[[|trim(left(_dirctry))||'T’;
system(_cmdtext);

Example 1: Use of the SYSSCP macro variable to run
operating system dependant code

Another common question that is asked during planning
is what versions of SAS® ali the application support.
This issue is becoming more important today, especially
between the older versions of SAS® that only support a
non-GUI environment and newer versions of SAS® that
support only GUI environments. It is not the GUI/non-
GUI displays that are important, but more the new SAS®
language functionality that is becoming available in the
later versions that makes the code faster and more
compact than was available in earlier versions. In an
application there is a need to both write the code for the
earlier versions of SAS®, whiletis using the
developments that are available in the later versions.
Within SAS® the autmatic macro variabl6SYSVER
displays the version of SAS® that the current session is
running in. Below is a fragment of a program reporting
a list of pupils with an Exam Date and Grade, and also
what university they have said they want to go to.

if &sysver ge 6.11 then do;
submit continue;
proc report data=work.examdata nowindows;
column pupil examdate grade varsty;
define pupil /group ‘Pupil’ id;
define examdate /order order=internal
‘Examination Date’ format=date9.;
define grade /display
‘Examination Grade’;
define varsty /display
‘University to attend’;
run;
endsubmit;
end;
else if &sysver le 6.10 then do;
submit continue;
proc sort data=work.examdata,;
by pupil examdate;
run;
data work.reptdatl;
set work.examdata;
if not first.pupil then pupil=";
run;
proc print data=work.reptdatl label
noobs;
var examdate grade;
id pupil;
label pupil="Pupil’
examdate='Examination Date’
grade='Examination Grade’
varsty="'University to attend’;
format examdate date9.;
run;
endsubmit;
end;

Example 2: Use of the SYSVER macro variable to run
version dependant code

With the above example, the report producdtl ve the
same in both cases, it is only the fact that the later
version (6.11) now supports the ID option in the DEFINE
statement of the REPORT procedure that makes the code
different and faster to run, which was not available in
earlier versions.

Also under consideration when planning is tBAS®
modules that will be available. This is an important issue
since what the application is asked to do will depend on
the SAS® modules aable to it. If a module is not
present then there are two possible outcomes - either the
task can be carried out another way or cannot be done at
all. There is a macro and SCL function that allows the
developer to determine whether a product is present or
not, called SYSPROD.

STARTING THE CODING PROCESSWITH SAS®

Planning of an application is always a decision based
upon personal preferences. Often though there is too
much “planning” documentation, and occasionally too
little, with both achieving the same result - disaster.
There is fortunately a happy medium but this depends on
a number of factors, including:

« the size of the project concerned.

e the amount of the documentation that will be
required to build AND maintain the new
application.

This last factor is the most important since it is this that
will determine the applications future. Too little and the
application may not do what it was designed for, and if it
gets that far, maintaining it would be difficult if not
impossible. Too much and both the builder and
maintenance will have to wade through mountains of
paper, often with contradictions, causing delays and/or an
application which is not quite what the users wanted.

However any design of an application will have three
common items:

« what the user would like to see (output and usage).
« where the data is coming from.
* avery basic application flow.

Now that the basic design documentation is done, now it
is time for creating th&AS/AF® appliation. Remember

that there is only one application that is going to be
written, but will be distributed among several operating

systems so there are several considerations that have to

be thought of before actual coding can begin. Basic
considerations are:

« is the application going to be on GUI or non-GUI
systems, or both, and on what operating systems.

« the SAS® versions that will be supported.
* the SAS® modules that will be available.

While the considerations of operating systei88S®
versions and modules to use can be overcome with the
methods described earlier, the question of whether the
application is going to be on GUI or non-GUI systems, or
both, is still a challenge. An important consideration
since it will affect such things as whether you can use
colours, mouse support, and even screen size. If screen
size is different among the operating systems you should
write the application for the smallest size available. Also
affected is the type of SAS/AF® entries which you can
use. If it is an all GUI approach then @IAS/AF®
entries, including FRAME, PROGRAM, SCL and CBT
entries can be used. If however there is the support for
GUI and non-GUI operating systems, or all nhon-GUI
operating systems, then FRAME entries can not be used
3

as these are not supported in a non-GUI environment.
However, there is little lost if you cannot include FRAME
entries in the final application &AS® itself will use
internal techniques that make PROGRAM entry icons,
buttons etc. appear in a GUI format wherever the
operating system will allow it.

