
1

Using OOP Techniques to Make FRAME Applications More
Intuitive & User Friendly.

Mark Bodt, SUNKEN TREASURE SOFTWARE SYSTEMS LIMITED, New Zealand

Written for SUGI 22 Applications Development.

Abstract

Subclassing of SAS®/AF Frame objects allows developers to tailor their own classes to best suit the needs of the application.
Issues that affect how intuitive and user friendly an application is will be discussed, along with some examples of subclassing
that promote the usability of an application.

Introduction
The classes that are provided with SAS/AF can achieve a wide range of tasks. Using these classes as they are is often
satisfactory, however often an application has particular requirements. These may be achieved with the supplied classes, but
may require additional code. The nature of OOP allows the creation of subclasses which incorporates this additional
functionality. These subclasses can be added to the ‘toolbox’ of classes that are used to build Frame applications.

Scope
In this presentation, it is my intention is to demonstrate some real life applications where subclasses that I have developed have
been used to achieve tasks specific to the client’s application. Some of the subclasses will be examined at code level and there
will be some discussion on some aspects of application design.

Background
The examples in this paper are from a financial application which has data entered on a quarterly basis. The data is collected
from offices around the world. This is currently in hard copy format, but later may be done electronically. The data entry
involves some quite complex validation. And the subsequent processing of the financial data follows a series of very complex
rules. From the results reports are generated and data interfaced electronically with a General Ledger system. In terms of
value, the application handles transactions totalling in excess of $100 million per annum. 1

The Screen Print Button Class.
The application has many data entry screens, as well as browse screens for viewing the results of processing. The client
required print screen functionality on many of the screens. In Windows, Screen Print functionality can be achieved with the
Display Manager Command DLGPRT. It is an easy task to code this operation to work with a Push Button Widget in a Frame.
As the Screen Print push button was used on many screens throughout the application, it made an ideal candidate to subclass
and add to the application development ‘toolbox’. Creating a Screen Print class means that a screen print button can be placed
on any frame, providing screen print functionality without the need to add any code whatsoever to the Frame’s SCL entry.

Creating a Screen Print class sounds like a simple task, but it involved some trickery as it is not possible to issue a Display
Manager window command from a subclass run method as a display manager command can only be issued from an SCL
entry that has a window (ie an associated Frame).

Creating the Screen Print Button Class.
The Screen Print Button Class is a subclass of the Push Button class. In the catalog where all the application subclasses are
located, create a new class. In this example, the catalog OOP.OOP has been used and the class has a name of Prtscrn.class

The description is changed to ‘SUGI Print Screen
Button’ and the Parent Class set to
SASHELP.FSP.PBUTTON

Clicking on Methods displays the Methods dialog. The
select method is overridden, the source entry set to
OOP.OOP.PRTSCRNR.SCL and the label set to
SELECT. Double clicking on the source entry opens the
SCL entry containing the run method.

2

The code for the select method is very simple:

Because the Display Manager Command DLGPRT does not
work from a method, a frame is called that will issue the
command.

The frame that is called from the _select_ run method is now built. The frame does not contain any widgets and the SCL for the
frame is as follows:

/* Run methods for the SUGI Print Screen Class
 Written by Mark Bodt 25 Sept 1996 */

*avoid compilation warnings;
self=_self_;

select:
 method;
 /*The display manager command to print the screen
 as a bitmap cannot be issued from a run method.
 for this reason a frame is called. */

 call display('prtscrn.frame');

 call super(_self_,'_select_');
endmethod;

**;
* Program to: Print the screen as a bit map. *;
* Part of subclass prtscrn *;
* *;
* Written by: M.R.Bodt 28 June 1995 *;
* *;
**;

/*The print screen subclass calls the select method
 prtscrnr.sclwhich calls this frame because you cannot
 call a frame as a select method. You have to use a
 frame to use the DLGPRT function.
 The frame has been made into a dialog box so that it
 does not zoom max at run time. If it was a standard
 window then the frame would zoom max if the calling
 program was zoomed, causing the calling window to be
 blocked out with this frame and a blank screen being
 printed.

 This frame assumes that the printer driver and
 destination parameters are present in the global
 environment list.
*/

 index=nameditem(envlist('g'),'Screen Print Driver');
 if index=0 then do;
 *error handling;
 call display('error.frame',
 'The Screen Print Driver parameter could not',
 ' be found in the global environment list.',
 'The screen will not be printed.');
 end;
 else do;
 /*check that the Screen Print Dest is present in
 the G env list */
 index=nameditem(envlist('g'),
 'Screen Print Destination');
 if index=0 then do;
 *error handling;
 call display('error.frame',
 'The Screen Print Destination parameter ',
 'could not be found in the global ',
 'environment list.The screen will not',
 'be printed.');
 end;

3

The only problem with this is that the frame that is
called will also appear in the screen print. The trick is
to make the frame as small as possible. The General
attributes for this frame are set to:

• Dialog Box
• Command=None
• Window Size: 1,1,1,1

When the _select_ method runs, this frame will still
display over the top of the frame that we want to
screen print, but it will appear only as a tiny box at the
top left hand corner.

