
Efficiency Ideas For Large Files

J. Meimei Ma, Quintiles, Research Triangle Park, NC

Andrew H. Karp, Sierra Information Services, Inc., San Francisco, CA

INTRODUCTION

This tutorial presents options you shou Id
consider implementing when using the
SAS System for handling large files. We
touch on. a variety of topics and
approaches, as opposed to dealing with
only a few in depth. Using compression
and index files are among the storage
techniques covered; along with ways to
plan your programming strategy to
incorporate appropriate efficiency
concepts.

The strategies and hints discussed are
directed toward programmers, data
managers, project managers, and anyone
else interested in cost effective solutions
to SAS System programming problems.
Only basic knowledge of SAS
programming (DATA step and
procedures) is assumed. The techniques
are applicable to essentially all hardware
platforms, although at times we address a
few operating system-specific issues.

TERMINOLOGY

Efficiency Elements

In considering efficiency, remember that
more than one component of this concept
exists. Your goal should be to balance all
elements, which may often involve
setting priorities differently for each
situation, rather than blindly applying a
stock series of approaches to every
programming requirement. In other
words, you must understand the specific
problem you are facing from many
viewpoints before you can choose the best
solution for that problem.

The primary efficiency elements separate
into two main categories: machine and
h II m a II. Machine elements include:
computer processing time for calculations
or data manipulations, called CPU, and
processing time for reading or writing
computerized information, called 1/O, for
Input/ Output. Elements related to
human efficiency include: programmer
time, programmer experience level, and
the priority attached to producing results
quickly rather than inexpensively. Major
activities that require
are

o planning
e writing new code
● learning about new
● revising or running
● maintaining project

programmer time

techniques
existing programs
programs

● maintaining documentation.

One important element in choosing the
most efficient solution for a given
situation is repetition value. A program
destined to be run only once is a less
likely candidate for complex program-
ming logic that emphasizes maximizing
machine efficiency. Taking into account
the cost of detailed testing may result in
deciding that a more direct approach that
saves human time is better. Conversely,
the process of designing a program or set
of programs that will be run once a
month for the next three years against a
multi-million record data set should
include careful consideration of machine
efficiency techniques. A program or
application requirement with a higher
repetition value often translates into a
greater emphasis on machine efficiency
over human efficiency.

1



Large File Characteristics

When does a file become l[7r~r ?
Although the actual nulmber of obser\~a-
tions and/or variables that make a file
“large” depends on your computing
environment, we can describe common
characteristics of “large” versus “small”
files.

A large file lmay be shmt ~nd 7uide, which
means having relatively few observations
but a large number of variables, or lol){~
ami nmro7[7, in which only a few va rial?le:;
exist for many observations. 113 a
mainframe computing environment a
large file may have as few as ten thousand
records or millions of records. Batch
processing using tape storage, as opposed
to interactive processing, is still. standard
procedure in large mainframe computing
environments. For compu ti ng
environments using microcomputers or
minicomputers, the point at which a file
becomes large is heavily dependent on
the particular computer system’s capacity.
Any data warehouse—regardless of the
operating environment in which it
resides—is generally composed of a
number of interrelated large files, which
increases the complexity of the
programmer’s approach to efficiently
processing the data.

Working with large files is much easier
when the programmer has a high level of
knowledge about

● the contents of the database(s),
‘ SAS System capabilities
● their operating environment.

This construct applies to SAS data sets,
raw files that are read with lNPLJT
statements, or any other database files.
Without enough information about a
large file, just knowing where to start can
be difficult, and often introduces

human—in addition to
m achi ne—ine~~iciei~cy into the program-
ming process.

A project based on data from large
files—often using programs with a high
repetition value—profits greatly from
deliberate planning for careful processing.
Regardless of the computing environ-
m ent, large file processing is expensive in
terms of programmer time and com-
puting resources. Frequently a dollar
value is associated with computer
processing in large projects. A chargeback
system may exist that bills users for CPU
utilization, tape mounts, 1/O counts or
other computing resources.

Any attempted production run that
processes all the data in a large file
becomes a significant event. The “’strategy
of doing multiple test runs using only a
portion of a data set is usually more
cost-effective when working with large
files than repeatedly processing the entire
data set.

STRATEGIES

General Strategy

To achieve maximum efficiency,

● plan, experiment, revise the plan
s work with sample data
● stay flexible
“ document everything.

Think First

Start by allowing time for planning,
experimentation, and more planning.
The more you know about your data,
your hardware environment, and the
capabilities of software available to you,
the better prepared you will be to design
efficient programs. There are few absolute

2



guidelines. Experimenting with actual
data is often the only way to determine if
one option is better than another.

