
How to use CD-ROM as a Simplified CANDA

Steve Wong, IBAH, Inc., Emeryville, CA

1

ABSTRACT

An application for approval to market a drug requires extensive
regulatory agency review from different scientific disciplines,
one of which is statistics. Clinical data and statistical software
must therefore be transferred to regulatory agencies. The
transfer media could vary from the high-tech sophisticated
CANDAs (computer-assisted new drug applications) to simple
floppy diskettes, tapes, or CD-ROMs containing data and
program files. This paper discusses SAS programming
techniques that enhance the transfer, especially if a CD-ROM is
the desired media. The strategy developed by Matrix
Pharmaceutical, Inc. to resolve these issues and some of the
problems encountered along the way will be addressed.

INTRODUCTION

Before a regulatory agency will grant approval for a drug to be
marketed to the public, statistical and medical reviewers must
assess the overall safety and effectiveness of the drug. The
assessment is based on evidence from the review of all pivotal
and supportive secondary studies. During the review process,
reviewers often conduct re-analysis or alternative analysis on
the same or modified clinical data sets submitted by the
sponsor. Statistical software is provided by the sponsor. Large
pharmaceutical companies with resources and experience often
submit a user-friendly, enhanced versions of CANDA which
integrate statistical, textual and archive information. New
companies may submit data and program files on CD-ROMs.

There are two different approaches to using CD-ROMs as the
transfer media. The first method would be to download all of
the data and software (SAS programs) from the CD.-ROM to
the hard drive and run SAS programs and data from the hard
drive. The second method is to leave both the data and the SAS
programs on the CD-ROMs and run the them from the CD-
ROMs. The advantages and the disadvantages of running SAS
programs and data from CD-ROMs are as follows:

ADVANTAGES DISADVANTAGES

Saves disk Space: SAS programs and
data remain on CD-ROMs (FDA hard
drives may not have enough space since
they are constantly working on multiple
submissions.)

WORM: A CD-ROM can
only be written once. Output
files must be directed to the
hard drive and can not be
stored on the CD-ROM.

Confidentiality: Data are managed. Special Hardware is needed to
transfer files to CD-ROMs.

File Protection: Files can mot be
accidentally overwritten because of the
CD-ROM -specific feature “WORM”.

Capacity: Each CD-ROM holds about
640MB of data.

Since the advantages clearly outweigh the disadvantages,
running SAS programs off CD-ROMs seems like a logical
choice.

REAL WORLD EXPERIENCE

At Matrix Pharmaceutical, we filed our first NDA using CD-
ROMs. The division of Dermatologic Drug Products at FDA
told us that we were the first at their division to use CD-ROMs
as a simplified CANDA. The CANDA was “Simplified” in the
sense that only statistical materials were included and no
interactive query tools or document management systems were
provided. For each study in the NDA, we copied all SAS
programs, CRF (raw) data sets, user-created data sets, tables,
graphs, data listings and CRF tabulations to the CD-ROMs.

We placed both the CRF data sets and user-created data sets
together in the same directory. Unfortunately, this combination
created difficulty for reviewers, who had trouble distinguishing
the two types of data sets. Also, since a CD-ROM could only
be written once, it was necessary to direct newly created
output files to a local hard drive. We received a request from
the FDA reviewers to change the paths in all of our programs
so that the source data were read from the CD-ROM, but
temporary and new data sets were written to the hard drive.
This request demanded revisions to more than 1000 programs
because the external paths were defined explicitly in each
program. Providing programmatic systematic changes to our
SAS code using “sed” and “shell” scripts was not practical
since differences existed among programs that precluded
system changes. FDA reviewers also told us that they were not
interested in any “fancy” operations but a simple process to
replicate our results and further investigate the data. Again, we
did not have an easy solution for them because of the lack of
modular programming. Furthermore, some programs were used
only to create data sets for other programs; some were used
only to create summary tables and others were only used to
create graphs. Hence, it was crucial to keep track of the order
of jobs being run. However, because of the lack of previous
experience, no schema were incorporated in to each program to
provide the necessary documentation in describing the order of
jobs run and no mechanism (batch file or script) was provided
for the reviewers to rerun all programs together.

As a result of the painful experience encountered at Matrix
Pharmaceutical, Inc., several key issues were identified as
critical to the success of a simplified CANDA. The key areas
include: directory structure, autoexec.sas, modular
programming, auto documentation, table numbering and
executable scripts.

DIRECTORY STRUCTURE

A well-defined directory structure provides a necessary
environment to assign librefs and filerefs in SAS. To create
external files or to access SAS data sets and format catalogs,

2

filerefs and librefs must be created in a SAS program to specify
the physical locations (preferably, filerefs and librefs are
defined in autoexec.sas - this subject is discussed below).

