
1

Application Development Templates in SAS/AF

Carl R. Haske, Ph.D., STATPROBE, Inc., Ann Arbor, MI

ABSTRACT

Proper applications are logically divided into layers. This division
allows the developer to derive generic templates that are reusable in
different types of software systems. Templates promote the logical
organization of applications into generic and application-specific
elements. Templates also enhance usability because they give
applications a consistent presentation. For the developer, the
advantages of using templates are rapid application development
and consistency across multiple applications. The consistency
provided by templates contributes to a reduced learning curve for
end users as they become familiar with many applications developed
with use of the same templates.

Standard templates handle system level details like registering
users, maintaining a data dictionary, tracking system activity with an
error log, typical database management functions, and typical
dialogs with the user. Templates also provide default behavior in an
application. An application can completely override default behavior
for any special application needs or perform tailored behavior and
branch to the default behavior.

Templates are organized in SAS® catalogs. An application is de-
veloped quickly in SAS by assembling template entries that are
stored in template catalog files. This paper describes different types
of templates and methods for integrating generic templates and
customized elements into a complete software package.

INTRODUCTION

The relatively new object-oriented features in the SAS/AF system
provide a good framework for the development of applications in the
SAS system. Version 6.11 provided additional classes that are very
useful in database applications. This paper describes the concepts
of object-oriented programming and classes in the SAS system.
The first section discusses the fundamental concepts of object-
oriented programming and describes how these concepts are
implemented in the SAS system. The second section shows how to
derive a class and shows how to use the class in a simple
application. The third section shows how to design an application
development framework to allow quick prototyping and enable rapid
development of the application front end. The final section shows
how to logically organize templates that can be reused in multiple
SAS/AF applications.

OBJECT-ORIENTED PROGRAMMING

In object-oriented programming, the emphasis is on objects, which
are programming constructs that consist of data and actions
performed on the data. Objects in a program or system are actually
created as instances of classes. Classes provide the template for
objects in an application. Therefore, object-oriented programming
involves techniques that enhance the development of applications.

A SAS/AF application consists of a series of frames that interact
with the user and perform actions based on user input. A frame
consists of a set of objects that the user manipulates graphically in
order to perform the application tasks. In an application, it is very
common to use similar objects on different frames to perform
actions specific to the frame. The example in the next section is an
object that allows the user to select items from a list with the intent of
performing an action on the selected items. For example, an
application component may provide the ability to select specific data
sets from a list for printing, browsing, copying, or some other action.

Alternatively, an application may need the ability to display a list of
users in order to delete the users from the system or assign the
users to a group, project, or other specific attribute. The nature of
the list items and subsequent action is not important to the object.
The object only needs the ability to manipulate list items between two
lists. During the design phase of an application, objects and their
purposes are defined. Objects of similar purpose should be
organized into classes and act as the basis for a class library.

The data of a class contain information about the class, and the
methods are procedures to access the data, modify the data, and
send messages to other objects. SAS/AF has several classes,
including buttons, icons, list boxes, radio boxes, and graphic dis-
plays, with which to build a user interface for applications. The data
for these classes are referred to as attributes and are stored in
instance variables. Methods define the specific actions that occur
on all the instance variables in the class. An application frame is
constructed by pasting objects on a blank palette and relating the
actions of the objects with the frame’s program code. The developer
must determine the specific actions that occur when objects are
manipulated and combine the various actions into a cohesive,
functional system.

DERIVING CLASSES IN SAS/AF

Subclasses are derived from a parent class and they inherit all of the
parent’s data and methods. The methods of the parent class can be
overridden, replaced, or supplemented for use by the subclass. In
addition, new attributes and methods can be defined for subclasses.
The steps for developing a subclass in SAS/AF are as follows.

