
Double Data Entrv in FSEDIT Usina Point-of-Entrv Verification

Derek Morgan, Washington University Medical School, St. Louis, MO
Michael Province, Washington University Medical School, St. Louis, MO

Abstract

Double data entry is a proven, heavily used tool for data
quality control. Although there are many functions avail-
able in SAS/A@, SAS/FSP@ and methods for FRAME
entries to reduce entry errors, double entry adds to the
overall quality control of the data. This paper describes a
method for adding transparent, automatic double data
entry verification to an FSEDIT screen using SCL. With
this method, discrepancy resolution occurs at the point of
the second entry on a field-by-field basis. Discrepancies
are investigated and resolved during the second entry,
eliminating both the production of a discrepancy report
and a third pass through the dataset for correction after
both entries have been concluded and compared.

Introduction

Traditionally, double data entry has involved comparison
of a historical dataset with an active dataset. Any dis-
crepancies are noted and resolved after entry. Using the
SAS System”, methodologies have been developed to
increase the ease of this resolution (e.g., PROC
COMPARE), or as parl of an integrated data entry appli-
cation using SAS/AF and SCL. However, the resolution of
discrepancies is still performed after both entries have
been completed.

This method uses an alternative approach: the resolution
is performed at the point of the second entry. In essence,
each field is checked as it is entered and the entry
operator is alerted to take some action if a discrepancy is
noted. This eliminates the need for a historical dataset
and removes a step from the traditional double data entry
process.

Background

The method was developed for a distributed, remotely
supported custom data entry and management application
using SAS/AF, SAS/FSP and SCL, along with some
system functions handled by 0S/2@ REXX commands.
The target users are, in general, not experienced data
entry operators, but research and clinic staff with varying
degrees of computer (and keyboard) experience. Point-
of-entry verification was chosen in part because of the
diversity of this user group and to reduce the time burden
on them. They do not have to generate (or wait for from a
central organization) a discrepancy report, nor do they
have to make a third pass through the dataset.

This was originally developed with the SAS System, ver-
sion 6.08, running under 0S/2 and was ported to version

6.11, also under 0S/2. This method can be used with
FRAME entries as well, with some modifications that will
greatly improve its efficiency. The overhead of the
method in terms of real time is negligible with respect to
the entry of fields. Depending on the size of the form to
be developed, it can, however, be a large programming
task under SAS/FSP. The current application is still in
SAS/FSP, using SCL to achieve the comparison and
resolution. The screens in this application are relatively
small, therefore, it was a small task to label each field and
repeat the coding template. With larger screens, this may
not be an option. Then the DATAFORMS subclass in a
FRAME entry comes in handy; there is a process that will
allow you to get the value of a widget without explicitly
assigning the value in a labeled code statement. Point-of-
entry verification can then be easily implemented using
the general method presented here.

Specifics

The requirements for the method were as follows: fore-
most, it had to be transparent to the users. Any
noticeable lag would add to the perceived burden and
would reduce the acceptance level of double data entry.
Secondly, it needed to be fully automated. The user does
not have to do anything for the double entry process to
function. It keeps track of which entry number is the ac-
tive one, prevents a third entry from being started and
performs its checking and discrepancy reporting without
user intervention. Error tracking was also required. It
automatically generates an error dataset that contains the
entry person’s ID, which form was being entered, which
field on the form was detected as being in error and which
corrective action was taken. Finally, the capacity to
selectively activate double data entry at the field level was
desired.

For the initial criterion, the additional overhead of the
method did not cause a delay in system response time
where no discrepancy was found. This was not tested
quantitatively, but rather piloted with some of the entry
operators using a slower platform than the production
system (486/33 versus a Pentium-1 20, both with 16 MB
RAM). In production, there is no detectable change in the
data entry unless the second entry differs from the first.
The method as implemented works very well for relatively
small datasets (150 or fewer variables, less than 1000
observations.) A noticeable lag will occur as the dataset
becomes larger; if the dataset is indexed, this lag is re-
duced or disappears entirely (depending on the size of the
dataset) and the checking is again transparent to the entry
person. The drawbacks are in the extra coding and in the

-1-

acceptance from the entry people. This method may not
be useful with experienced data entry operators since the
cENTER> key must be pressed after each field iS
entered. It may then be counter-productive for two
reasons: it would slow an experienced operator and pos-
sibly even increase the error rate.