The importance of understanding the
data with which you are working is oflen
overlooked until it is too late. Insist that
those with whom you are working
explain the process used for data
collection, key definitions and
assumptions underlying the values of
variables in the data set, and how these
values and variables might change in
future data sets that ]n.ay be used in future
iterations of the same project. Merely
working from a copy of a file layoul or
CONTENTS listings is almost never
enough!

Examine Multiple Options

Flexibility is another key to finding an
optimal solution. Try to keep an open
mind about everything, from DATA step
logic options to changing hardware
platforms or storage methods. Do not
expect that one solution will fit all
situations. Is the amount of human time
required to produce the desired result
more critical than computer cost? Will
the program be used just once, or is it
likely to evolve into a crucial part of an
on-going system? Whenever possible,
start by examining critically your most
fundamental assumptions.

Documentation Is Important

As always, creating documentation
during development and all program-
ming stages is important. While SAS data
sets are self-documenting (especially if
care is taken to add LABELS and
FORMATS), supplemental written
documentation that describes why certain
choices were made is very helpful a ncl is
often neglected during program develop-
ment. All experimental benchmarking

programs should be kept with at least
rough notes about the results. Not only
does such a history provide justification
for the current project, you may benefit
during the next planning cycle. Documen-
tation of programs (comments, indenta-
tion, flow charts) and output (TITLEs,
FOOTNOTEs, dates, page numbers)
improves human efficiency by reducing
the possibility of miscommunication.
Time spent documenting as a good
investment, not a necessary evil.

Programming Strategy

Writing efficient programs involves
using appropriate coding techniques and
thorough testing procedures. However, be
cautious when considering methods that
were developed with earlier releases of
SAS software. Changes in architecture
and internal execution logic may invali-
date the advantages of certain strategies
used in prior efforts. The trick is to find
out about alternatives worthy of the effort
required for experimention.

Consider joining a local user group or at
least talking with other programmers in
your company. A code review session
with other SAS System users often
identifies problems as well as optimal
strategies to pursue. The hints and
reading list provided at the end of this
paper can further your search for new
ideas. For longer term projects, check out
the latest on new techniques and
capabilities at www.sas.com if you have
Internet access.

Remember that the process of testing
programs, especially on large files, is an
art, not a science. Try to think as much
about the testing process as the coding
process. One important principle is that
properly defined test subsets ● provide
more efficient test results, in both human
and machine terms.

3



Storage Strategy

Regardless of which programming
methods you use, data storage is another
major aspect of developing efficient Iargr
file projects. The SAS System includes a
variety of options:

● compression
“ the use of indexes
● access to other database systems

(ORACLE@, DB2@, etc.).

The storage hints presented here nla~
inspire more questions than provide
answers, but that is the intention. There
are no shortcuts to choosing the most
efficient storage method.

● WHERE statement in DATA step or
procedure

s WHERE data set option (DATA
statement or procedure statement)

Q lN operator, for clarity and less typing
● STIM E“R or FULLSTIMER (evaluation)
o Logical PDV
c Compiled DATA steps (PGM option)

For programmers who are familiar with
SQL (Structured QLlery Language), human
efficiency may be improved by using
PROC SQL instead of more traditional
DATA step code. In addition, there are
situations in which SQL processing is
more machine efficient than DATA step
processing.

Internal Documentation of SAS
TIPS AND TECHNIQUES Data Sets

Programming Hints

The most basic programming principle to
remember is that the SAS System is
composed of DATA steps and procedures..
Do not assume that DATA step program-
ming is automatically more efficient than
using procedures. Even machine efficien-
cy may be better with procedures. [Jsing
PROC SORT and PROC MEANS can often
obviate the need for complex DATA step
programming, PROC DATASETS helps
you manage SAS data libraries and
modify SAS data set descriptors without
recourse to the DATA step. Complex
DATA step-based reports may be replaced
by judicious use of PROC PRINT, PROC
REPORT, and (to a lesser extent) PROC
FREQ.

We recommend you learn more aboll t
the following features, even if you have
used them before (see Recommended
Reading for places to start). They are basic
building blocks for creating machine
efficient program code.

