
From There to Here: Getting Your Data Into the SAS ® System
Andrew T. Kuligowski, Nielsen Media Research

Nancy Roberts, Utah State University

ABSTRACT / INTRODUCTION

The SAS® System has numerous capabilities to
store, analyze, report, and present data.
However, those features are useless unless that
data is stored in or can be accessed by the SAS
System. This presentation will provide an
overview into some of the methods that can be
used to pass data into the SAS System. It will
range from Base SAS's INFILE and INPUT
statement to more advanced mechanisms such
as SAS/ACCESS®. It is hoped that there will be
some aspects of this presentation for the
beginning, the intermediate, and perhaps even
the advanced user of the SAS System.

It should be noted in advance that the details of
this topic can vary from operating system to
operating system. This presentation will be
primarily aimed at providing an overview which
is independent of operating system. The reader
is strongly encouraged to use this paper in
conjunction with the appropriate manuals and
"Operating System Companions" to gain a full
understanding of the options available to them.

SEQUENTIAL FILES

The first potential source of data that we shall
discuss is the sequential file. There are two
steps involved with making any external data
known to the SAS System. The source of the
data must be defined to SAS, and the data must
be subsequently passed to SAS. There are two
statements in the DATA step which perform
these tasks. The INFILE statement will define
the data source, while the INPUT statement will
move the data into SAS.

The INFILE Statement

An external file is identified to a DATA step and
subsequent INPUT statement(s) by the INFILE
statement. There are three different ways to tie
an external file to the INFILE statement. See
Figure A for an example of each method .

The first mechanism is to actually specify the
name of the external file, within quotes, in the
INFILE statement. This method is useful under
certain circumstances, such as one-time-only ad
hocs. Its primary disadvantage is that it
eliminates some flexibility -- in order to use the
SAS routine to process different files, the user
must either clone the routine and change the
INFILE statement, or they must utilize the
macro facility.

The second way is to provide a file reference to
an external file. The file reference can be
associated to the external file with a command
to the host system, such as a JCL "DD"
statement under IBM's MVS. An alternate
method is to use the FILENAME statement
under SAS. The FILENAME statement is a
global statement which does not need to be
included within a Data step. The syntax for this
statement, in this context, is:
 FILENAME fileref 'external file' ;

The third method is a variation of the second,
which is only applicable to "aggregate storage
locations", such as an IBM MVS partition
dataset. Again, the INFILE statement is
provided with a file reference to an external file,
along with a specific file or member reference
enclosed in parentheses.

Note that many of the options for the INFILE
and FILENAME statements are dependent on
the operating system. Please consult the
appropriate "Companion" for your operating
systems for details. Also note that it is possible
to read from multiple external files from within
the same DATA step. To accomplish this, there
must be a separate INFILE statement for each
external file. The appropriate INFILE statement
should immediately proceed its corresponding
INPUT statement.

Full file name in INFILE statement.
Example using Windows:

DATA _NULL_;
 INFILE 'c:\sugi22\sample.dat';
 <other statments...>

FILENAME and INFILE statements.
Example using CMS:

FILENAME TDATA
 'SUGI22 TESTDATA A1';
DATA _NULL_;
 INFILE tdata;
 <other statments...>

Input file allocated by Operating System with
INFILE statement.

Example using MVS:

//TDATA DD
DSN='userid.SUGI22.DATA',
// DISP=SHR
DATA _NULL_;
 INFILE tdata(example1);
 <other statments...>

Figure "A" - INFILE Statement

The CARDS Statement

The most basic example of sequential input is
the CARDS statement. When using this option,
there is no separate sequential file. Instead, the
last executable line of a DATA step will be the
CARDS statement. The subsequent lines
contain sequential input data. The end of the
input data is signified by a single semicolon. (If
your data might contain a semicolon, the
CARDS4 statement can be substituted -- the
end of input data is the signified by a string of 4
consecutive semicolons.) Even the use of the
INFILE statement is optional when using
CARDS; should the user choose to include it,
there is a predefined CARDS file reference.
See Figure B for an example of the CARDS
statement.