The method uses a single dataset to keep both entries
and is keyed by entry number, which is automatically as-
signed by the SCL program after a quick check of the
selected dataset. For analysis, this requires that WHERE
clauses be utilized so that the verified data from the sec-
ond entry is the only data used. It was felt that this would
improve the system stability and help insure the transpar-
ency of the application. When a particular screen is
chosen for entry (from the integrated application), the
dataset is opened and the number of entries is
determined. This value is then passed to the FSEDIT
screen via a macro variable. It is also possible to find the
number of entries for a given ID within the FSEDIT screen
itself. The double data entry method can easily be
adapted for two datasets, where the first and second
entries reside in separate datasets, especially if the
screen is a part of a larger application and the correct
dataset name can be passed from a higher-level
PROGRAM or FRAME entry.

Label-specific processing was used for all screens, since
double data entry needed to be switched on or off at the
field level for this application. Assigning the value of the
field to a single variable can be achieved through two
methods. One uses arrays, but the chosen technique for
this application is direct assignment of values in a labeled
section of code. The former is probably best if you have a
small number of fields, while the latter allows for quick
execution of medium-sized screens.

Sample Code

Below is an example of the code for some fields in a
double-entry screen. ID is assigned from a higher-level
SAS/AF application and DATE is not to be verified. Note
the difference in the coding (particularly the variable
names) for the character field (LASTNAME) as opposed
to the coding for the numeric field (HEIGHT). The
checking routine itself begins at the label DDECHK.

FSEINIT:
control label enter error allcmds;
P chkc, vaic, withfmt, var and nxtvar are used by
the double data entry method’/
length cmd withfmt $80 dsn chkc vale $200 var

nxtvar $ 8;
/“ STAY, MODIFY and RETURN are all necessary*/
call setcr(’STAY,’RETURN’,’MODIFY’);
vale = ‘ ‘;

call execcmd(’zoom on’);
protect id fig;
return;

INIT:
/“ If this is a new observation’/
if id eq ‘‘ then do;

id = symget(’id’); /’ From calling app’/
entryid = symget(’userid’);

/* Entry number is calculated in the calling
application and passed through a macro.’/

entryx = symgetn(’entry’);
protect id;
if entryx eq 2 then do;

/’ Load data for non-double-entered fields
Note: the SCL code for WEIGHT and DOB is not
In the sample code*/

dsn = “hgdata.anthrop (drop= height weight
Iastname dob” II “where=(id eq ‘“ II id II ‘“ and
entry eq l))”;
oldstuff = open(dsn,’i’);
call set(oldstuff);
rc = fetch(oldstuff);
rc = close(oldstuff);

end;
entry = entryx;

end;
if entry eq 2 then do;
/* Signal user which entry is being updated’/

flg = ‘ENTRY 2;
/’ This turns off DDE checking’/

val = .1;
end;
nxtvar = ‘date’;
form = “ANT”;
/“ Cursor placement when screen is opened */
rc = field(’cursor’,nxtvar);
return;

MAIN:
cmd = upcase(lastcmdo);
/* Only check if field has been modified’/
if field(’modified’, var) eq Othen

val = .i;
if entry eq 2 and val ne .i and cmd ne ‘END’ then

link ddechk;
/’Turn on checking for next field’/
val = .;
return;

/’ Date is a non-DDE field’/
DATE:
val = .1;
if error(date) then

cursor date;
else do;

nxtvar = “height”;
cursor height;

end;
return;

HEIGHT:
/’ Minimum and maximum are set, skip DDE
checking if field is obviously in error*/
if error(height) then do;

val = .!;
cursor height;

end;
else do;
/’ Assign value of field to be checked’/

-2-

val = height;
/’ Move cursor to next field’/

cursor Iastname;
/’ let DDE subroutine know what next field is’/

nxtvar = ‘Iastname’;
end;
return;