One key feature of SAS software is the
self-documenting nature of SAS data sets.
Understanding the descriptor portion of a
SAS data set is key to gaining human
efficiency. Attaching LABELs to both the
data set and its variables—as well as using
FORMATS to modify the external repre-
sentation of values of variables stored in
SAS data sets—greatly increases the ability
of SAS System programmers to under-
stand how to manipulate and analyze
SAS data sets. You should understand the
features of PROC CONTENTS and PROC
DATASETS, which can be used to view
and manipulate the descriptor portion
without a DATA step,

Save Time By Avoiding Confusion

Naming conventions help save time and
money (and frustration) by preventing
confusion. In Version 6, the 8-character
lilmit on the names of SAS data sets and
variables may seem to be a hindrance,
especially compared to other software that
allow longer names. However, you can

4



still avoid confusion when dealing t~ith
variables in a SAS data set by adopting a
common prefix for groups of variables.
Also, consider sequentially numbering
related groups of variables (e. g.,
MONTH1, MONTH2, etc. ) to a I1OW
reference to the series using shortcuts in
the SAS programming language.

Another potential source of con fusion
worth avoiding was mentioned earlier:
understanding the data set itself. Nlorc
than once, both of us have had to rc’cio
major portions of a project because the
meaning of one or more variables ~vas
not adequately explained at project
inception or changed during the course of
the project. The programmer shou Id be
an integral part of the project team, not
just an adjunct “worker bee” who hears
about decisions after the fact. Perhaps
more human efficiency has been lost
because of this type of limited thinking
than aU others combined!

Basic Storage Hints

A SAS data set remains a more efficient
storage format than a raw file, but note
that two forms exist. A SAS data file
(memtype=DATA) stores both descriptive
information and data values within the
SAS System. The other form is a SAS data
view (memtype=VIEW), in which the
data values may be in another database
system entirely. As far as most SAS
System procedures that read data sets are
concerned, these two forms of a SAS data
set are identical. From an efficiency
standpoint, no general recommends tion
is possible.

Using DROP/ KEEP statements or data set
options to limit the number of variables
in the Program Data Vector is always
recommended. The only risk is in leaving
out potentially useful variables when
creating a subset of a larger file. Plan

ahead to minimize potential problems
while you benefit from increasing
machine efficiency.

Keep in mind that the ATTRIB statement
incorporates the functions of LABEL and
FORMAT. Also, you can use the
DATASETS procedure to add labels and
formats to an existing SAS data set. While
all SAS data files are theoretically self-
documen.ting, additional documentation
of variables still depends on programmer
effort. Consider creating LABELs for the
most commonly used variables. Of
course, begin by choosing meaningful
variable names instead of VAR1, VAR2,
or X, Y. Human efficiency increases
directly with the level of documentation
available, especially for long-term
projects.

Change LENGTH Cautiously

A common suggestion for reducing the
storage requirements of a SAS data file is
to specify LENGTH to change the storage
space required for numeric variables.
With mixed hardware platforms, this is a
more difficult concept. For instance, on
IBM mainframes LENGTH=2 is appro-
priate for small integer classification
variables, e.g., I= Yes and 2=N0. However,
in many hardware platforms, LENGTH=3,
or even LENGTH=5, is the minimum
possible length for a numeric variable.
Downloading a SAS data file from a
mainframe to other operating system can
actually include an automatic “promo-
tion” of numeric variable lengths to
protect against losing significant digits.
Reducing storage by using LENGTH is
still worth considering, but now requires
a deeper understanding of the potential
problems, as well as operating system
specific issues beyond the scope of this
tutorial. Using character variables instead
of numeric ones may be a simpler solu-
tion for categorical data.



Complex Storage Hints

The SAS System includes a variety ~>f
storage options. Depending on the situa-
tion, large files may be processed more
efficiently if they are compressed, lla~’e
index files, or are stored in another
database system.

Compression

A compressed data set is often smaller
than the original, but the 1/0 and storage
space benefits should be balanced agains[
the additional CPU needed to access
records from. the compressed data sel.
Users should be aware that under some
circumstances compressing a SAS data set
will result in a larger file being created,
especially if there are no character vari-
ables with blank spaces to be compressed.

The compression algorithm is based on
translating identical consecutive bytes
into a maximum of three bytes. Blanks
and binary zeros become two bytes while
other repeated values shrink to three.
Compressed records are variable length as
opposed to the fixed length records in
uncompressed data sets. As a result
certain functions are no longer possible,
in particular the POINT= random access
ability of the SET statement to locate a
record by observation number.

To save even more space, a REUSE option
exists that applies when records are
changed or deleted. One result of trying [o
use old space is that a replacement record
may not fit. In such situations, the old
space will contain a pointer to the new
data values. Thus, records are no longer
necessarily in sequential order.

To compress or not compress is also an
issue for transport files. Using PROC
CPORT/ CIMPORT may produce signifi-
cantly smaller files than relying on the

specifying the XPORT engine with PROC
COPY.