To complete the subclassing, the new subclass is
entered in the resource entry.

When using this subclass, remember that the
parameters that are used in the _select_ method:
Screen Print Driver & Screen Print Destination must
be in the Global Environment list.

Using Parameters
Typically, the parameters that are used in the
applications that I build are held in an SLIST catalog
entry and these are loaded during the start up of the
application into the environment list.

Using parameters in this way, rather than hard coding
the values into programs, means that it is a simple
task to change the operation of the application. For
example, the user may decide to print their screen
prints to a different printer, or the printer may be
upgraded to a different type. This particular
application was originally developed by another

company in the days of release 6.04. Most of the reports had the company name hard coded. Since then the company has
changed their name. This meant that each of the reports needed modification to print the correct name. Since then parameters
such as: The company name & address, company logo, interface file locations etc have been used. This has paid off as since
incorporating the use of parameters the company name has changed two more times as it expanded it’s operations.

Selection of codes
In the interests of saving space, data is often stored as codes. These codes may become familiar for the every day user,
however codes that are not used often may not be known to the user. For this reason, it is good practice to include both the
code and the description in selection lists. An example of this is shown below.
The reference table data in the list is stored in a dataset. It is sometimes necessary to add a new code. This functionality is
built into the selection screen, so that the user does not have to exit out to a completely different part of the application if the
code they require is not in the selection list.

In the case of ‘reference tables’ (tables which contain
unique codes & descriptions), there are typically only
two variables being the code & the description. In this
application there are many reference tables. Operations
on these tables such as selection lists, code entry
validation will be similar for all the reference tables, and
this property suggests the use of OOP techniques.
Methods and subclasses have been written for the
selection of a code from a list box, a popmenu as well
as data entry.

 else do;
 *get printer settings from environment list;
 prtdrv =getnitemc(envlist('g'),
 'Screen Print Driver');
 prtdest=getnitemc(envlist('g'),
 'Screen Print Destination');
 /*get current option setting and save for
 resetting option later*/
 current=optgetc('sysprint');

 *build option;
 option="'"||prtdest||"' '"||prtdrv||"'";
 rc=optsetc('sysprint',option);
 call execcmdi('DLGPRT NOSOURCE SCREENBITMAP');

 *reset printer setting;
 rc=optsetc('sysprint',current);

 end;
 end;
 *terminate screen;
 call execcmd('end');
return;

main:

return;

term:
 rc=rc;
return;

4

The above screen shows some
examples of some composite
subclasses that I have created.
Both the territory & treaty code entry
widgets are composites consisting
of four widgets, the label, the code,
the dropdown widget and the
description. Using these composite
widgets when developing a frame is
very straight forward. It is just a
matter of placing them in the
desired position, specifying the
reference table dataset, code
variable and description variable.
The subclass offers the following
functionality: validation of the
entered code, required attribute,
display of the description and when
the dropdown is clicked, a selection
list displays both the code &
description in a popmenu, or a
selection dialog. Messages are sent
to the message line if there are
errors such as a required code not
being entered, or an invalid code
being entered. These messages
can be customised.

The attributes screen for the
composite are shown to the left

Subclassing the dataform class
In this application there are numerous reference tables that need editing from time to time. There are also data files that hold
the results of the complex financial processing that occurs each quarter. I have found the new dataform class an excellent

5

addition to the toolbox of widgets that are available with SAS/AF software. Several subclass have been created for working with
the dataform, adding extensive functionality. The result is a data entry or browse screen that is user friendly and has all the
functionality of a data entry screen, but without any code at all in the Frame’s associated SCL entry. These screens are very
quick to assemble and because all the subclasses that are used have already been thoroughly tested, there is little in the way of
testing to be carried out when a new screen is built.
The above screen is a browse screen, but it contains the same widgets as for an edit screen. Each screen has up to three
widgets being a toolbar subclass, a dataform subclass and a goto composite subclass. Event handlers are used to
communicate between each of the widgets which means that each widget is completely independent and errors do not occur if
one of the widgets is not present. For example if the Goto composite is not necessary and is not placed in the frame, then the
other two widgets will still function normally. All functionality is contained in the subclasses. When this screen is developed
there is no SCL to code at all.