LASTNAME:
vale = Iastname;
cursor Iastname; /’ Last Field in Form’/
nxtvar = ‘Iastname’;
alarm;
msg = “END OF FORM”;
return;

TERM:
touchdat = datetimeo;
entryid = symget(’userid’);
return;

DDECHK:
entryid = symget(’userid’);
/’ Get name of variable to be checked’/
var = curfldo;
if var eq” then

return;
/’ Open first entry, get value’/
dsn = “hgdata.anthrop (where= (id eq ‘“ II id II ‘“ and

entry eq l))”;
chkfiie = open(dsn,’i’);
rc = fetch (chkfile);
vnum = varnum(chkfile, var);
/’ Determine if numeric or character’/
if vartype(chkfile, vnum) eq ‘N’ then do;

chk = getvarn(chkfile, vnum);
/“ Determine if values match’/

if chk ne val then do;
withfmt = varfmt(chkfile, vnum);

/* Determine whether to display error message
with or without associated format’/

if withfmt ne” then
errmsg = “Error in “ II trim(var) II “! Original
value is” II Ieft(putn(chk,withfmt));

else
errmsg = “Error in” II trim(var) II “! Original
value is” II Ieft(putn(chk,’best.’));

I* Open action list dataset *I
menuds = open(’hgx.ddemenu’,’i’);
if menuds Ie Othen do;

msg = ‘ERROR in opening Menu Data. Call
DCC ASAP.’;
return;

end;
/’ open error trackingdataset’/

errds = “hgdata.errors (read=” 11
symget(’rdpswd’) II “)”;
bugs = open(errds,’u’);
call set(bugs);

/’ Sound cue to alert entry operator that the field
is in error ●/

call sound(l 000,100);
call sound(857,100);

call sound(615,100);
I* Open action list window’/

call wregion(5,3,6,64,’ ‘);
errortyp = datalistn(menuds,’errortyp
item’,errmsg);
rc = close(menuds);

I* Take corrective action *1
select(errortyp);

/’ Default is to correct the field; return cursor to
field and change color *I

when(1) do;
rc = field(’color orange reverse’, var);
rc = fieid(’cursor’, var);

end;
/’ Data correct as typed; proceed to next field’/

otherwise
rc = field(’cursor’, nxtvar);

end;
/“ Add error to error tacking dataset */

rc = append(bugs);
rc = close(bugs);

end;
end;
else do;
/’ same procedure, except for character values’/

chkc = trim(getvarc(chkf ile,vnurn));
if chkc ne trim(valc) then do;

errmsg = “Error in “ II trim(var) II
“! Original value is” 11Ieft(chkc);
menuds = open(’hgx.ddemenu’,’i’);
if menuds Ie Othen do;

msg = ‘ERROR in opening Menu Data. Call
DCC ASAP.’;
return;

end;
errds = “hgdata.errors (read=” 11
symget(’rdpswd’) II “)”;
bugs = open(errds,’u’);
call set(bugs);
call sound(lOOO,l OO);
call sound(857,100);
call sound(615,100);
call wregion(5,3,6,64,’ ‘);
errortyp = datalistn(menuds,’errortyp
item’,errmsg);
rc = close(menuds);
select(errortyp);

when(1) do;
rc = field(’color orange reverse’, var);
rc = field(’cursor’, var);

end;
otherwise

rc = field(’cursor’, nxtvar);
end;
rc = append(bugs);
rc = close(bugs);

end;
end;
/’ Close lookup dataset’/
rc = close(chkfile);
return:

-3-

Code Details

CALL SETCR is used to insure that the MAIN section
executes with each return. Each field is set to
NOAUTOSKIP, forcing an <ENTER> key press after each
field is entered. In the INIT section, the observation is
checked to see if it is new. If so, the entry number (and
ID) are passed from the calling SAS/AF application. At
the second entry, any non-double-entered fields are
loaded to provide a complete observation for analysis
using only a WHERE clause. An on-screen flag is
activated to inform the user that the second entry is being
worked upon. At initialization, the double data checking is
turned off to prevent the first field from automatically being
flagged when MAIN first executes during the opening of
the first observation.