Storage space savings can be substantial
when using compression. For instance,
the savings can be 30-75~, for many data
sets used in clinical trials research. Little
programming effort is needed to create
compressed data sets if the system option
COMPRESS= YES is used. In addition, all
work data sets are then compressed as
well as the permanent data sets (with two
level names like SASD.MONTHLY). In
many computer environments, compress-
ion is well worth trying.

Indexes

Using one or more indexes is well suited
for large files that do not change often, but
are analyzed frequently using standard
selectidn or sort variables. WHERE
statements will use an index file to read
records more efficiently based on an
automatic “cost” algorithm that assumes
that values of index variables are uni-
formly distributed. If an appropriate index
exists, then the SORT procedure is not
necessary when doing BY processing.
Although you cannot control when an
index file is used, setting MSGLEVEL=I as
a system option will provide a note in the
SAS log about index usage.

The disadvantages of using indexes are
the extra space and CPU required, along
with the increased complexity of main-
taining the data set. PROC CONTENTS
output includes information about all
index files associated with a data set.
Under normal circumstances the actual
updating of index files is handled auto-
matically, but occaisonally you will need
to repair an index using the DATASETS
procedure. Well planned choices of which
variables to use to create indexes can
assure that resources are not wasted
maintaining unused indexes. In general, .

6



if you expect to regularly retrieve mow
than one-third of the observations or the
data set is smaller than three memory
pages then an index is not appropriate.

Data Views

Going beyond the SAS System to S1OW
data is clearly most appropriate when the
alternative database management system
is already in use. By defining a data view,
lmost SAS System procedures can be tiseci
on data stored and maintained elsewhere.
lf data values change constantly, then
using a data view assures that results
reflect the most -recent information.
However, there may be an added cost
associated with the retrieval. When
multiple procedures are planned for a
relatively small subset, creating a SAS
data file may still be more machine
efficient.

CONCLUSION

You. have many choices for where to stat-l
when you need to do thorough
investigations of efficiency techniques
that will apply to a specific situation. SAS
software provides many options to choose
from, but the variety of alternatives
means that identifying the optilmum
decision is not always obvious.

In this era of seeking the most cost
effective solution —whether your
priorities are machine or
human—planning is absolutely critical if
your goal is to maximize efficiency.
Ultimately, achieving your efficiency
goals will require a careful balancing act.

TO ACHIEVE EFFICIENCY

Expect a Balancing Act

cost
Time

Computer resources
Human resources

USEFUL SAS PROCEDURES

The following SAS procedures are useful
for investiga~ing large files. Always use
appropriate TITLE statements for printed
output.

COMPARE
CONTENTS
COPY (converting transport files)
CPORT/ CIMPORT
DATASETS (CONTENTS, handling

index files)
FORMAT (FMTLIB option)
FREQ
MEANS (incorporates SUMMARY)
PRINT
SORT
SQL
SUMMARY

RECOMMENDED

Books By Users

Calvert, William and Ma, J. Meimei,
concepts and Case Studies in Data
Management, Cary, NC: SAS Institute
Inc., 1996. 150 pages.

DiIorio, Frank, SAS Applications
Programmi\2g: A Geufle Introduction,
Boston, MA: PWS-KENT Publishing
Company, 1991. 704 pages.



Jaffe, Jay A., Mastei-i/zg tlze SAS SystrJI/,
Seco JId Edition, New York, NY: \~aI]
Nostrand Reinhold, 1994. 592 pages.

Miron, Thomas, SAS SoftTu(Tre So//// s;//s;
B(Tsic Dfit~z Proccssi/zg, Cary, NC: S;\S
Institute Inc., 1993. 234 pages.

SAS Manuals

These manuals were written and
published by SAS Institute, Inc., Cat-y, NC,
USA.

SAS Lrtngunge and Proccdlircs: Us(7<y(,
Version 6, First Edition, 1989.672 pages.

SAS .hnjjwage and Proced~wes: f...ls17ge2,
Versio\l 6, First Editiolz, 1991.688 pages.

SAS C[iide to tile SQL F’YocedIIre: Us17~r
and Reference, Version 6, First Editiol!,
1989. 210 pages.

SAS Programming Tips: A Gliide [o
Efficient SAS Pr-ogmm~ilit~g, 1990. 176
pages.

Advanced SAS Prognzmmiizg Tcc\z/liq i[rs
and Efficiencies CoIIrse Notes, 1992. 4“12
pages.

Cornbini}lg and Modi)jjing SAS D17h7 Srts:
Exmnples, Version 6, First Editiol~, 1995.
197 p~ges.

ClicntlServer
System: Tips
pages.