DATA EXAMPLE;
 INFILE CARDS; /* Optional */
 INPUT W X Y $ Z ;
 CARDS;
4 31.2 emu 141
6 5.18 fry 288
3 29.1 act 671
1 14.4 ion 93
;

Figure "B" - CARDS Statement

The primary benefit of the CARDS methodology
is simplicity. There is no need to locate and
understand external data -- the external data is
the user's to control. Conversely, this is also the
main drawback. In a batch setting, the user
must ensure that the data is included in the
DATA step. In an interactive setting, it becomes
the user's responsibility to actually enter the
data at the keyboard. Further, the user is
supposedly limited to working with one external
file per DATA step. In actuality, by using the
INFILE CARDS statement, making the CARDS
the last input source used in the DATA step, and
with some careful coding, it is possible to
combine CARDS with other external files in the
same DATA step. (Exactly why a user would
want to do this is unclear, however.) See
Figure C for an example of mult iple INFILE
statements with a CARDS statement.

FILENAME ADISK 'A:STATECNT.TXT';
DATA TEMP;
 DO UNTIL(LASTFILE);
 INFILE ADISK END=LASTFILE;
 INPUT STATE $ COUNT ;
 OUTPUT;
 END ;
 DO UNTIL(LASTCARD);
 INFILE CARDS END=LASTCARD;
 INPUT STATE $ COUNT ;
 OUTPUT;
 END ;
 STOP ;
CARDS;
TX 2
TN 1
FL 1
IL 1
CA 1
CT 1
;

Figure "C" - Multiple INFILEs with CARDS

The INPUT Statement

The actual transfer of data from an external file
to a SAS DATA step is performed by the INPUT
statement. By default, the SAS System
assumes all input data to be numeric. This can
be overridden by pre-defining a variable to be
character, or by associating either a dollar sign
($) or a character format with the variable on the
INPUT statement.

A full discussion of the INPUT statement is not
possible in this limited space - the Version 6
SAS Language Reference devotes 30 pages to
the statement! However, there are some basic
tenets that should be reviewed in this setting.

There are five basic methods to describe a
record to an INPUT statement. These methods
can be combined on a single INPUT statement.
However, it is suggested that users restrict
themselves to one method per INPUT
statement; this will avoid introducing additional
complications in a program which will assist in
debugging and in future maintenance on the
routine. See Figure D for examples of each
input method.

The most basic method is list input, in which the
INPUT statement simply contains the name of
each variable. Each value on a line of input
data must be delimited by one or more blank
characters (or other delimiter, as defined by the
DELIMITER= or DLM= option on the INFILE
statement). For this reason, missing data must
be explicitly listed in the input file. Further, the
standard list input method cannot be used for
character variables that may contain embedded
blanks. This weakness can be overcome by the
use of the Ampersand (&) format modifier. The
Ampersand will permit single embedded blanks
in character variables. Similarly, the Colon (:)
format modifier will allow the INPUT statement
to ignore its default 8-character maximum on
character variables. Use of either the
Ampersand or Colon format modifiers is
referred to as modified list input.

In Column input, the start and end columns are
listed after each variable name. Column input
does not have the weaknesses described under
list input -- character variables can contain
embedded blanks and can exceed 8 bytes in
length, and missing values do not have to be
explicitly defined in the input file. However, it is
only useful when input data is formatted

consistently on each line; other methods must
be employed for free-format data.

Formatted input is similar to the list and column
input methods described above. However, each
input variable must have an accompanying
informat. This is useful for data in a "non-
standard" form, such as packed decimal, dollar,
or date values.

The least common method is named input.
With this method, the INPUT statement has an
Equal sign (=) following each variable. The
input data must also contain the same series of
"fieldname=value" pairs. Please note that this
method is an exception to the "all methods are
interchangeable" rule referenced earlier. Once
an INPUT statement begins to reference named
input, all remaining data on that line must be in
named input format.

There is also a null input. An INPUT statement,
followed by a semicolon, can be used to move
to the next input record without any further
processing of the current line.