In MAIN, the name of the current field is obtained and the
double data entry checking routine is selectively invoked.
This is done using a special missing value that does not
conflict with those used in the project, so that no screen
value will turn off its own checking. At each labeled
section, there is code that either disables the double data
entry checfing (“val=.i:), or enables it by assigning the
value of the field to the comparison variable (val, or vale if
the field is a character field.) The cursor is moved and a
variable containing the name of the next field is assigned
for the use of the subroutine.

The subroutine itself consists of two nearly identical seg-
ments: one for numeric fields and the other for character
fields. The first section of the subroutine is responsible
for opening the dataset to be checked and determining if
the field is numeric or character. Then the comparison is
performed and an error message is assembled if there is
a discrepancy. The exact text of the error message
depends on whether there is an associated format for the
variable. (SAS System date values are an example of
why this feature exists.) Next, the discrepancy resolution
option dataset is opened (this could also be done as an
SCL list), and the dataset for error tracking is also
opened. In this application, a distinctive sound cue is
generated to alert the operator that an error has been
made. A selection list window containing the discrepancy
resolution options appears at the top of the screen page,
sized so that it does not cover any of the fields on the
screen. The user then selects one of the resolution
options and the appropriate action is taken. The default is
to correct the field, so that pressing <ENTER> when the
error is noted will not just accept the entered value.
Lastly, the error tracking dataset is updated and the first
entry is closed. This process is exactly the same for the
character variables; the only difference is that the variable
used for checking is character. In the above code, no
format checking is done for character variables, but this is
a simple modification should it be necessary.

There are alternative methods using arrays to assign the
field values to a variable for checking. The disadvantage
of using the array method here is the additional overhead
in checking the array to assign the variable. While it will
save coding time in development, it will, especially for
larger screens, eventually cause a noticeable lag in entry.

Implementing this as a FRAME entry will save both in
development and in processing time, particularly for larger
datasets and forms.

Error Tracking

Error tracking as implemented simply adds observations
to an error dataset by using CALL SET and APPEND.
Each of these error observations contains: subject ID,
form name, field name, entry person and which resolution
option (keep or change) was selected. The form name
and subject ID are assigned in the INIT section. The entry
person’s ID is part of the signon procedure for the
application and resides in a macro variable. The field
name is obtained with the CURFLD function and the
resolution option is the value chosen through
DATALISTN. If desired, more detailed information on
errors can be obtained by recording the first and second
entry values for any field. This can be accomplished by
adding the variables VAL, VALC, CHK and CHKC to the
error dataset. None of the screens would need re-coding.

Determining the Active Entry From Inside The
FSEDIT Screen Itself

In the application for which this method was developed, the
active entry number for a given ID is usually determined in
a calling SAS/AF application, or FSEDIT screen before the
screen is opened. This way, the user is restricted to
entering data for only that entry for a specific ID. However,
there are screens designed for the rapid addition of data
without specifying an ID in advance. The code below
demonstrates how the active entry number is determined
and what actions occur based on that entry number. The
same technique is used in any calling applications.

ID:
val = .i;
/’ Determine number of obs for id selected’/
dsn = “hgl .hs3b (where= (id eq ‘“ II Ieft(id) II “’))”;
passthru = open(dsn,’i’);
rc = varstat(passthru,’touchdat’,’n nmiss’,n 1,n2);
lastobs = nl + n2;
/’If first entry, load last field for completeness
check *1
if Iastobs eq 1 then do;
rc = fetch(passthru);
eid = getvarc(passthru,varnum(passthru,’eligid’));

end;
cmdstr =‘’;
select(lastobs);
/’No observations for this ID+ first entry’/
when(0) do;

protect id;
entry = 1;
cursor date;

end;
/’1 obs present, check for completeness’/
when(1) do;

-4-

/’ Initial entry incomplete, go to existing first entry”/
if eid eq” then do;

rc = fetch (passthru);
obx = curobs(passthru);
cmdstr = “cancel;” II left(put(obx,8.));
call execcmd(cmdstr);
cursor momfn;

end;
/’ First obs complete + second entry, proceed
normally’/

else do;
protect id;
cursor momfn;
entry = 2;
flg = ‘ENTRY 2’;

end;
end;

