
An Introduction to the DATA Step Graphics Interface

Earl Westerlund, Eastman Kodak Company, Rochester, NY

INTRODUCTION

The DATA Step Graphics Interface (DSGI) is a compo-
nent of SAS/GRAPH® software that enables you to gen-
erate graphics output from within a DATA step, macro or
SCL application. It consists of low-level graphics routines
that allow you to develop a custom graph, or add ele-
ments to an existing graph.

This paper will describe the steps involved in creating a
graph in the DATA step, from opening a session to stor-

ing a graphic segment. A brief comparison of DSGI with
other options for creating graphics will be given.

WHY WOULD YOU WANT TO USE DSGI?

SAS/GRAPH software provides a set of procedures that
allow you to produce a wide variety of standard graphics,
including two-dimensional (XY) and three-dimensional
(XYZ) plots, many kinds of business graphs, and maps.
But, what if the graphic you need looks something like the
following:

2 Limits

A
B
C

Summary
<= 6

1.5-2.5: 6
> 2.5: 6

This is a kind of graphic we use at Kodak to evaluate the
color balance of photographic materials. We wanted the
ability to generate such a graph within the SAS® System,
as part of a researcher’s or engineer’s analysis. None of
the standard SAS/GRAPH procedures could easily pro-
duce this, however. Our solution was to write a DSGI
program.

OTHER WAYS TO PRODUCE GRAPHICS IN
THE SAS SYSTEM

To solve our problem, we used DSGI. But there are other
ways to generate graphs in the SAS System. Following is
a quick review of the other ways to generate graphics,
along with my opinion on their appropriate areas of use.

SAS/GRAPH Procedures

These are by far the easiest to use, they are the fastest,
and most are flexible – within the context of the kinds of
plot they are designed to generate. For example, you can
create many kind of plots with the GPLOT procedure, as
long as they are two-dimensional plots within coordinate
axes. Another advantage of SAS/GRAPH procedures is
support for BY variables.

But desired options don’t always exist: for example, the
ability to display the value of a third variable on a scatter
plot. The same is true for other SAS/GRAPH procedures,
and procedures in other products that generate graphics.

The Annotate Facility

The annotate facility uses instructions that are stored in a
SAS data set with specifically named variables. It is very

similar in function to DSGI, in that both are collections of
graphics primitives routines. The graph shown above
could have been created using the annotate facility.

The annotate facility was designed to work with and
complement SAS/GRAPH procedures, allowing for data-
driven customization of output. It was not intended pri-
marily to generate full custom graphics. It is slower than
DSGI.

The Graphics Editor

The graphics editor has the standard tools of a simple
drawing program. It is primarily for interactive modifica-
tions of graphics. For example, you can call attention to
a point on a plot by drawing an arrow to the point and
adding some explanatory text. If the annotation is repeti-
tive and data-driven, it would be better to use the anno-
tate facility.

IML Graphics

SAS/IML® software contains graphics routines that are
similar in nature to DSGI. If the rest of your program is
written in IML, then you should probably use IML graph-
ics.

TERMINOLOGY

To understand DSGI, you must first understand the ter-
minology. Following are some of the more important
terms:

• A graphics primitive is a single graphic element,
such as a line, bar, or string of text.

• A segment is essentially a plot. It is a collection of
graphics primitives that make up a single catalog
entry.

• A workstation is the device you are writing to,
whether a monitor or hard copy device.

• A viewport defines what fraction of the available
area of the workstation to use when generating the
graph. It is somewhat analogous to a panel defini-
tion in the GREPLAY procedure. If not specified, the
entire area is used: (0, 0) at the lower left corner to
(1, 1) at the upper right corner.

• A window defines what coordinate units to use in the
viewport. This allows you to work in the units that
are native to your applications. If not specified, the
coordinates range from (0, 0) at the lower left corner
to (100, 100) at the upper right corner of the view-
port.

• A transformation defines which viewport-window
combination to use when generating your graph.
Viewports and windows are linked by a transforma-
tion number. You can define up to 20 transforma-
tions in a DSGI program, beyond the default
“transformation 0,” which has the default viewport
and window settings and cannot be altered.

FUNCTIONS AND ROUTINES

There are only five functions and one call routine in
DSGI. Two of the functions merely start and end DSGI,
and the one call routine allows you to query settings. So
there are only three functions that you use to control
DSGI output. Of course, these three functions do a lot!

• The GINIT function starts DSGI and opens a work-
station.

 Usage: rc = GINIT();

 Where rc is a return code variable that indicates
whether the function was successfully carried out.

• The GRAPH function performs library management
tasks:

 Usage: rc = GRAPH(‘task’, other-args);

 The tasks are:

• CLEAR: opens a graphics segment for out-
put, clearing out existing segments

• COPY: copies a graph within a catalog

• DELETE: deletes a graph from a catalog

• INSERT: inserts a graph into the currently
open graphics segment

• RENAME: renames a graph

• UPDATE: closes the currently open graph
and optionally displays it

• The GDRAW function is what actually draws graphic
primitives.