Another decision that must be made when the application
is ready to build is the directory structure that will
contain it. This is critical as the location of the
application system and data files, along with any others,
are needed. Typically an application would have a
structure of:

<Drive>
|
<Application Name>

DATA SYSTEM

<Other Directories>

Figure 1: A Common Directory Structure for an
Application

The application itself is built inside2AS® Catalog with

at least one external program file and possibly a series of
SAS® cdhtasets. The following figure shows a basic
structure that is common when building a multi-platform
SAS/AF® application:

Autoexec file
SAS Catalog Entry \l/

Initialisation Entry

N

Startup Entry

e

Operating System
Specific Code Entry| '

Data Warehouse, Mining
and Reporting Tools

Figure 2: A Basic Application Structure

Clearly during start-up of the application two things
should happen. These are:

 run start-up

« initialise the system if no start-up or application
runtime files present

First looking at starting up an application, one method is
to have an AUTOEXEC file give the location of the
SYSTEM directory under the Application Folder and
issue a SAS/AF® DM comand to begin a start-up file
in the application catalog. This later file will contain
additional libname definitions as well agcass user
options. These may be default LINESIZE and
PAGESIZE options, just to name a few. If the files
containing such information are not found then the

system should initialise these files itself bringing in any
default information as necessary.

But the key challenge here is how exactly is the operating
system dependant code going to placed around the
operating system independent code in such a way that
there is going to be one catalog entry containing the
former code? During the writing of the application it will
become apparent what code is operating system
dependant. This code would then be placed in a separate
catalog SCL entry and linked by the use of the METHOD
SCL statement. Within each METHOD block in the SCL
entry there would exist a series of statements similar to
that in Example 1. Thus when during runtime of an
application it encounters code that is operating system
dependant, the METHOD statement in its place would
link to the METHOD block in the SCL entry relating to
operating system dependant code and execute what was
needed depending on the operating system running.

What if later, the application was being sent to, or made

ready to be used on, another operating system? Because

the operating system dependant code is in a sByE®
catalog entry and there is hopefully little of it, it would be
a simple case of what is there and adding to it. There
would be no reason to hunt through all the application
entries looking for dependant code and changing it where
necessary which is time consuming and prone to error.
Looking back at example 1, if the code to create the
directory for the VAX was not present then it would be a
simple case of adding the additional code as shown.

While coding, there are two useful items that make
building the user interface easier.

The first in the use of PMENUSs. Within an application
window, the developer can define a PMENU to use, as
defined earlier in a PMENU procedure. This has the
advantage of relying on SAS® to o the PMENU
correctly within the user window, as well as relying on
SAS® to decide the size of the buttons etc., therefore
allowing system independence. In the past many user
screens have had their PMENUs defined by placing
actual buttons on the screen where a PMENU would
normally go.

The second item is the use of the BLOCK statement.
Many people build FRAME entries similar to Example 3

which take an excessive amount of time to build

especially to get the icons the right size and place. The
block statement, while a PROGRAM entry, will do the

same job and have the benefits of using icons in a GUI
environment and blocks in a non-GUI environment, a
SAS® rurtime decision, as well as doing the size and

placement on the screen of the icons or blocks.

Roskilde v2.0

¥

Dictionary Menu

& T
Elements Formats

||!!!III!!!!!!I!!II
IIIII!!!!!IIII IIIII!E!IIIII

Example 3: Example of user view of BLOCK function
output

ONLINE HELP SCREENS

The development of Online Help screens is often the
most overlooked or neglected of all the phases of
application development however it is increasingly the
only help that a user will have to navigate through an
application. SAS® itself has a very good féty of
building help text through SAS® CBTatalog entries.
An example of such an output text is in Example 4.