DATA EXAMPLE;
 /* list input */
 INPUT X
 Y $;
 /* column input */
 INPUT X 1-4
 Y $ 6-8;
 /* formatted input */
 INPUT X 4. +1
 Y $ 3.;
 /* named input */
 INPUT X=
 Y= $;
 /* null input */
 INPUT ;
 CARDS;
14.4 Bob
1492 Sue
1776 Ann
X=28.8 Y=Jay
dummy - ignored by null INPUT
;

Figure "D" - INPUT Statement

There are a number of mechanisms to control
the column pointer when reading an input file.
Defining the start column after each variable
name when using the column input method will

move the pointer to that column. Similarly, the
use of a format after a variable name will move
the column pointer.

There are two symbols that move the column
pointer within the current record. The Plus sign
(+) will move the column pointer relative to its
current position. For example, +6 will move the
pointer six characters from its current position.
It should be noted that the value passed to the
relative column pointer (Plus sign) need not be
positive. A negative number will move the
pointer backwards from its current position, up
to the first position of the file. Negative
numbers must be enclosed in parentheses when
using the Plus sign to reposition the column
pointer. Similar to the Plus sign, the At sign (@)
provides absolute column position. For
example @6 will move the pointer to the 6th

position within the current record. It is not
necessary to hard-code a fixed number for the
Plus and At signs; they can be followed by a
SAS variable to provide additional flexibility.

It is also possible to control the line pointer. The
Pound sign (#) will move the line pointer to a
specified line number within the input buffer.
For example, #4 will move to the 4th line of the
input buffer. (By default, the input buffer will
contain the maximum number of lines specified
by using the Pound sign in an INPUT statement.
This can be overridden by the N= option of the
INFILE statement.) The At sign (@) can also be
used to control the line pointer. The default
action is to move to a new input line with each
INPUT statement; however, by ending an
INPUT statement with "@", the line pointer will
remain on the same input line. (This is referred
to as a "Trailing 'At' sign".) The line pointer will
not be moved until it encounters an INPUT
statement without a Trailing At sign -- this is the
most common reason for a null input statement
-- or the next iteration of the DATA step. The
latter control can be overcome if necessary by
using a Double Trailing At (@@).

There are some special considerations which
should be undertaken when reading records
from variable length files. The LENGTH=
option on the INFILE statement will assign the
length of the current record to a SAS variable.
A null input statement with a Trailing @ will
permit that variable to be assigned, while
keeping the line pointer on the current input line.
Finally, the $VARYING. format will allow for

flexibility in length of character variables. See
Figure E for an examples of this approach.

DATA EXAMPLE;
 INFILE varyfil
 LENGTH=ln_len ;
 INPUT @ ;
 INPUT NAME $VARYING40. ln_len;
RUN;

Figure "E" - Variable Length File

DDE

Dynamic Data Exchange, or DDE, allows a
client application to request information from a
server application in a Windows® or OS/2®

environment. Effective with Release 6.08, the
SAS System acts as a client application in this
relationship. It can request data from a server
application, with the requirement that the server
application must be running. (It can also send
commands and data to a server application, but
that is a topic for another presentation.)

In order to use DDE, a connection must be
established between the client application and
the server application. This is accomplished by
issuing a FILENAME statement with the
additional keyword "DDE". The syntax for this
statement, in this context, is:
 FILENAME fileref DDE
 'DDE-triplet' ;

The DDE-triplet is a specialized argument, and
is made up of three components:
 application|topic!item
Application is the name of the server
application, such as Excel. Topic is defined as
the "topic of conversation"; basically, this is the
file to be processed. Item is the "item of
conversation"; in a spreadsheet, this is the
range of cells that is to be included. For
example, the DDE-triplet an Excel worksheet
would be:
 Excel|[Book1]Sheet1!R1C1:R250C4
Note that the application and topic are
separated by a vertical bar (|), while the topic
and item are separated by an explanation point
(!).