• Derive the subclass
• Identify new instance variables
• Identify new methods and methods to be overridden
• Program SCL entries for new methods and overridden methods
• Design a custom attribute window to initialize instance variables
• Add the new class to the SAS/AF resource list

The focus of this paper does not involve the derivation of a subclass.
“Taking Advantage of Inheritance in SAS/AF

 Applications” in the
SUGI 21 Proceedings, by the author, details the process of deriving
a subclass. Instead we discuss an example of a subclass and how
it is used in an application.

Example: Tiny Chooser Class

Figure 1 shows the graphic display of the Tiny chooser class. It is a
child of the composite class that contains six objects.

Figure 1. Tiny chooser class

Two of the objects are list boxes and four of the objects are controls.
This chooser class contains a minimal number of controls to move
items between two list boxes. The tiny chooser is typically used in a
frame by allowing the user to select certain items and then perform
some type of action on the items.

2

Table 1. Tiny Chooser Instance Variables

Instance
Variable

Position Description

SOURCE List box on the left Contains items to select
from

TARGET List box on the
right

Contains selected items

ADDALL Top control Moves all items from
SOURCE to TARGET

ADD Second control Moves selected items from
SOURCE to TARGET

REM Third control Moves selected items from
TARGET to SOURCE

REMALL Bottom control Moves all items from
TARGET to SOURCE

Table 1 lists the new instance variables defined in the tiny chooser
class. Each graphical object in the tiny chooser class has a
corresponding instance variable. These instance variables are the
data for a tiny chooser object.

When designing the tiny chooser class, it was necessary to consider
the methods needed. The primary methods involve moving items
between the SOURCE and TARGET object when one of the four
control objects is selected. These methods should execute when
any of the four controls ADDALL, ADD, REM, and REMALL is
selected. Also, if the mouse is double clicked on an item in a list,
that item should move to the opposing list.

Table 2. Tiny Chooser Methods

Method Status Description
MOVE_ALL New Moves all items from list

box to opposing list box
MOVE_SELECT New Moves selected items

from list box to opposing
list box

REPOP_SOURCE New Forwards
REPOPULATE to
SOURCE

REPOP_TARGET New Forwards
REPOPULATE to
TARGET

SET_SOURCE_TITLE New Forwards _SET_TITLE_
to SOURCE

SET_TARGET_TITLE New Forwards _SET_TITLE_
to TARGET

_GET_TEXT_ Override Forwards _GET_TEXT_
to TARGET

_OBJECT_LABEL_ Override Performs specific
actions when various
objects are selected

The four controls of the tiny chooser class can be categorized to two
types of controls performing different actions on a pair of lists. The
two different actions are
• Move all items between lists.
• Move selected items between the lists.
Therefore, two primary methods are needed. These methods will
accept two lists as parameters. The order that the lists are passed
to the methods determines which direction to move list items.
Additional methods are needed in order to repopulate list boxes and
set titles. Table 2 shows the complete list of all new and overridden
methods used in the tiny chooser class.

*** MOVE_ALL ***;
MOVEALL:
 Method src tar 8;
 call send(src,'_GET_MAXROW_',nrow);
 Do i=1 to nrow;
 call send(src,'_GET_TEXT_',i,itemtext);

 call send(tar,'_ADD_',itemtext,-1);
 End;
 call send(src,'_DELETE_ALL_');
 Endmethod;

*** MOVE_SELECTIONS ***;
MOVESELS:
 Method src tar 8;
 call send(src,'_GET_MAXROW_',nrow);
 Do i=1 to nrow;
 call send(src,'_ISSEL_',i,issel);
 If issel then do;
 call send(src,'_GET_TEXT_',i,itemtext);
 call send(tar,'_ADD_',itemtext,-1);
 call send(src,'_DELETE_',i);
 i=i-1;
 End;
 End;
 Endmethod;

Listing 1. MOVE_ALL and MOVE_SELECTION methods

The code for the MOVE_ALL and MOVE_SELECTIONS methods
is displayed in listing 1. The numeric parameters of the methods
represent object ids for two list boxes. The parameter src repre-
sents the list box in which items are selected to move to the list box
represented by the parameter tar.

