
Introduction

SAS® software is especially rich in its assort-
ment of functions that deal with character data.
This class of functions is sometimes called
STRING functions. In this tutorial, we will dem-
onstrate some of the more useful string
functions.

Some of the functions we will discuss are:
LENGTH, SUBSTR, COMPBL, COMPRESS,
VERIFY, INPUT, PUT, TRANSLATE,
TRANWRD, SCAN, TRIM, UPCASE, LOW-
CASE, REPEAT, || (concatenation), INDEX, IN-
DEXC, AND SOUNDEX. Wow, did you realize
there were so many string functions? Let's get
started.

How Lengths of Character Variables are Set
in a SAS Data Step

Before we actually discuss these functions, we
need to understand how SAS software assigns
storage lengths to character variables and
what the LENGTH function does for us. Look
at the following program:

DATA EXAMPLE1;
 INPUT GROUP $ @10 STRING $3.;
 LEFT = 'X '; *X AND 4 BLANKS;
 RIGHT = ' X'; *4 BLANKS AND X;
 C1 = SUBSTR(GROUP,1,2);
 C2 = REPEAT(GROUP,1);
 LGROUP = LENGTH(GROUP);
 LSTRING = LENGTH(STRING);
 LLEFT = LENGTH(LEFT);
 LRIGHT = LENGTH(RIGHT);
 LC1 = LENGTH(C1);
 LC2 = LENGTH(C2);
DATALINES;
ABCDEFGH 123
XXX 4
Y 5
;
PROC CONTENTS DATA=EXAMPLE1 POSITION;
 TITLE 'OUTPUT FROM PROC CONTENTS';
RUN;

PROC PRINT DATA=EXAMPLE1 NOOBS;
 TITLE 'LISTING OF EXAMPLE 1';
RUN;

One purpose of this example is to clarify the
term LENGTH. If you look at the output from
PROC CONTENTS, each of the variables is
listed, along with a TYPE and LENGTH. Take
a moment and look at the output from PROC
CONTENTS below:

&217(176 352&('85(

�����9$5,$%/(6 25'(5(' %< 326,7,21�����

� 9$5,$%/(7<3(/(1 326

������������������������������������

� *5283 &+$5 � �

� 675,1* &+$5 � �

� /()7 &+$5 � ��

� 5,*+7 &+$5 � ��

� &� &+$5 � ��

� &� &+$5 ��� ��

� /*5283 180 � ���

� /675,1* 180 � ���

� //()7 180 � ���

�� /5,*+7 180 � ���

�� /&� 180 � ���

�� /&� 180 � ���

The column labeled LEN (Length) is the num-
ber of bytes needed to store the values for
each of the variables listed. By default, all the
numeric variables are stored in 8 bytes.

But, what about the storage lengths of the
character variables? Look first at the two vari-
ables listed in the INPUT statement; GROUP
and STRING. Since this is the first mention of
these variables in this data step, their lengths
will be assigned by the rules governing INPUT
statements. Since no columns or INFORMATS
were associated with the variable GROUP, its
length will be set to 8 bytes, the default length
for character variables in this situation. The
variable STRING uses a $3. INFORMAT so its
length will be set to 3 bytes. The length of
LEFT and RIGHT are determined by the as-
signment statement. The storage lengths of
C1 and C2 are more difficult to understand.

1

Having a Ball with Strings
Ronald Cody, Ed.D.

Robert Wood Johnson Medical School

The variable C1 is defined to be a substring of
the variable GROUP. The SUBSTR function
takes the form:

SUBSTR(char_var,start,length);

This says to take a substring from char_var
starting at the position indicated by the start ar-
gument for a length indicated by the length ar-
gument. Why then, is the length of C2 equal to
8 and not 2? The SAS compiler determines
lengths at compile time. Since the starting
position and length arguments of the SUBSTR
function can be variable expressions, the com-
piler must set the length of C1 equal to the
largest possible value it can ever attain, the
length of GROUP.

The same type of logic controls the length of
C2, defined by the REPEAT function. Since
the number of additional replications is defined
by the second argument of the REPEAT func-
tion, and this argument can be a variable ex-
pression, the compiler sets the length of C2 to
the largest possible value, 200. Why 200?
Because that is the maximum length of a char-
acter variable in the SAS system.