The DDE triplet for an application should be
defined in the documentation for that
application. However, most people find it easier
to let SAS determine the proper DDE triplet.
The following is a step-by-step method to obtain
the proper DDE triplet for an application,
assuming both SAS and that application are
active:
• Toggle to your application, and use the

standard PC "cut" techniques to store the
portion of the client application to be
processed in the Windows Clipboard. (For
example, use the mouse to highlight the
area to be "cut", then select CUT or COPY
on the EDIT pop-up menu of most Windows
applications.)

• Toggle to your SAS session, and click on
the "Options" menu on the Menu Bar in
SAS.

• The Options menu will contain an option
called "DDE Triplet". Click on it.

• This will display an Information Box, which
will contain the DDE-triplet.

• Enter this DDE-triplet into the FILENAME
statement of your SAS routine.

If the user is willing to perform a little manual
intervention, it is even possible to use DDE
without ever knowing the name of the DDE
triplet!
• As above, toggle to your application, and

use the standard PC "cut" techniques to
store the portion of the client application to
be processed in the Windows Clipboard.

• Toggle to your SAS session, and replace
the FILENAME statement with the following:
 FILENAME fileref DDE CLIPBOARD;

The SAS routine is now ready to be executed.
The weakness in this approach is that the data
to be processed must be stored in the Clipboard
prior to each invocation of your SAS routine.
The benefit is that there is no need to ever know
the DDE-triplet for your application to use DDE.
(Please note that this approach will only work if
an application is DDE compliant.)

In order to use DDE with the SAS System, the
server application must be running while SAS is
running. If the server application is not active,
then it can be invoked from within the SAS
session with the "X" command. However, the
SAS options XSYNC and XWAIT must be
turned off before issuing this command, or
control will not be returned to the SAS session
until that external application is closed -- this

defeats the purpose of a DDE link! (Of course,
the user could also simply toggle over to the
Windows Program Manager and manually
invoke the application.)

The actual transfer of data from the external
application to the SAS System is done via the
combination of an INFILE and INPUT
statement. The actual code to accomplish this
task looks exactly like the code to read a
sequential file into SAS. See Figure F for a
DDE example.

OPTIONS NOXSYNC NOXWAIT;
X 'C:\EXCEL SUGI22.XLS' ;
FILENAME SUGI22 DDE
'Excel|[Book1]Sheet1!R1C1:R25C4'
;

DATA SUGISCHD;
 INFILE SUGI22;
 INPUT DAY TIME TITLE AUTHOR;
RUN;

Figure "F" - INPUT with DDE

OLE / ODBC

Object Linking and Embedding, or OLE, is
another client/server methodology which will
allow the transfer of data between SAS and
other products. In the SAS System, OLE
functionality is attained through SAS/AF® using
FRAME catalog entries.

OLE is more graphically oriented than DDE;
OLE will permit the SAS System to share a
number of different objects, such as graphs and
charts, with other products. As the name
implies, OLE consists of an object linking
process and an object embedding process. The
object link permits an object to be updated on
either the client or server side of the link, with
the change reflected on the other side of the
link. An embedded object, on the other hand,
can only be changed from the client application.

Open DataBase Connectivity, or ODBC, started
off as a standard for the exchange of data
between DataBase Management Systems
(DBMS) under Microsoft's Windows
environment. Since those early days, interfaces

to other operating systems and machines, such
as the Apple MacIntosh, have been developed.
It is necessary to use the SAS/ACCESS
Interface to ODBC in order to use ODBC to
bring data into the SAS System.

Even a brief discussion of OLE and ODBC
requires more detail than can be covered in a
single section of a Beginning Tutorial. As such,
for more information on these topics, the reader
is encouraged to refer to the appropriate SAS
Institute publications, and to other presentations
in the Proceedings from SUGI and the various
regional SAS User Group conferences.

SAS/ACCESS ENGINES

SAS/ACCESS software is available for a variety
of host systems, covering traditional mainframe,
personal computer, and UNIX environments. It
provides a method to view and transfer data
from several common database management
systems (DBMS) and a number of common PC
file formats, into the SAS System.

The ACCESS procedure can create descriptor
files that will provide information about the data
stored in the DBMS table or PC file format, and
use that information to create a SAS data file.
In addition, use of an interface view engine will
allow SAS to read data from the file formats
directly into SAS routines. The interface view
engine is used by the SAS SQL procedure to
directly access external data bases without
leaving the SAS session. However, the SQL
statements used in the procedure are beyond
the scope of this Beginning Tutorial.