 Usage: rc=GDRAW(‘primitive’,other-args);

 There are only nine kinds of primitives.

• ARC: circular arc

• BAR: rectangle

• ELLARC: elliptical arc

• ELLIPSE : ellipse

• FILL : filled polygon

• LINE : polyline (empty polygon)

• MARK: marks (points)

• PIE : filled pie slice or circle

• TEXT: text string

• The GSET function sets attributes, such as the cur-
rent output catalog, output device, text font, line col-
ors, and so on.

 Usage: rc=GSET(‘attribute’, other-args);

• The GASK call routine queries DSGI about attribute
settings, such as the name of. the current output
catalog, output device, text font, and so on.

 Usage: CALL GASK(‘oper’,other-args,rc);

 There are too many GASK operators to be listed
here. See the SAS/GRAPH Software Reference
Guide (Chapter 1) for a complete list.

• The GTERM function closes DSGI. There are no
arguments to the function.

Usage: rc = GTERM();

CREATING A GRAPHICS SEGMENT

Summarizing the above, there are six steps to creating a
graph using DSGI:

1. Initialize DSGI: Initialize the DSGI environment with
the GINIT function, making the routines available for
you to call.

2. Open a new segment: Use the GRAPH function to
start a new graph or use a previously created one.

3. Define the coordinate system and portion of the
display area to use: Use the GSET function to de-
fine what part of the display area to use, and what
your coordinate system will be. (There are default
values, so you do not need to do this explicitly.)

4. Generate graphics elements: Finally, you get to
draw things!

5. Close the segment, and store and display the
graph: Use the GRAPH function to store the graph,
and display it (or not).

6. End DSGI: Use the GTERM function to close DSGI.

CREATING A GRAPHICS SEGMENT: A
SIMPLE EXAMPLE

This first example gives a simple example of writing a text
primitive. We are using the default viewport (the entire
plotting area) and window (X and Y coordinates of 0 to
100).

goptions reset=goptions;
data _null_;
 * Step 1: start DSGI;
 rc = ginit();

 * Step 2: open a new segment named TEXT;
 rc = graph('clear', 'text');

 * Step 3: generate an element (a text
string);

 rc = gdraw('text', 50, 50, 'Hello
World');

 * Step 4: store and display graph;
 rc = graph('update');

 * Step 5: end DSGI
 rc = gterm();
run;

The result of this program follows:

USING A TRANSFORMATION

This example shows the use of windows and viewports.
The coordinate system (window) has been redefined so
that the (0, 0) coordinate is the center of the plot, and we
are only using the lower left corner of the available dis-
play area (viewport).

data _null_;

 * Step 1: start DSGI;
 rc = ginit();

 * Step 2: open a new segment named TEXT;
 rc = graph('clear', 'text');
 * Use lower left corner only;
 rc = gset('viewport', 1, 0, 0, .7, .7);
 * Units are 0-50 in both directions
 rc = gset('window', 1, -50, -50, 50,

50);

 * Use this viewport/window combination;
 rc = gset('transno', 1);

 * Step 3: generate graphics elements;
 rc = gset('texheight', 4);
 * Center the text;
 rc = gset('texalign', 'center', 'base');
 * Draw the text;
 rc = gdraw('text', 0, 0, 'Hello World');
 * Draw a box around the text;
 rc = gdraw('bar', -45, -45, 45, 45);

 * Step 4: display and store graph;
 rc = graph('update');

 * Step 5: end DSGI;
 rc = gterm();
run;

And here is the graphic segment that results:

SETTING ATTRIBUTES

This final example illustrates setting attributes such as
colors and line widths.

data _null_;

 * Step 1: start DSGI;
 rc = ginit();

 * Step 2: open a new segment GRYNNE;
 rc = graph('clear', 'grynne');

 * Step 2.5: set color indices;
 * Color 1 will be yellow,

 color 2 will be black;
 rc = gset('colrep', 1, 'yellow');
 rc = gset('colrep', 2, 'black');

 * Step 3: generate graphics elements;
 * Set the fill color to 1 (yellow);
 rc = gset('filcolor', 1);
 * Make a solid fill;
 rc = gset('filtype', 'solid');
 * Draw a 360 degree pie slice (circle);
 rc = gdraw('pie', 50, 50, 25, 0, 360);

 * Reset the fill color to 2 (black);
 rc = gset('filcolor', 2);

 * Draw an ellipse at (43, 60);
 rc = gdraw('ellipse', 43, 60, 4, 3, 0,

360, 90);
 * Draw another one at (57, 60);
 rc = gdraw('ellipse', 57, 60, 4, 3, 0,

360, 90);