There is a lesson here: Always use a LENGTH
statement for any character variables that do
not derive their length elsewhere. For exam-
ple, to set the length of C2 to 16, you would
write:

LENGTH C2 $ 16;

The LENGTH function does not, as you might
guess, return the storage length of a character
variable. Instead, it returns the length of a
character string, not including trailing blanks.

The value of LLEFT and LRIGHT are 1 and 5
respectively, for every observation. This dem-
onstrates that the trailing blanks in LEFT are
not counted by the LENGTH function while the
leading blanks in RIGHT are. The table below
summarizes the values returned by the
LENGTH function for the remaining variables:

2EV *5283 /*5283 675,1* /675,1*
����������������������������������
� DEFGHIJK � ��� �
� [[[� � �
� \ � � �

2EV &� /&� &� /&�
�����������������������������������
� DE � DEFGHIJKDEFGHIJK ��
� [[� [[[[[[��
� \ � \ \ �

The values of LGROUP and LSTRING are
easy to understand. The value of LC1 is 1 for
the third observation since C1 is only 1 byte in
length in the third observation. The values for
LC2 are more complicated. The REPEAT
function says to take the original value and re-
peat it n times. So, for the first observation,
LC2 is 16 (2 times 8). For observations 2 and
3, the trailing blanks come into play. In ob-
servation 2, the value of GROUP is
'XXXbbbbb' (where the b's stand for blanks).
When we repeat this string one additional time,
we get: 'XXXbbbbbXXXbbbbb'. Not counting
the trailing blanks, we have a length of 8 + 3 =
11. Using the same logic for the third observa-
tion, we have a 'Y' followed by 7 blanks re-
peated once. Not counting the last 7 trailing
blanks, we have a length of 8 + 1 = 9.

With these preliminaries out of the way, we can
now begin our tour of some of the very useful
string functions available in SAS software.

Working with Blanks

This example will demonstrate how to convert
multiple blanks to a single blank. Suppose you
have some names and addresses in a file.
Some of the data entry clerks placed extra
spaces between the first and last names and in
the address fields. You would like to store all
names and addresses with single blanks. Here
is an example of how this is done:

DATA EXAMPLE2;
 INPUT #1 @1 NAME $20.
 #2 @1 ADDRESS $30.
 #3 @1 CITY $15.
 @20 STATE $2.
 @25 ZIP $5.;
 NAME = COMPBL(NAME);
 ADDRESS = COMPBL(ADDRESS);
 CITY = COMPBL(CITY);
DATALINES;
RON CODY
89 LAZY BROOK ROAD
FLEMINGTON NJ 08822
BILL BROWN
28 CATHY STREET

2

NORTH CITY NY 11518
;
PROC PRINT DATA=EXAMPLE2;
 TITLE 'EXAMPLE 2';
 ID NAME;
 VAR ADDRESS CITY STATE ZIP;
RUN;

This seemingly difficult task is accomplished in
a single line using the COMPBL function. It
COMPresses BLanks. How useful!

How to Remove Characters from a String

A more general problem is to remove selected
characters from a string. For example, sup-
pose you want to remove blanks, parentheses,
and dashes from a phone number that has
been stored as a character value. Here comes
the COMPRESS function to the rescue! The
COMPRESS function can remove any number
of specified characters from a character vari-
able. The program below uses the COM-
PRESS function twice. The first time, to
remove blanks from the string; the second to
remove blanks plus the other above mentioned
characters. Here is the code:

DATA EXAMPLE3;
 INPUT PHONE $ 1-15;
 PHONE1 = COMPRESS(PHONE);
 PHONE2 = COMPRESS(PHONE,'(-) ');
DATALINES;
(908)235-4490
(201) 555-77 99
;
PROC PRINT DATA=EXAMPLE3;
 TITLE 'LISTING OF EXAMPLE 3';
RUN;

The variable PHONE1 has just blanks re-
moved. Notice that the COMPRESS function
does not have a second argument here. When
it is omitted, the COMPRESS function removes
only blanks. For the variable PHONE2, the se-
cond argument of the COMPRESS function
containes a list of the characters to remove: left
parenthesis, blank, right parenthesis, and
blank. This string is placed in single or double
quotes.