*** _OBJECT_LABEL_ ***;
OBJLABEL:
 Method;
 call send(_self_, '_GET_CURRENT_WIDGET_', obid);
 Select (obid);
 When (source)
 If _EVENT_='D' then
 call send(_self_, 'MOVE_SELECTIONS', source, target);
 When (target)
 If _EVENT_='D' then
 call send(_self_, 'MOVE_SELECTIONS', target, source);
 When (addall)
 call send(_self_, 'MOVE_ALL', source, target);
 When (add)
 call send(_self_, 'MOVE_SELECTIONS', source, target);
 When (rem)
 call send(_self_, 'MOVE_SELECTIONS', target, source);
 When (remall)
 call send(_self_, 'MOVE_ALL', target, source);
 Otherwise;
 End;
 call super(_self_, _METHOD_);
 Endmethod;

Listing 2. _OBJECT_LABEL_ method

The method MOVE_ALL performs three basic steps. The first step
determines how many items are in the src list box by sending the
_GET_MAXROW_ method. The second step executes a loop over
the items in src and gets the text of each item and adds the text to
the tar list box. The third step deletes all the items in src. The
method MOVE_SELECTED performs the same three steps, except
only the selected items are acted on. Note that these two methods
are usable by other chooser classes or in any setting where items
are moved between list boxes. In other words, the actual functioning
of the methods is independent of the overall intent of the class. This
is a good example of how object-oriented programming can yield
reusable code.

Listing 2 shows the code behind the _OBJECT_LABEL_ method.
This method executes whenever any object contained in a tiny
chooser object is selected. The first step of the method determines
which object was selected by sending the
_GET_CURRENT_WIDGET_ method. A select block then
branches to the appropriate code based on the selected object. For

3

both the SOURCE and TARGET objects, if a mouse double click is
detected, then all selected items are moved from the list box to the
opposing list by the MOVE_SELECTIONS method. The remaining
code blocks handle the cases where one of the controls was clicked
with the mouse. In each case, the appropriate method, either
MOVE_SELECTIONS or MOVE_ALL, is sent to _self_ with
SOURCE and TARGET passed according to the direction of item
movement. The final step executes the _OBJECT_LABEL_ method
of the parent composite class.

Figure 2 shows a sample application that uses a tiny chooser. This
application consists of a frame entry called Chooser.frame with a
SCL entry called Chooser.scl. Table 3 shows the objects in
chooser.frame. This application has no practical operation; it is
used here to depict how the tiny chooser might be utilized in a real
application.

Figure 2. Sample application using the tiny chooser

Table 3. Objects in Chooser.frame

Object Name Class Description
Chooser choosert Tiny chooser object
Getsels pbutton Push Button: Gets items in

“Target Items” list and populates
“Selected items” list

Display listbox List box: Selected items

When the application starts, both list boxes are populated with text
items. At any point while the application is running, when the “Get
Selections” button is clicked, the items displayed in the “Target
Items” list box are displayed in the “Selected Items” list box. Figure
3 shows the application after items in the lists have been moved and
the “Get Selections” button has been clicked.

Figure 3. Running the sample application

Listing 3 shows the code behind the frame. The code is very simple
and shows how easy it is to implement an object from the tiny
chooser class. The INIT section of the code initializes the items in
both the SOURCE and TARGET list boxes. The push button
GETSELS gets all the items in the TARGET list box and displays
the items in the DISPLAY list box. In an actual application, the
GETSELS block of code would be used to perform an action on all
selected items. For example, an application may print or copy a set
of selected data sets.