HELP- TimeStat [<]

Introduction

TimeStat i= a Time and Project system for the analysis and management
of time and people on projects.

TimeStat is built around two modules.

The first module is TimeRec which is an interactive time sheet
recording and report generation system. This allows an employee to
enter the time spent on a particular project and task based on a days
work. A report can then be produced showing what that person did

during a defined period.

The second module is ManProj which allows a Project Manager to define
tasks within a certain project and optionally allocate an estimate of
time to complete the defined task. A report can be produced which will
show the people on the task, the amount of time spent and a percentage
of actual against estimated time. When a task is marked as Conplete no
further input of time against the task is permitted.

Example 4: Example of user view of Help Text

While the format of the output text is not up to that
available on standard Windows help operating systems, it
is still advanced enough to allow the developer to design
and build hypertext links and be operating system
independent at the same time, therefore there is no need
to create a new set of help text based on operating system
dependencies. Formatting attributes include colour and
highlight attributes.

Developing an application which will work in different
spoken languages is difficult, however almost all users
will accept an applation if the help text only is in their
native language. To switch the language of the help
system for a particular user is easily carried if you have
as part of your distribution disk a set on SAS® CBT
catalog entries in different catalogs (one for each
language and the same entry name) and simply copying
the entries for the desired language catalog into the
application catalog during application initialisation. It is

also possible to have a menu option in a Set-up Window
which when changed will do the same task after
initialisation but this means placing these catalogs in the
SYSTEM folder during loading the system onto a
computer, however these catalogs are usually small and
are not a space consideration issue.

SENDING THE APPLICATION TO ANOTHER
OPERATING SYSTEM

Before you there exists the complete and tested
application. It is now time create a distribution disk to be
made available to other potential users of the application.
The aim is to have two files only, plus an additional file
with installation notes and comments regarding the
release which are not documented elsewhere. These notes
though should be minimal and only include notes specific
to the target installation. This last file would normally be

a text file.

The first of the two files that are to be sent is the default
AUTOEXEC.SAS file which is the file that is run
whenever the application is started. This would be a
straight text file.

The second file present is the application catalog in a
CPORT procedure transport format. All datasets etc.

which are needed for the system to run, including

datasets containing options data, would be created during
the initialisation phase and any default values would be
set during that time, therefore these would not be

included in the transport format file.

This distribution disk would then be sent to the target
operating system, the text files copied and the transport
file processed using the CIMPORT procedure. Providing
planning and coding of the application was done
correctly and the system dependant code is correct the
application itself would start immediately.

The scenario where you have an existing application on
one operating system that you would like transferred to
another operating system is similar.

Before creating the transport disk, the catalog entry
containing the operating specific code would be amended
to include the target operating system, if it didn’t already.
It would be then a case of copying the AUTOEXEC file
from the old operating system to the transport disk
making any changes where necessary. Then using the
CPORT procedure on the SYSTEM and data directories,
a transport file would be created and placed on the
transfer disk. This transfer disk would then be sent to the
target operating system, the text files copied and each of
the transport files processed using the CIMPORT
procedure. Providing planning and coding of the
application was done correctly and the system dependant

code is correct the application itself would start

immediately.

CONCLUSION

Through proper planning and using the SAS® System, it
is possible to develop applications which can run on
several operating systems and versions from the one
master source on a single operating system. With this
achieved, it is possible for in-house or packaged
applications to work on two or more operating systems,
or migrate from one operating system to another, quickly
and with ease. The small additional investment in time
and resources to develop a new application on an existing
operating system is saved many times over when that
same application is migrated to a new operating system,
often taking only hours instead of months or even years.
It is for this reason that many individuals and companies
are looking at SAS® for their apptiion development
environment of choice.

CONTACT

David Franklin

Mainridge Management Limited

2 London Wall Buildings

London Wall

London EC2M 5PP

United Kingdom

Ph: +44(0)171-628 4200 or +44(0)956-395197(mobile)
Fax: +44(0)171-588 2718

E-mail: 100316.3451@CompuServe.com

SAS and SAS/AF software are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

	Main TOC