Character Data Verification

A common task in data processing is to vali-
date data. For example, you may want to be

sure that only certain values are present in a
character variable. In the example below, only
the values 'A', 'B', 'C', 'D', and 'E' are valid data
values. A very easy way to test if there are any
invalid characters present is shown next:

DATA EXAMPLE4;
 INPUT ID $ 1-3 ANSWER $ 5-9;
 P = VERIFY(ANSWER,'ABCDE');
 OK = P EQ 0;
DATALINES;
001 ACBED
002 ABXDE
003 12CCE
004 ABC E
;
PROC PRINT DATA=EXAMPLE4 NOOBS;
 TITLE 'LISTING OF EXAMPLE 4';
RUN;

The workhorse of this example if the VERIFY
function. It is a bit complicated. It inspects ev-
ery character in the first argument and, if it
finds any value not in the verify string (the se-
cond argument), it will return the position of the
first offending value. If all the values of the
string are located in the verify string, a value of
0 is returned. In the first observation, P and
OK will be 1; in the second observation, P will
be a 3 (the position of the 'X') and OK will be 0;
in the third observation, P will be 1 and OK will
be 0; finally, in the fourth observation, P will be
a 4 and OK will be 0.

Substring Example

We mentioned in the Introduction that a sub-
string is a part a longer string (although it can
actually be the same length but this would not
be too useful). In this example, you have ID
codes which contain in the first two positions, a
state abbreviation. Furthermore, positions 7-9
contain a numeric code. You want to create
two new variables; one containing the two digit
state codes and the other, a numeric variable
constructed from the three numerals in posi-
tions 7,8, and 9. Here goes:

DATA EXAMPLE5;
 INPUT ID $ 1-9;
 LENGTH STATE $ 2;
 STATE = SUBSTR(ID,1,2);
 NUM = INPUT(SUBSTR(ID,7,3),3.);
DATALINES;
NYXXXX123
NJ1234567
;

3

PROC PRINT DATA=EXAMPLE5 NOOBS;
 TITLE 'LISTING OF EXAMPLE 5';
RUN;

Creating the state code is easy. We use the
SUBSTR function. The first argument is the
variable from which we want to extract the sub-
string, the second argument is the starting
position of the substring, and the last argument
is the length of the substring (not the ending
position as you might guess). Also note the
use of the LENGTH statement to set the length
of STATE to 2 bytes.

Extracting the three digit number code is more
complicated. First we use the SUBSTR func-
tion to pull out the three numerals (numerals
are character representations of numbers).
However, the result of a SUBSTR function is
always a character value. To convert the char-
acter value to a number, we use the INPUT
function. The INPUT function takes the first ar-
gument and "reads" it as if it were coming from
a file, according to the informat listed as the se-
cond argument. So, for the first observation,
the SUBSTR function would return the string
'123' and the INPUT function would convert
this to the number 123. As a point of interest,
you may use a longer informat as the second
argument without any problems. For example,
the INPUT statement could have been written
as:

INPUT (SUBSTR(ID,7,3),8.);

and everything would have worked out fine.
This fact is useful in situations where you do
not know the length of the string ahead of time.

Using the SUBSTR Function on the Left-
Hand Side of the Equal Sign

There is a particularly useful and somewhat
obscure use of the SUBSTR function that we
would like to discuss next. You can use this
function to place characters in specific loca-
tions within a string by placing the SUBSTR
function on the left hand side of the equals
sign (in the older manuals I think this was
called a SUBSTR pesudo function).

Suppose you have some systolic blood
pressures (SBP) and diastolic blood pressures
(DBP) in a SAS data set. You want to print out
these values and star high values with an as-
terisk. Here is a program that uses the
SUBSTR function on the left of the equals sign
to do that:

DATA EXAMPLE6;
 INPUT SBP DBP @@;
 LENGTH SBP_CHK DBP_CHK $ 4;
 SBP_CHK = PUT(SBP,3.);
 DBP_CHK = PUT(DBP,3.);
 IF SBP GT 160 THEN
 SUBSTR(SBP_CHK,4,1) = '*';
 IF DBP GT 90 THEN
 SUBSTR(DBP_CHK,4,1) = '*';
DATALINES;
120 80 180 92 200 110
;
PROC PRINT DATA=EXAMPLE6 NOOBS;
 TITLE 'LISTING OF EXAMPLE 6';
RUN;

We first need to set the lengths of SBP_CHK
and DBP_CHK to 4 (three spaces for the value
plus one for the possible asterisk). Next, we
use a PUT function to perform a numeric to
character conversion. The PUT function is, in
some ways, similar to the INPUT function. It
"writes out" the value of the first argument, ac-
cording to the FORMAT specified in the second
argument. By "write out" we actually mean as-
sign the value to the variable on the left of the
equal sign. The SUBSTR function then places
an asterisk in the fourth position when a value
of SBP is greater than 160 or a value of DBP is
greater than 90.