One important technique is to create separate directories for the
CRF data sets and for the user-created data sets. Unlike the
user-created analysis data sets, CRF data sets should never be
modified; by separating CRF data sets and user-created data
sets, no CRF data sets could be overwritten accidentally or
intentionally. Also, when running a SAS job, CRF data sets
only serve as input. The directory separation allows reviewers
to distinguish the two different dataset types much more easily.

At Matrix Pharmaceutical, we now define our production
directory using the following levels:

System Level
Therapeutic Area
Indication
Study/ Project
Analysis
Function
Files

e.g.: /u/onc/i37192/s19/fin0596/program/demog.sas

/u: system level
/onc: therapeutic area - oncology
/I37192: IND number - liver cancer
/s19: study number
/fin0596: analysis - final analysis started in May 96
/program: subdirectory to store SAS programs
/demog.sas: files - SAS program to generate summary of

demographics

Under each analysis, there are subdirectories for different
functions:

format: Study-specific format catalog
output: Summary tables, data listings and CRF

tabulations
program: SAS programs, logs and lst
rawdata: CRF data sets in ASCII format
rawsas: SAS version of CRF data sets
sasdata: User-created SAS data sets
text: Protocol, study report, and other text files.

We created separate subdirectories (“RAWSAS” and
“SASDATA”) to store two types of SAS data sets. The original
CRF SAS data sets were stored in “RAWSAS” and the user-
created data sets were stored in “SASDATA”. User-created
data sets often contain derived variables that are not explicitly
coded in any CRFs. We also created a subdirectory
“FORMAT” to store the study-specific format catalog. It is
especially useful to separate the study format catalog from the
global format catalog.

AUTOEXEC.SAS

Autoexec files contain SAS statements that are executed
immediately after the SAS System is initialized but before it
processes any source statements. An autoexec file is usually
used to specify SAS system options and librefs and filerefs that
are commonly used.

When running a SAS job without using the host-specific option
AUTOEXEC (which specifies the autoexec file to be used), the
SAS System searches three directories for the autoexec.sas file,
in the following order:

 your current directory
 your home directory
 the sasroot directory

The SAS System uses the first autoexec file it finds to initialize
the session. The ECHOAUTO system option can be used to
view the contents of the autoexec file when the SAS System is
invoked.

At Matrix Pharmaceutical, Inc., as a result of our CD-ROM
experience, we have created a specific autoexec file for each
study or project. In each autoexec file, we have defined SAS
system options, created macro variables to define paths for
libnames and filerefs and we log all of the generic macros
being used in a particular study/project. Thus, no path has to
be coded in a SAS program to access external files.

 Another technique is to create two macro variables as input
and output librefs, pointing to the same directory in which user-
created data sets reside. This will allow easy changes to the
output location. A sample autoexec file are as follows:

General information for source line
%let user =NLW; ** user initial
%let company =MATRIX; ** company name
%let study =#19-96-3; ** study number

Macro variables to specific different paths
**efficacy SAS programs
%let s19p =/u/onc/i37192/s19/fin0596/program

** efficacy SAS output tables
%let s19r =/u/onc/i37192/s19/fin0596/output

** study-specific format catalog
%let s19f =/u/onc/i37192/s19/fin0596/format

** CRF SAS data sets
%let s19d =/u/onc/i37192/s19/fin0596/rawsas

** user-created SAS data sets
%let s19in =/u/onc/i37192/s19/fin0596/sasdata

** user-created SAS data sets

 %let s19out =/u/onc/i37192/s19/fin0596/sasdata

Libname definitions
libname library “/u/format”; ** global format catalog
libname library1 “/u/format/onc”; ** project format catalog
libname library2 “&s19f”; ** study-specific format

 catalog
libname dmsasin “&s19d”;
libname sasin “&s19in”;
libname sasout “&s19out”;

SAS system options
options ps=50 ls=130 mprint fmtsearch=(library2 library1
library) nofmterr nodate nocenter nonumber;

3

External SAS macros
%inc “/u/share/goprint.sas”;
%inc “/u/share/gopage.sas”;

MODULAR PROGRAMMING

It is highly desirable, for maintenance purposes, to decompose
a program into modules. A popular technique is the top-down
design. It is characterized by moving from a general statement
of the program to detailed statements of specific tasks. Using a
top-down design allows you to list all of the possible tasks
required to perform a particular analysis. Each job on the list
represents an individual module (or macro). The bottom line
has one macro for each distinct job. By using this programming
style, reviewers can select specific module(s) to run. Common
code can be shared within a program or among programs and
the logic flow of a program can be easily understood by
examining the main “module”.

Consider a program that has been designed to analyze patient
response in a clinical trial, comparing three treatments for
condylomate acuminate (genital warts). The program generates
patient response rates by treatment group and wart location. A
three-way crosstabulation table with Cochran-Mantel-Haenszel
statistics is required. The program is as follows:

%macro autodoc;
........
%mend ;

%macro getnum;
........
%mend ;

%macro sample;
........
%mend ;
........