/* Second entry already exists, go to it for editing’/
otherwise do;

rc = where(passthru,’!entry eq 2);
rc = fetch (passthru);
obx = curobs(passthru);
cmdstr = “cancel;” II left(put(obx,8.));
call execcmd(cmdstr);
cursor momfn;

end;
end; /’ Of SELECT’/
rc = close(passthru);
return:

Code Details For Checking Entry Status

The process of checking the entry status of an added
observation is fairly simple. The VARSTAT function
obtains the number of missing and non-missing values of
a numeric flag value: that sum is the total number of
entries for the entered ID. This application uses a record
modification date and time stamp. In addition to the count
of entries, completion of the entry must also be taken into
account. Without this check, partially filled entries will
occur if the entry person does not finish entering the entire
form before terminating the screen. In the current
application, the last field on the FSEDIT screen (as well
as the paper form) is used as a proxy for completeness of
an entry. This field should never be missing on the paper
form.

If there are no obsewations in the dataset for a given ID,
then the one that is being added is the first entry. If there
is one observation already present, it is checked for
completeness. If it is complete, then the entry being
added is the second entry. If not, the observation number
(relative to the entire dataset) of that first entry is
determined, the new obsewation is terminated and the
dataset pointer is moved to the observation number of the
first entry. [f two observations exist for a given ID, then
the second entry is the desired observation. To prevent
more than two entries for any subject, a safety valve
exists to automatically terminate a new obsewation that
would become a third entry and returns the user to the
obsewation number of the second entry.

In the current application, there is also code in the INIT
and MAIN sections of the FSEDIT screen that effectively
blocks the appearance of a completed first entry; there-
fore, no alteration of initial entries for subjects is possible
once it has been completed. The authors would be happy
to distribute the code as implemented for a complete
screen, along with a sample dataset for any who are
interested. However, a conditionally executed PROTECT
ALL would suffice to prevent alteration of the first entry.

Summary

This method works best in relatively small-scale data
entry operations, where FSEDIT is the main tool for data
entry quality assurance and the entry operators are not
experienced or sophisticated. The extra time required in
coding provides quality assurance without increasing the
learning curve or the task burden for the end-users, given
that double entry is required. There are no reports to
cross-check, no separate editing of the second entry to
resolve discrepancies and no need for centralized verifi-
cation of the data. There is little or no real-time overhead
for small-to-medium sized datasets, especially if the
datasets are indexed, making its function transparent and
automatic. This method can also be modified for use in
FRAME entries, providing for instant double data entry
verification in the next generation of SAS System data
entry applications.

This work was partially supported by NHLBI grants HL
54473 and HL 47317.

Further inquiries are welcome to:

Derek Morgan
Division of Biostatistics
Washington University Medical School
Box 8067,660 S. Euclid Ave.
St. Louis, MO 63110
Phone: (314) 362-3685 FAX: (314) 362-2693
E-mail: derek@wubios.wustl. edu

SAS, SASIAF and SASJFSP software are registered
trademarks or trademarks of SAS Institute, Inc. in the USA
and other countries. 0S/2 is a registered trademark or
trademark of International Business Machines Corpo-
ration. @indicates USA registration.

Other brand and product names are registered trade-
marks or trademarks of their respective companies.

-5-

Figures 1-4: Sample Screen Dumps of the Double Data Verification

Figure 1: The first entry of the observation has just been
concluded.

Figure 2: The same observation is opened for the
second entry. Note the “ENTRY 2 next to the ID field,
and that the clinic date field (which is not a double-entry
field) is already filled in. The cursor is automatically
positioned on the standing height field when this screen
comes up.

,.........
$i3 w’ mw”

Figure 3: The corrective action window. The value in the
date of birth field is not the same as the value for the first
entry. The default selection is 1, “Change this entry.”
Note the correct formatting of the SAS date value in the
error notification. The VARLABEL function could be used
in the same way to put the variable label in the error string
instead of the variable name.

Figure 4: Option 1 has been chosen. The cursor moves
to the beginning of the field in question, and the field itself
is highlighted. The correct value may now be entered.
Note: if the value is entered incorrectly a second time, the
routine will flag the field again. -

-6-

	Main TOC