There are two types of descriptor files created
by PROC ACCESS: an access descriptor and a
view descriptor. Access descriptors provide
information regarding the structure of the file to
be accessed. This includes data types, table
names, and column names, as well as the
related SAS dataset information such as
variable names and formats. This access
descriptor can then be used to create the view
descriptor which will contain criteria to be used
to select columns and rows from the selected
DBMS table or PC file. The data can be used
directly from the view descriptor in the SAS
routine, or it can be extracted from the DBMS or
PC file into a SAS data file.

The type of DBMS or PC file to be used is
specified in the PROC ACCESS statement in
the form:
 PROC ACCESS DBMS=filetype
Filetype can take on many different values. To
cite just a few examples, the user can obtain
data from DB2®, SYBASE®, and ORACLE® by
selecting filetypes DB2, SYBASE, and
ORACLE, respectively. In a Windows
environment, XLS, and WKn (where n is a valid
version number) will allow the transfer of data
from Excel® or Lotus® spreadsheets, while DIF
is obviously the filetype for interfacing with a
DIF format file.

The actual access or view descriptor is then
created using the following syntax:
 CREATE libref.member-name.ACCESS
 or
 CREATE libref.member-name.VIEW
The PROC ACCESS and CREATE statements
are followed by a statement that identifies the
name of the DBMS, DBF, XLS or other file that
will be accessed. In addition, there are other
editing statements; these provide information
about the structure of the DBMS or PC file being
accessed, and select columns to be viewed. It
is suggested that the reader refer to the
appropriate SAS/ACCESS manual for their
DBMS for details on these statements. See
Figure G for an example of us ing PROC
ACCESS create a view, with a subsequent
use of its output.

LIBNAME VWLIB 'c:\sugidat\';
PROC ACCESS DBMS=xls;
 CREATE vwlib.states.access;
 PATH 'c:\sugidat\state.xls';
 <editing statements omitted>
 CREATE vwlib.states2.view;
 <select, format, and
 subset statements omitted>
RUN;

DATA _NULL_;
 SET vwlib.states2;
 <statements omitted>
RUN;

Figure "G" - PROC ACCESS :
Creation and use of a View

The SAS view descriptor can be used in any
PROC or DATA step just like a SAS data set. It
is also possible to use PROC ACCESS to create
a SAS dataset from the view descriptor. This is
accomplished by issuing PROC ACCESS with
the VIEWDESC=libref.view-descriptor and
OUT=libref.sas-data-filename options. See
Figure H for an example of us ing PROC
ACCESS create a view, with a subsequent
use of its output.

PROC ACCESS
 VIEWDESC=vwlib.states2
 OUT=vwlib.stdata ;
RUN;

PROC PRINT DATA=vwlib.stdata;
RUN;

Figure "H" - PROC ACCESS :
Creation and use of a SAS Dataset

It is not possible to fully cover PROC ACCESS
in the limited space of this paper -- there are a
number of manuals dedicated to the topic! For
further information, including details of the
DBLOAD procedure that will transfer data from
SAS to the assorted DBMS and PC products,
the reader is directed to the assorted
SAS/ACCESS manuals.

THIRD PARTY PRODUCTS

In addition to the methods built into the Base
SAS product and additional modules from SAS
Institute, there are products produced by third-
party providers that facilitate the transfer of data
into SAS. In some cases, the user base for a
given product does not warrant a separate
SAS/ACCESS engine. The vendor for that
product may provide their own interface to the
SAS System. In other cases, an entrepreneur
may believe that they have found a niche
market which they believe SAS Institute has
overlooked, or that they can provide an
interface which is faster / quicker / cheaper /
etc.; the marketplace will determine whether or
not they have succeeded.

One example of a proprietary third-party product
is PROC SAGE™. The Computer Corporation

of America (CCA) supplies and supports a
mainframe database called Model 204®. They
also supply an interface called PROC SAGE,
which passes data from a Model 204 database
into a SAS dataset.