Event handling
The widgets communicate with each other using the event handlers. The toolbar subclass for example sends various events
such as:
Events sent: Delete record
 goto first record
 goto previous record
 goto next record
 goto last record
 add a record
 select dialog
When the user clicks on Previous on the toolbar, then the toolbar sends an event ‘goto next record’. The event is not sent to a
specific widget, but if a widget is listening for the event then it will do something with it and in this case the dataform widget will
be listening for this type of event and will action the request by going to the next record.
Similarly, the toolbar widget receives events. It listens out for events sent by other widgets and actions particular events. In the
case of the tool bar it listens for the events:
Events received: New record (record x of n)
 browse mode
 no selection
 where clause (Y/N)
The dataform widget sends the New Record event whenever the record (observation) number displayed and the record number
and the total number of records is also sent with the event. The tool bar picks up on this and will change it’s appearance as
appropriate for the record number ie if (as is the case in the screen above) the record is the last record in the dataset, then the
toolbar will grey the ‘Next’ and ‘Last’ buttons. Similarly if the record displayed by the dataform is the first in the dataset then the
‘First’ & ‘Previous’ buttons are greyed. If an event was received of ‘Browse mode’ this means that the dataform is in browse
only mode and the ‘Add’ & ‘Delete’ buttons are greyed.

Sending Events
Sending & receiving events is quite a
straight forward process. To send an
event the method _send_event_ is used.
Below is the run method which overrides
the _object_label _ method for the
toolbar class.

If the user clicks on the ‘First’ button
(button number 3) then the ‘goto first
record’ event is issued. This is all that is
required to send an event. As you can
see the toolbar subclass is very simple.
The actual functionality of going to the
first record is done in the dataform
subclass.

Receiving Events.
There are a few more steps in setting up
a widget to receive events. The widget
needs to know which events to listen out
for and what action to take if it receives
that event. In the overridden _init_

method for the toolbar class below, the event handlers are set using the _set_event_handler_ method. The first parameter *
specifies that the event can come from any widget. The second parameter is the event to listen for eg ‘browse_mode’ and the
third parameter is the method to run when the event is received. In the examples below, the methods are new methods that
have been added to the subclass.
These new methods are defined for the class as can be seen in the toolbar subclasses methods window. An example of the
run method for the ‘browse mode’ event is as follows:

objlabl:
 method;
 *_object_label_ run method;
 call super(_self_,_method_);
 /*this code, being after the call super, runs after the frame
 scl label processing. */

 *get index of toolbar button pressed;
 call send(_self_,'_get_last_sel_',tbindex,issel);

 select(tbindex);
 *OK;
 when(1)
 ;
 *Cancel;
 when(2)
 ;
 *Goto beginning of dataset;
 when(3)
 call send(_self_,'_send_event_','goto first record');

 *Goto previous record;
 when(4)
 call send(_self_,'_send_event_','goto previous record');
 some similar code snipped
otherwise
 put 'Error detected in DFTOOLBR run methods. Invalid tbindex'
 tbindex;
 end;
endmethod;

6

browse:
 method;
 call send(_self_,'_gray_','add');
 call send(_self_,'_gray_','delete');
endmethod;

The method simply greys the add and
delete buttons as these are not
applicable when the dataform is in
browse mode.

Event handling in the dataform subclass
The dataform sends & receives events as follows:
/*event handling:
 Events received: Delete record
 Add record
 goto first record
 goto previous record
 goto next record
 goto last record
 goto record
 add a record
 delete record
 selection dialog

 Events sent: New record (record x of n)
 browse mode
 no selection
 where clause (Y/N)
*/
The run methods for the events are quite straight forward. Below is an example of the run method for the next event:

next:
 method;
 *goto next record method;

 link update;*to overcome bug;

 call send(_self_, '_vscroll_','row',1);
 link settitle;
endmethod;

update:
 /*save before going to another record. Refer to bug in useage notes
 Using _goto_absolute_row_ may copy changes from the current row.
 This is not applicable to dataforms that are in browse mode*/

init:
 method;
 *_init_ run method;

 call super(_self_,_method_);

 *set event handlers;
 call send(_self_,'_set_event_handler_','*',
 'new record','new_record',_self_);
 call send(_self_,'_set_event_handler_','*',
 'browse mode','browse_mode',_self_);
 call send(_self_,'_set_event_handler_','*',
 'where clause','where_clause',_self_);
 call send(_self_,'_set_event_handler_','*',
 'no selection','no_selection',_self_);
 where_clause='N';

endmethod;

7

 proplist=makelist();
 call send(_self_,'_get_properties_',proplist);
 model_info=getniteml(proplist,'model_info');
 browse_status=getnitemc(model_info,'dsmode');
 if listlen(proplist)>=0 then rc=dellist(proplist);
 if browse_status ne 'BROWSE' then do;
 call send(_self_,'_update_row_');
 call send(_self_,'_unlock_row_');
 end;
return;