Doing the Previous Example the Hard Way

It is both interesting and instructive to obtain
the results above without using the SUBSTR
function. We are not doing this just to show
you a hard way to accomplish something we
already did. Rather, this alternative solution
uses a number of character functions that can
be demonstrated. Here is the program:

DATA EXAMPLE7;
 INPUT SBP DBP @@;
 LENGTH SBP_CHK DBP_CHK $ 4;
 SBP_CHK = PUT(SBP,3.);
 DBP_CHK = PUT(DBP,3.);
 IF SBP GT 160 THEN SBP_CHK =
 SUBSTR(SBP_CHK,1,3) || '*';
 IF DBP GT 90 THEN DBP_CHK =

4

 TRIM(DBP_CHK) || '*';
DATALINES;
120 80 180 92 200 110
;
PROC PRINT DATA=EXAMPLE7 NOOBS;
 TITLE 'LISTING OF EXAMPLE 7';
RUN;

Not really more complicated but maybe just not
as elegant as the first program. This program
uses the concatenation operator (||) to join the
3 character blood pressure value with an aster-
isk. Since SBP_CHK and DBP_CHK were
both assigned a length of 4, we wanted to be
sure to concatenate at most the first 3 bytes
with the asterisk. Just for didactic purposes,
we did this two ways. For the SBP_CHK vari-
able, we used a SUBSTR function to extract
the first 3 bytes. For the DBP_CHK variable,
the TRIM function was used. The TRIM func-
tion removes trailing blanks from a character
string.

Unpacking a String

To save disk storage, you may want to store
several single digit numbers in a longer charac-
ter string. For example, storing five numbers
as numeric variables with the default 8 bytes
each would take up 40 bytes of disk storage
per observation. Even reducing this to 3 bytes
each would result in 15 bytes of storage. If, in-
stead, you store the five digits as a single char-
acter value, you need only 5 bytes.

This is fine, but at some point, you may need to
get the numbers back out for computation pur-
poses. Here is a nice way to do this:

DATA EXAMPLE8;
 INPUT STRING $ 1-5;
DATALINES;
12345
8 642
;
DATA UNPACK;
 SET EXAMPLE8;
 ARRAY X[5];
 DO J = 1 TO 5;
 X[J] = INPUT(
 SUBSTR(STRING,J,1),1.);
 END;
 DROP J;
RUN;

PROC PRINT DATA=UNPACK NOOBS;
 TITLE 'LISTING OF UNPACK';
RUN;

We first created an array to hold the five num-
bers, X1 to X5. Don't be alarmed if you don't
see any variables listed on the ARRAY state-
ment. ARRAY X[5]; is equivalent to ARRAY
X[5] X1-X5; We use a DO loop to cycle
through each of the 5 starting positions corre-
sponding to the five numbers we want. As we
mentioned before, since the result of the
SUBSTR function is a character value, we
need to use the INPUT function to perform the
character to numeric conversion.

Parsing a String

Parsing a string means to take it apart based
on some rules. In the example to follow, five
separate character values were place together
on a line with either a space, a comma, a semi-
colon, a period, or an explanation mark be-
tween them. You would like to extract the five
values and assign them to five character vari-
ables. Without the SCAN function this would
be hard; with it, it's easy:

DATA EXAMPLE9;
 INPUT LONG_STR $ 1-80;
 ARRAY PIECES[5] $ 10
 PIECE1-PIECE5;
 DO I = 1 TO 5;
 PIECES[I] =
 SCAN(LONG_STR,I,',;.! ');
 END;
 DROP LONG_STR I;
DATALINES4;
THIS LINE,CONTAINS!FIVE.WORDS
ABCDEFGHIJKL XXX;YYY
;;;;
PROC PRINT DATA=EXAMPLE9 NOOBS;
 TITLE 'LISTING OF EXAMPLE 9';
RUN;

Before we get to a discussion of the SCAN
function, we need a brief word about
DATALINES4 and the four semicolons ending
our data. If you have data values that may in-
clude semicolons, you cannot use a simple
DATALINES (or CARDS) statement since the
semi-colon would signal the end of your data.
Instead the statement DATALINES4 (or
CARDS4) is used. This causes the program to
continue reading data values until four semico-
lons are read.