Conceptual Software, Inc. markets two products
which can be used to transfer external data into
the SAS System. The first package,
DBMS/COPY™, provides connectivity between
over 80 different spreadsheets, databases,
statistical packages, and other assorted files --
including the SAS System. The newer product,
DBMS/Engines™, provides engines which allow
the SAS System to interact with all of the
products that can interface with DBMS/COPY.
Both products are available for assorted
Windows and UNIX environments.

TRANSPORT FILES

There is one potential source of data that might
not be thought of as an "external source" at first
glance -- the SAS System itself, licensed on
another computer. However, it is not possible to
simply move SAS datasets from one operating
system to another. Instead, the data must be
converted to a format that is consistent on both
machines. The "brute force" method of
accomplishing this task would be to use PROC
PRINT or the PUT statement to output the
contents of the SAS dataset to a sequential file
on the first machine, then to input that file into
the SAS System on the second machine using
the techniques described previously in this
paper. However, an easier method exists; the
SAS System permits the transfer of SAS
datasets across operating systems as SAS
Transport Files.

Transport files are used to move one or more
SAS data sets from one host system to another.
The transport file is a sequential file which is
independent of the host operating system. This
file can be readily transferred electronically or
on permanent media to the destination host
system. There are three basic steps involved:
• Export - creating the transport file on the

original host system,
• Transport - moving the file via network

protocols, tapes, or floppy media, and
• Import - reading the file back into SAS with

the format of the destination host system.

Due to space limitations, only the procedure for
moving a single data file will be discussed here.
Further documentation on moving entire data
libraries or catalogs can be found in the
assorted Operating System Companion
manuals and in Technical Report P-195.

Export : Creating the Transport File

The first step in the transport process is to
export, or create the SAS transfer data set on
the host system. Typically, this process starts
by the allocation of the transport file on the host
system. The SAS System has strict
requirements on the allocation of a transport
file. A SAS transport file must have a fixed
record length of 80. In addition, it is highly
recommended that it have a block size of 8000.
(Note that block size is a meaningless concept
under OS/2.) See Figure I for examples of
tape allocations.

Under VMS:
DEFINE TRANFILE REEL
ALLOCATE TRANFILE
MOUNT/FOREIGN/BLOCKSIZE=8000
TRANFILE

Under MVS:
//TRANFILE DD DSN=mvs.dset.name,
// DISP=(NEW,CATLG,DELETE),
// UNIT=TAPE,VOL=SER=volser,
// LABEL=(1,NL),
// DCB=(RECFM=FB,LRECL=80,
// BLKSIZE=8000,
// DEN=density)

Figure "I" - Allocating a tape

The SAS System has strict requirements on the
allocation of a transport file. A SAS transport
file must have a fixed record length of 80. In
addition, it is highly recommended that it have a
block size of 8000. (Note that block size is a
meaningless concept under OS/2.)

Two LIBNAME statements are required. One
LIBNAME statement will identify the location of
the file to be transported. The other LIBNAME
statement specifies the name that will be given
to the transport file, and defines the XPORT
engine to identify the destination file as a

transport file. See Figure J for examples of
LIBNAME statements.

Under VMS:
LIBNAME outxp XPORT
 ' [directory]filename.dat';
LIBNAME outxp XPORT;
LIBNAME libref b '[directory]';

Under MVS:
LIBNAME ddname XPORT;
LIBNAME alibref
 'mvs.dataset.name.';

Figure "J" - Allocating a tape

At this point, PROC COPY is used to actually
create the SAS transport file. PROC COPY will
read in the host system formatted file that is
named in the SELECT statement, and create
the transport file. See Figure K for an
example of PROC COPY.

PROC COPY IN=sasdata
 OUT=xprtdata;
 SELECT sas-datasetname;
RUN;

Figure "K" - PROC COPY

Transport : Moving the Transport File

The middle step in the transport process is to
actually transport the SAS transfer data set on
from the original host system to the new
operating system. In the early days of the SAS
System, this usually required the allocation of a
round tape which could be then mounted on
another machine. This process may still involve
the physical transfer of a tape or floppy disk
between two machines. However, the
technology of today permits easy electronic data
transfer between different machines and
operating systems. Note that SAS transport
files should be treated as binary data when
using network commands such as ftp.