Length text $40;

INIT:
 source=makelist();
 rc=insertc(source,'SOURCE 1',-1);
 rc=insertc(source,'SOURCE 2',-1);
 rc=insertc(source,'SOURCE 3',-1);
 rc=insertc(source,'SOURCE 4',-1);
 rc=insertc(source,'SOURCE 5',-1);

 target=makelist();
 rc=insertc(target,'TARGET 1',-1);
 rc=insertc(target,'TARGET 2',-1);
 rc=insertc(target,'TARGET 3',-1);
 rc=insertc(target,'TARGET 4',-1);
 rc=insertc(target,'TARGET 5',-1);
 rc=insertc(target,'TARGET 6',-1);
 call notify('chooser', 'SET_SOURCE_TITLE', 'Source Items');
 call notify('chooser', 'SET_TARGET_TITLE', 'Target Items');
Return;

GETSELS:
 call notify('display','_DELETE_ALL_');
 call notify('chooser', '_GET_MAXSEL_', nsel);
 Do i=1 to nsel;
 call notify('chooser', '_GET_TEXT_', i, text);
 call notify('display', '_ADD_', text, -1);
 End;
Return;

TERM:
 rc=dellist(source);
 rc=dellist(target);
Return;

Listing 3. Chooser.scl

4

APPLICATION FRAMEWORK

An application framework consists of a set of logical tasks. Tasks
are organized in a hierarchical manner. Higher-level tasks can
branch to additional subtasks. For example, an application task
might be “Database Administration”; however, this task may consist
of several tasks, including “Setup Database,” “Modify Database,”
“Copy Database,” “Browse Database,” and “Print Database.”
Therefore, when the user tells the application to perform a specific
task, the application will either branch to a set of subtasks or
complete the execution of the task.

The natural structure for this task management is a tree (see dia-
gram 1). Each node represents a task. Each node or task, when
selected, either branches to additional tasks or performs a specific
task. In the diagram, one task can branch to as many as four levels
in the task hierarchy.

 = Task execution = Task branching

A

B

C

D

Diagram 1. Application schematic

Note that the navigation through such a system, i.e. branching from
node to node and executing actions, is independent of the actual
content at each node. A general system that models this process
has a user interface commonly referred to as a “switchboard.”

To realize this application structure in SAS/AF, STATPROBE de-
veloped a subclass of the Image Icon class. The subclass is re-
ferred to as the Menu Image Icon class. A switchboard in an ap-
plication consists of a set of Menu Image Icon objects. Every
application is prototyped by defining a set of switchboards as pa-
rameters in the system. To complete an application, it is necessary
only to program the frames for Menu Image Icon objects that
execute a specific function as opposed to branching to another
switchboard. The Menu Image Icon class has four new instance
variables listed in table 4.

Table 4. Menu Image Icon Class Instance Variables

Instance Variable Description
DISP_APP Catalog entry to display
SLIST Slist entry corresponding to a Menu Image

Icon set
SYSLEV Display attribute for system administration
TASKLEV Display attribute for task levels

Designing an application front-end has been reduced to a matter of
minutes. The developer can produce several prototypes and meet
with the users to discuss the direction of the application before
investing too much development time. Another advantage of this
framework arises during application development. There are many
cases where the specific frame behind a Menu Image Icon object is
general enough that the frame can be saved as a template and
reused in other applications. Generic functions are independent of
application specifics. In our framework, all independent functions
include

• Login system

• Change password
• Application node navigation
• Error log
• Quit to SAS
• Exit

Listing 4 shows the code for main.scl. This module is a generic
application driver. As an application prototype is developed, the code
in main.scl may be modified to accomplish design changes at the
high-level function of the application. However, it is typical for this
program to remain static throughout the development of the
application.

Main.scl has four primary sections:

• Initialize DBFS
• Initialize system environment
• Login user
• Execute application

INIT:
 *** Set the standard libref DBFS ***;
 If libref('DBFS') then
 rc=libname('DBFS');
 rc=libname('DBFS',
 pathname(scan(screenname(),1,'.'))||'\DBFS');
 If rc>0 then do;
 call method('ehandler', 'errlog', screenname(),_status_, event(),
 'FATAL ERROR: Unable to initialize system database.',
 rc, _self_);
 If rc>0 then do;
 status='H';
 return;
 End;
 End;