The Printer Subclass
The application generates many reports. It is a
requirement that the application was very easy to
use, and this included the printing of reports. The
user had to be able to select which printer the
report would print on and this selection had to be
easy to do. At the same time, the reports differed
in size. Some reports were to print on A4 paper,
while others were to print on line flow. The range
of linesizes ranged from 60 through to 220
characters. It was necessary to control the
printer orientation, destination (driver & port), font
and point size. SAS provides the ability to do this using the printer set up dialog, but this was too involved. The user also
needed to view the reports prior to printing.
I came up with a couple of frames and a subclass that would address all these printing requirements. When the user selected
a particular report, The report selection screen would display. In this screen they could make any selections that would restrict
the data in the report, in the above example, the user can select the treaty year. The user can also select the printer. This
composite widget is the subclass that was created to handle the printer selection and set up. Information about each of the
printers that is used by the application is stored in a dataset, and a meaningful description is allotted .

The attributes dialog for the widget allows the
developer to specify the minimum page & line
size requirements for the report and if there is
an orientation requirement. The default
printer can also be selected and the report
description.
When the report is run, the default report is
set on initialisation of the printer selection
widget. If the user clicks on the select
dropdown, then only those printers that meet
the minimum page & linesize requirements
are displayed. This way the user cannot
select a printer that can only print 80
characters wide for a report that needs a
width of 230.

Typically, when the user runs the report, by
clicking on the Print button, the frame calls
another frame. the frame contains the submit
blocks that process the data & print the report
(well at least to the output window). Rather

than submitting the report in one submit block, the processing is divided up into different submit blocks and between each
submit block , the ‘Process’ message is updated. The process message does not have to be that meaningful, but indicates to
the user that the report is running. If instead, the standard hourglass ‘busy’ pointer displayed with no changes to the screen for
5 minutes, or however long it takes to run the report, then the user may think that the system has crashed.

8

Then the report has finished, the output has been
listed in the output window, however rather than
viewing the results in the output window, the option
-autopop off was set to prevent the output window
from displaying. Instead, the process window
closes and the Report Selection screen closes.
The printer selection widget has the _term_
method overridden. When the widget’s _term_
method runs, if the frame status was E ie not
cancel, then the output window contents is saved
using the woutput function to a output type catalog
member. The _term_ method then calls a frame
that allows the user to view the catalog member
and from that window they can print, delete, print &
delete etc the report. On closing the viewer frame,

the remaining code in the _term_ method runs. This has added significant functionality to the
generating of reports. Another frame has been developed which allows the user to maintain the stored
reports.

Conclusion: .
By using Object Oriented Programming, it is possible
to radically reduce the time required to develop

applications. By subclassing, the default widgets that are provided with SAS/AF can be tailored to the specific requirements of
the application. This paper demonstrated some examples of what can be achieved with OOP and SAS/AF Frames.

Copyright notices
SAS and Observations are registered trademarks of SAS Institute Inc. in the USA and other countries. Microsoft is a
registered trademark of Microsoft Corporation.
® indicates USA registration

© Mark Bodt 1996

Contact details

1SAS Insight, The Newsletter for SAS Institute (NZ) Ltd Issue No. 1

 *update status indicator;
 process='Adding General Ledger suffix codes';
 refresh;

 submit continue;
.... submitted SAS code
 endsubmit;

 *update status indicator;
 process='Adding General Ledger total codes to report.';
 refresh;
 submit continue;
 ... More SAS Code....
 endsubmit;
 *update status indicator;
 process='Reading SAMCO Transfer data';
 refresh;
 submit continue;
... More SAS Code.... etc etc

Example of the code.

rc=woutput('save',

compress('reports.reports.'||catname||'.
output'),
 catdesc);
 *clear output window;
 rc=woutput('clear');
 *view generated report;
 call
display('risys.risys.vrept.frame',catnam
e);

 end;
 call super(_self_,_method_);
endmethod;

term:
 method;
 *on termination of widget, save the contents of the
output window;

 *get frame status as we only want to do this for
status of E;
 call send(_frame_,'_get_status_',frame_status);

 *save output;
 if frame_status='E' then do;
 *build cat member name;
 *get month part;
 Monthn=month(today());
 month=substr('ABCDEFGHIJKL',monthn,1);
 *get day part;
 day=put(day(today()),z2.);;
 *get time part;
 time=put(time(),z5.);
 *build catalog name;
 catname=month||day||time;
 *build catalog description;
 catdesc=put(id,$5.)||report_desc;

Sunken Treasure Software Systems Limited
Specialising in SAS Software Consultancy for the

 Asia - Pacific Region

73 PINE STREET MT EDEN AUCKLAND NEW ZEALAND
PH 025 725 386 FAX +64-9-620-9079
INTERNET MARKBODT@STSS.CO.NZ

	Main TOC