 * Set the line color to 2 (black);
 rc = gset('lincolor', 2);
 * Set the line width to 2 (double thick-

ness);
 rc = gset('linwidth', 2);
 * Draw an ellipse arc;

 rc = gdraw('ellarc', 50, 50, 27, 23, 90,
270, 90);

 * Step 4: display graph;
 rc = graph('update');

 * Step 5: end DSGI;
 rc = gterm();
run;

The resulting plot is below. I apologize to anyone who is
offended by its content:

OTHER (POSSIBLY) USEFUL THINGS YOU
CAN DO WITH DSGI

Adding to an existing graph

You can open a graph that was created in a SAS/GRAPH
procedure and add graphics primitives to it later. While
you would normally use the annotate facility to annotate
output from a graphics procedure, you can do “post hoc”
annotation of a graph by inserting the graph into an open
segment, then adding graphics primitives. Consider us-
ing the graphics editor if it is available to you.

Displaying multiple graphs

You can create multiple viewports and insert different
segments into each viewport. This would normally be
done with templates in the GREPLAY procedure, but it is
possible to do with DSGI.

Using DSGI to query graphic options

There is no dictionary table for you to query GOPTIONS
settings, as there is for system options. But you can find
out many of these settings through the GASK routine of
DSGI.

For example, we needed to be able to define a square
plotting area for plots that required the X axis to be ex-
actly the same length as the Y axis. In other words, the
HSIZE= and VSIZE= option settings needed to be the
same. But we did not want to hard code the settings, as
we have many different display and hard copy devices to
support. To solve the problem, we wrote a macro that
uses DSGI calls to find the maximum default horizontal
and vertical lengths and put the minimum into a macro
variable. Then we used the macro variable in the GOP-
TIONS statement. This macro is in the appendix.

SUMMARY

DSGI is a useful tool in situations where a complex graph
is needed, and other options are not practical or feasible.

You should be aware of its capabilities if you create
complex graphs in SAS.

APPENDIX A: WAYS TO GET GRAPHS

APPENDIX B: THE SETSQ MACRO

The following macro uses DSGI calls to find the current
HSIZE and VSIZE settings, then uses the lesser of those
values to reset the HSIZE= and VSIZE= options. The
result is a square plotting area.

%macro setsq;

 /*************************************/
 /* Macro to set plotting area square */
 /*************************************/

 /*** Reset to defaults ***/
 GOPTIONS HSIZE= VSIZE=;

 DATA _NULL_;

 /*** Invoke DSGI ***/
 RC = GINIT();
 RC = GRAPH('CLEAR', '_DUMMY');

 /*** Get HSIZE and VSIZE ***/
 CALL GASK('HSIZE', HSIZE, RC);
 CALL GASK('VSIZE', VSIZE, RC);
 PSIZE = MIN(HSIZE, VSIZE);
 CALL SYMPUT('PSIZE', PUT(PSIZE,

BEST12.));

 RC = GRAPH('UPDATE', 'NOSHOW');
 RC = GRAPH('DELETE', '_DUMMY');
 RC = GTERM();
 RUN;

 /*** Fix a square plotting area ***/
 GOPTIONS HSIZE=&psize VSIZE=&psize;

%mend setsq;

REFERENCE

SAS Institute Inc., SAS/GRAPH Software: Reference,
Version 6, First Edition, Volume 1, Cary, NC: SAS Insti-
tute Inc., 1990.

ACKNOWLEDGMENTS

Thanks to Karen Crandall, Mary Maggio and Julie Strick-
land for their valuable suggestions for improving this pa-
per.

SAS/GRAPH, SAS, and SAS/IML are registered trade-
marks of SAS Institute Inc., in the USA and other coun-
tries. ® indicates USA registration.

No endorsement of SAS Institute Inc. or its software by
Eastman Kodak Company is implied by this paper.

AUTHOR

Mail: Earl Westerlund
Eastman Kodak Company
1669 Lake Avenue, Mail Code 24608
Rochester, NY 14652-4608

Phone: 716-722-1983
Fax: 716-722-4415
Email: earlw@kodak.com

AA
AA
AA
AA
AA
AA

A
A
A
A
A
A

Method Advantages Disadvantages
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A

Graphics procedures • Fastest

• Easiest to use

• Support for BY variables

• Least flexible

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Annotate facility • Best used with graphics proce-
dures

• Data driven customization of
graphics

• Support for BY variables

• Slower than DSGI

• Requires creation of data set with
specific variable names

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A

Graphics editor • For editing of generated graphics

• Quick one-shot editing

• Not for repeated modification or
annotation

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A

SAS/IML Graphics • Similar to DSGI

• Integrated into IML – use if rest
of program is IML

• Must use IML

• No native support for BY vari-
ables

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A

DSGI • For custom graphs

• Callable from DATA step, SCL,
macro language

• No native support for BY vari-
ables

	Main TOC