Import : Reading the Transport File

The final step in the transport process is to
import the SAS transfer data set into the SAS
System on the destination machine. This also
involves the use of LIBNAME statements and
PROC COPY. This time, however, the process
is reversed; the LIBNAME for the transport file
is used for the IN= parameter of PROC COPY,
while the LIBNAME of the SAS dataset is used
for the OUT= parameter. Again, a SELECT
statement appears in the PROC COPY
procedure. Figure 2 shows the syntax for
importing the transport file on the new host
system. (Due to space limitations, there is no
example of using PROC COPY to import a
transport file. The process is almost identical to
the transport process described earlier in this
section.)

It is also possible to use PROC CPORT and
PROC CIMPORT to transfer SAS datasets
between different machines and operating
systems. However, this topic will not be
explored in this tutorial due to space limitations.

CONCLUSION

There are a number of methods to introduce
external data into the SAS System. It would be
impossible to provide in-depth information on all
of them in the limited space of this presentation.
It is hoped that the material contained in this
paper will serve to stimulate the curiosity of the
reader, and that they will continue their
education by researching the appropriate
manuals and technical papers devoted to the
specific topics discussed within this paper.
Ultimately, however, it will be through real-life
trial and error that true comprehension and
retention of this knowledge will be attained.

REFERENCES /
FOR FURTHER INFORMATION

Conceptual Software, Inc. (1997), "Conceptual
Software, Inc. Home Page".
http://www.conceptual.com.

Dalberth, Paul. (1996), "A Relational Database
Primer for SAS Programmers". Proceedings of

the Fourth Annual Conference of the SouthEast
SAS Users Group. USA.

Praxis International, Inc. (1993), SAGE/204
User's Guide Release 2.1. USA: Praxis
International, Inc.

Riba, S. David (1996), Course Notes:
Connecting With Your Data. Clearwater, FL:
Jade Tech, Inc.

Riba, S. David, and Riba, Elisabeth A. (1996),
"ODBC: Windows to the Outside World".
Proceedings of the Fourth Annual Conference of
the SouthEast SAS Users Group. USA.

Riba, S. David (1996), "Open DataBase
Connectivity and SAS". The NESUG Express,
October 1996 Edition.

SAS Institute, Inc. (1993), SAS Companion for
the Microsoft Windows Environment. Cary, NC:
SAS Institute, Inc.

SAS Institute, Inc. (1994), Getting Started with
SAS/ACCESS Software, Version 6, First
Edition. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1995), SAS/ACCESS
Software for PC File Formats: Reference,
Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1994), SAS/ACCESS
Software for Relational Databases: Reference,
Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1990), SAS Language:
Reference, Version 6, First Edition. Cary, NC:
SAS Institute, Inc.

SAS Institute, Inc. (1990), SAS Procedures,
Version 6, Third Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1994), SAS Software:
Abridged Reference, Version 6, First Edition.
Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1989), SAS Technical
Report P-195, Transporting SAS Files between
Host Systems. Cary, NC: SAS Institute, Inc.

SAS, SAS/ACCESS, and SAS/AF are registered
trademarks or trademarks of SAS Institute, Inc.
in the USA and other countries. MVS, JCL,
DB2, and Lotus are registered trademarks or
trademarks of International Business Machines
Corporation. ORACLE is a registered
trademark or trademark of Oracle Corporation.
® indicates USA registration. Other brand and
product names are registered trademarks or
trademarks of their respective companies.

The authors can be contacted via e-mail as
follows:
Andrew T. Kuligowski

0005949476@mcimail.com
kuligoat@tvratings.com

Nancy Roberts
nancyr@chimaera.declab.usu.edu
nancyr@cc.usu.edu

ACKNOWLEDGMENTS

The authors would like to acknowledge the
contribution and support of Brad Keller and S.
David Riba during the creation of this
presentation.

	Main TOC