***** macro calls;

%autodoc for automatic documentation
%getnum to generate table number
%sample to determine the analysis sample
%predata to carry out any necessary pre-analysis data

manipulation
%cmh to perform a categorical analysis by running

PROC FREQ to get CMH p-value
%postdata to restructure data into presentation format
%report to present results using either DATA NULL or

PROC REPORT

At Matrix Pharmaceutical, Inc., most programs consist of six
major modules: auto documentation, sample determination, pre-
analysis data manipulations, statistical hypothesis testing, post-
analysis data manipulations, and report writing. If reviewers
prefer to run a subset of modules, this can be done by
commenting out the unnecessary macro calls.

AUTO DOCUMENTATION

As in the above example, the first module to execute is the auto
documentation, which provides important information about the
program. It gives the name of a program, a detailed description of the
program, the assumptions built into the program, the input data
files required, the output data files created, the name and
location of the output tables/graphs/listings, the print command
to be used, the author of a program, the date a program was
created, the last user to make revisions and the last revision
date.

The auto documentation serves as the audit trail for a program.
It can also serve as the table of contents for all programs in a
study or project and it is remarkably useful to the reviewer in
identifying different programs. The autodoc module is a
“must” for any kind of CANDA system.

TABLE NUMBERING

Another valuable tool is a module that manages the table
numbering of each table, graph or listing, since the order of the
final presentation in a study report often changes depending on
the internal reviewers’ comments. For any study with a large
number of tables, a mechanism to update the table number
within each program is critical to minimize the turnaround time
following text revisions. One way to manage this process is to
create a database to keep track of all the table numbers in a
study. The database has three key pieces of information: table
number, program name and table title. Internal and external
reviewers may also use this database as a cross-reference for
any study with a large number of tables.

At Matrix Pharmaceutical, Inc., we created a “SAS Table
Database” for each study. The database is a SAS dataset that
may be read by all of the programs in each study, to identify
and assign the appropriate table number.

SCRIPTS

During the development stage, running SAS jobs interactively
may help developers to debug a program. However, in
production mode, batch processing is the preferred method. In
UNIX, using a script is best for batch processing. A script is a
tool that automates a repetitive chore. In some systems, scripts
are called batch files or macros. Since end-users should be
given a choice of running a specific program or running all
programs in one study, two scripts should be made: the first
prompts end-users for the program name and runs that program.
The second specifies all SAS programs in the script and
executes all of them. The script file is also a useful place to
store print commands for the output produced by each program.

When using a CD-ROM, output files (including log files,
listing files and summary tables/graphs) can not be written
back to the CD-ROM. By incorporating paths into autoexec
files, one can easily direct output files to any external location
in a hard drive, using the script.

The following is a typical set-up used at Matrix
Pharmaceutical, Inc.. All of the SAS programs in s19 are in the
directory /u/onc/i37192/s19/fin0596/program and the output

4

files are stored in /u/onc/i37192/s19/fin0596/output. If a
reviewer wants to redirect output to a testing output

directory(/u/fda/matrix/nda20981/s19/output), the script
should look like this:

setenv PROGPATH /u/onc/i37192/s19/fin0596/program
setenv OUTPATH /u/fda/matrix/nda20981/s19/output

sas $PROGPATH/sastabno.sas -log $OUTPATH/sastabno.log
-print $OUTPATH/sastabno.lst

sas $PROGPATH/demog.sas -log $OUTPATH/demog.log -print
$OUTPATH/demog.lst

sas $PROGPATH/f2way.sas -log $OUTPATH/f2way.log -print
$OUTPATH/f2way.lst

CONCLUSION

If development cost in time and resources precludes a fully
integrated CANDA in your organization, CD-ROM might be an
appropriate choice for you. Using a CD-ROM does not require
a large investment or long commitment, it only requires
thorough upfront planning. Depending on the degree of
complexity desired, the application can be developed in as little
as a week if the techniques described above are used. Even if
CD-ROM is not the ultimate approach you choose, the concepts
discussed still apply to any kind of CANDA.

REFERENCES

SAS Institute Inc., SAS® Companion for UNIX Environments:
Language, Version 6, First Edition, Cary, NC: SAS Institute
Inc. , 1993. 256 pp.

CANDA Guidance Manual. U.S. Department of Health and
Human Services, Public Health Service, Food and Drug
Administration.

McConnell, S. (1993). Code Complete. Microsoft Press.

ACKNOWLEDGMENTS

I wish to thank Dr. Morgan Stewart, Bryan Selby and Noreen
Layden for their contributions to this paper.

AUTHOR CONTACT INFORMATION

Steve Wong

IBAH, Inc.
5801 Christie Avenue, Suite 355, Emeryville, CA 94608-1928

Telephone (510) 597-7200; Fax (520)420 0651
E-mail address: wong@resbiom.com

	Main TOC