 *** Setup installation specific environment ***;
 call method('install.scl','environ');

 *** Login ***;
 call display('login.frame', rc, getnitemc(envlist('L'), 'APPNAME'));

 *** Check login success ***;
 If not rc then do;
 status='H';
 Return;
 End;

 *** Execute ***;
 call display('app.frame', scan(screenname(),1,'.')||'.'||
 scan(screenname(),2,'.')||'.'||getnitemc(envlist('L'),
 'APPMENU')||'.slist', getnitemc(envlist('L'),
 'APPNAME')||' V.'||getnitemc(envlist('L'), 'VERSION'));
Return;

Listing 4. Main.scl

The standard library DBFS is included in all applications. The ac-
ronym DBFS stands for “Database File System.” The DBFS con-
sists of the user table, project table, assignments table, and any
other specific files necessary to track data for an application. The
DBFS files typically reside in a subdirectory DBFS of the application
directory. If an application is very basic and does not need to track
system data in a database file system, these statements are
removed from main.scl.

The method environ is invoked to set up the application environment.
Listing 5 shows the environ method for a basic employee candidate
survey application used for

• Completing surveys on candidates
• Reporting, summarizing, and graphing results
• Modifying survey questions
ENVIRON:
 Method;

5

 envlist=envlist('L');

 *** Application name, version, and prime menu slist ***;
 appname='STATPROBE CANDIDATE SURVEY';
 version='1.0A';
 appmenu='cssprime';

 rc=insertc(envlist,appname,-1,'APPNAME');
 rc=insertc(envlist,version,-1,'VERSION');
 rc=insertc(envlist,appmenu,-1,'APPMENU');
 rc=insertn(envlist,0,-1,'IN_ERROR');
 Endmethod;

Listing 5. Environ method

Each application must always have the environ method modified for
• Application name
• Version control number
• Primary switchboard

These parameters are stored in the applications local environment
list. This technique facilitates the development of generic templates.
When the code for a template is written, global application
information can be referenced from the environment list. Typical
applications store additional data in the environment list, such as
standard file structures for projects.

Note that statements in main.scl reference the environment list after
the environ method is invoked. For example, the application title is
passed to the login frame to display the application name (see figure
7 in the next section). The login system requires a standard user
table with fields representing user id, user name, and password.

Figure 4. App.frame

The final statement in main.scl performs a call display to execute the
application. The application primary switchboard, application name,
and version are passed to the frame app.frame. This frame is a
generic application node navigator. Figure 4 displays app.frame.
There are basic controls for viewing error notes, going back along
the node tree, quitting SAS, and exiting the application. All these
controls are standard to every application. There is a large blank
area above the control that is reserved to display switchboards.

An additional level of standard functions is typically included in
STATPROBE’s applications. These functions include
• User administration
• Project administration
• Project selection
• Active project display

Figure 5. Primary switchboard

Figure 5 shows the primary switchboard of an application. Figure 6
shows a second-level switchboard. This switchboard displays after
the “Survey Results” Menu Image Icon object on the primary
switchboard is selected.

Figure 6. Second-level switchboard

REUSABLE TEMPLATES

This section describes some of the template frames that are usable
in all applications. The previous section described the login
procedure. The login frame is displayed in figure 7.

Figure 7. Login screen with title

The code for the INIT section of the frame is displayed in listing 6.
Notice that the application name is a parameter in the code and is
used to set the title of the login frame. Each application uses a
standard structure for the system user table, allowing use of the
generic login frame. Also, if the login frame is ever changed or
updated, it will automatically be updated for all applications. The

6

code for the login frame also shows how the error handler works.
Although the error handler is not a graphical component of appli-
cations, it consists of an SCL entry and is considered a template
since it is usable in all applications. If the login frame fails to open
the user table, the error handler writes information to a slist entry in
the errorlog catalog for an application, allowing the developer to track
user problems and debug the system.