Cornpr{ting with the S<4S
and Techniq~lcs, 1995. 348

SUGI Proceedings

Beatrous, S. and Armstrong, K. (1991),
“Effective Use of Indexes in the SAS
Syste m,” Proceedi/~gs of tlzc Si.~frr\lti/
An~l[l [71 SAS LIsers G1’ollp 111!/.
Conference, 16. (Also in Client/ Servrr

Colizpllting wit~l the SAS System: Tips
[717d Tcclz/lil~[/es,)

E3uffum, H.W. (1996), “Strategic Uses of
SAS DATA Step Programming and SQL
Passthrough to Query Oracle Databases,”
Procccdings of the Twenty-first AIIItml
SAS Users C1’ollp 112tl. Conference, 21,
573-577.

Calvert, W.S. and Swartz, L. (1995),
“Using Features of SAS Software to
[reprove Your Documentation, ”
Proceedings of the 1995 Nort?l East
Rcgio\lal SAS Conference, 122–127.

Dickson, A. and Pass, R. (1996), “SELECT
ITEMS FROM PROC.SQL WHERE
IT EM S=- BASIC,’’ Proceedings of the
Tment?y-first A}lnllal SAS Users CroZqT
l}lfl, Conference, 21, 227-236.

DiIorio, F. (1994), “The Standalone
Program Grows Up: Strategies for System
Design,” proceedings of the Nineteenth
AizmMl SAS Users GroIlp International
Conference, 19, 1336-1345.

First, S. (1994), “Developing Easily
Maintained SAS Code,” Pr-oceedinSs of
the Nineteenth Annl{al SAS Users GrozLp
Internatioml Conference, 19, 1350-1357.

Gilsen, B.F. (1996), “SAS Program
Efficiency for Beginners,’’Proceedings of
tile Twen t?y-firs t Annlial SAS Users
Gro(q? Intl. Conference, 21, 360-369.

Howard, N. and Zender, C. (1996),
“Advanced DATA Step Topics and Tips,”
Proceedings of the Tu?enfy-first Annual
S,4 S Users GroIlp lntl. Conferel~cel 21,
181-190.



Loren, J. (1996), “SAS Connections to l?l~2:
Tools and Techniques,” ProceediII[/K q~
tllc TuTe\zt~y-first AIIHII(I1 SAS Ll,sers
GuN(}7 T/lfl. Co/lfere/zce, 21., 498-507.

Ma, J.M. (1992), “How to Use the Wt-11-!1?E
State merit,” Procecditzgs of !!Lr
Sevc}ltecnfh A}lIIIt(zl SAS users ~1’flllj)

Ill tl. Collflwlce, 17, 259–263. (Also in
Clic\7t/Sm]cr Comp[lting 7uitll t}[r S,4 S

S!jsferil: Tips (lnd Teclllliq([es.)

Ma, J.’M. (1993), “Introduction to
Compressing Data Sets,” Proceedil~~s (}(
tlic Eighteenth AIIIIIIal SAS Users Cml/;7
IIztl. Co/zfewzce, 18, 1412-1416.

J. Meimei Ma, Ph.D.
Quintiles
P. O. Box 13979
Research Triangle Park, NC 27709

Voice: 919-941-7136
Fax: 919-941-0972
Internet: mma@qu intiles.com

Andrew Karp
Sierra Information Services, Inc.
1489 Webster Street, Suite 1308
San Francisco, CA 94115

Voice: 415-441-0702
Fax: 415-441-9175
Internet: sfbayOOOl@aol,com

Ma, J.M. (1996), “Self-Documenting
Progralms and Data Sets

A/1II;;fl ~pr05c;5di1l:;+ ~,;?[-the Twent}y-first ,.LL
Groz[p I/ztl. Conference, 21, 390–399. “

Wilson, S. (1995), “Techniques for
Efficiently Accessing and Managing Data,”
P~ocecdii~Ss of the Twet~tieth AIII[ II(71
SAS Users G~oup Inter]~(7tio17(l!
Collfm’}lcc, 20, 474483.

Yam, A.L. (1995), “Simplifying ND+
Programming with PROC SQL, ”
Proceedings of the TwentictJ1 AiIII II(Z1
SAS Users GTo11~7 lt2tcr/lflfio/1(71

Confcrc}zce, 20, 133-137.

SAS is a registered trademark or trademark of
SAS Institute Inc. in the USA and other countries.
IBM and 13B2 are registered trademarks or
trademarks of International Business Machines
Corporation. ORACLE is a registered trademark of
the Oracle Corporation. @ indicates USA
registration.


	Main TOC