INIT:
 *** Assume failure ***;
 rtn=0;
 *** Set application title ***;
 call send(_frame_, '_SET_TITLE_', 'Login '||appname);
 *** Make a list to hold the user id and set key ***;
 userlst=makelist();
 *** Open USER data set ***;
 user=open('dbfs.user');
 If not user then do;
 call method('ehandler', 'errlog', screenname(),
 status, event(), sysmsg(), dsid, _self_);
 call notify('ok', '_GRAY_');
 End;
Return;

Listing 6. INIT section of login.frame

Figure 8. Selector template

INIT:
 call send(_frame_, '_GET_WIDGET_', 'tbl', tblid);
 call send(tblid, '_SET_DATASET_', dataset);
 If keyname^=_BLANK_ then do;
 vals=makelist();
 rc=insertc(vals, keyval, -1, keyname);
 call send(tblid,'_SET_KEY_',rc,keyname,'EQ','SCROLL',vals);
 rc=dellist(vals);
 End;
 If row^=. then
 call send(tblid, '_GOTO_ABSOLUTE_ROW_', row);
 call send(_frame_,'_SET_TITLE_',dataset||' Record Selection');
Return;

MAIN:
 call send(tblid, '_GET_CURRENT_ROW_NUMBER_', row);
 STATUS='H';
Return;

Listing 7. Code for selector template

Figure 8 shows the SELECTOR template. The selector can be
used by a procedure to select a data set record and perform an
action on that record. The calling procedure passes the data set
name as a parameter and the selector frame displays the data set in
a data table. When the user clicks on the desired record, the record

number of the selected record is returned to the calling procedure.
The calling procedure receives this information and performs the
action on the record. Listing 7 shows the code for the selector
template.

CONCLUSION

This paper has presented an approach to object-oriented pro-
gramming in SAS/AF. We discussed the use of classes, an ap-
plication framework, and two templates that have been developed at
STATPROBE. These techniques are powerful and provide a great
deal of streamlining to the application development process. A
typical application can be prototyped in a couple of days, and the
user can be involved in the software design phase to a greater
degree. A basic application can be fully developed and tested in
less than one week. More complex applications typically take one
month to two months to fully compose.

Many templates been developed by STATPROBE, too numerous for
the scope of this paper. This library of templates took two months of
development time. As STATPROBE develops more applications,
our library of templates continues to grow.

REFERENCES

Haske, Carl R. (1995), “Using SAS/AF and Frame Entry to Access
Data,” Proceedings of the Twentieth Annual SAS Users Group
International Conference, 647-651.

Haske, Carl R. (1995), “Developing SAS/AF Applications for Re-
viewing Clinical Data,” Proceedings of the 1995 Midwest SAS Users
Group Conference, 5-9.

Haske, Carl R. (1996), “Taking Advantage of Inheritance in De-
veloping SAS/AF Applications,” Proceedings of the Twenty-First
Annual SAS Users Group International Conference, 11-16.

Haske, Carl R. (1996), “A Clinical Data Management System in
SAS,” Proceedings of the Twenty-First Annual SAS Users Group
International Conference, 1217-1222.

Haske, Carl R. (1996), “Developing SAS/AF Data Management
Applications,” Proceedings of the 1996 Pharmaceutical SAS Users
Group Conference.

Haske, Carl R. (1996), “Developing Clinical Software Systems in
SAS/AF,” Proceedings of the 1996 Southeast SAS Users Group
Conference, 88-97.

SAS Institute, Inc. (1993), SAS/AF Software: FRAME Entry, Us-
age and Reference, Version 6, First Edition, Cary, NC: SAS In-
stitute Inc.

SAS Institute, Inc. (1994), SAS Screen Control Language: Ref-
erence, Version 6, Second Edition, Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

Thanks to Paul Schwankl for assistance in the preparation of this
paper.

SAS and SAS/AF are registered trademarks of SAS Institute Inc. in
the USA and other countries. indicates USA registration.

AUTHOR’S ADDRESS

Carl R. Haske, Ph.D.
STATPROBE, Inc.
3885 Research Park Drive
Ann Arbor, MI 48108
(313) 769-5000 x115
E-Mail: chaske@statprobe.com

	Main TOC