The function:

5

 SCAN(char_var,n,'list-of-delimiters');

returns the nth "word" from the char_var, where
a "word" is defined as anything between two
delimiters. If there are fewer than n words in
the character variable, the SCAN function will
return a blank.

By placing the SCAN function in a DO loop, we
can pick out the nth word in the string.

Locating the Position of One String Within
Another String

Two somewhat similar functions, INDEX and
INDEXC can be used to locate a string, or one
of several strings within a longer string. For ex-
ample, if you have a string 'ABCDEFG' and
want the location of the letters DEF (starting
position 4), the following INDEX function could
be used:

 INDEX('ABCDEFG','DEF');

This would return a value of 4. If you want to
know the starting position of any one of several
strings, the INDEXC function can be used. As
an example, if you wanted the starting position
of either 'BC', or 'FG' in the string 'ABCDEFG',
you would code:

 INDEXC('ABCDEFG','BC','FG');

The function would return a value of 2, the
starting position of 'BC'. Here is a short pro-
gram which demonstrate these two functions:

DATA EX_10;
 INPUT STRING $ 1-10;
 FIRST = INDEX(STRING,'XYZ');
 FIRST_C =
 INDEXC(STRING,'X','Y','Z');
DATALINES;
ABCXYZ1234
1234567890
ABCX1Y2Z39
ABCZZZXYZ3
;
PROC PRINT DATA=EX_10 NOOBS;
 TITLE 'LISTING OF EXAMPLE 10';
RUN;

FIRST and FIRST_C for each of the the 4 ob-
servations are:

OBS FIRST FIRST_C
 1 4 4
 2 0 0
 3 0 4
 4 7 4

When the search fails, both functions return a
zero.

Changing Lower Case to Upper Case and
Vice Versa

The two companion functions UPCASE and
LOWCASE do just what you would expect.
These two functions are especially useful when
 data entry clerks are careless and a mixture of
upper and lower cases values are entered for
the same variable. You may want to place all
of your character variables in an array and UP-
CASE (or LOWCASE) them all. Here is an ex-
ample of such a program:

DATA EX_11;
 LENGTH A B C D E $ 1;
 INPUT A B C D E X Y;
DATALINES;
M f P p D 1 2
m f m F M 3 4
;
DATA UPPER;
 SET EX_11;
 ARRAY ALL_C[*] _CHARACTER_;
 DO I = 1 TO DIM(ALL_C);
 ALL_C[I] = UPCASE(ALL_C[I]);
 END;
 DROP I;
RUN;

PROC PRINT DATA=UPPER NOOBS;
 TITLE 'LISTING OF UPPER';
RUN;

This program uses the _CHARACTER_ key-
word to select all the character variables. The
result of running this program is to convert all
values for the variables A,B,C, D, and E to up-
per case. The LOWCASE function could be
used in place of the UPCASE function if you
wanted all your character values in lower case.

Substituting One Character for Another

A very handy character function is TRANS-
LATE. It can be used to convert one character
to another in a string. For example, suppose
you recorded multiple choices on a test as

6

1,2,3,4, or 5 which represented the letters 'A'
through 'E' respectively. When you print out
the character values, you want to see the let-
ters rather than the numerals. While formats
would accomplish this very nicely, it also
serves as an example for the TRANSLATE
function. Here is the code:

DATA EX_12;
 INPUT QUES : $1. @@;
 QUES =
 TRANSLATE(QUES,'ABCDE','12345');
DATALINES;
1 4 3 2 5
5 3 4 2 1
;
PROC PRINT DATA=EX_12 NOOBS;
 TITLE 'LISTING OF EXAMPLE 12';
RUN;

The syntax for the TRANSLATE function is:

 TRANSLATE(char_var,to_string,from_string);

Each value in from_string will be translated to
the corresponding value in the to_string.

Another interesting application of the TRANS-
LATE function is create dichotomous numeric
variables from character variables. For exam-
ple, you may want to set values of 'N' to 0 and
values of 'Y' to 1. Although this is easily done
with IF-THEN/ELSE statements, let's see if we
can do it using the TRANSLATE function.
Here goes:

DATA EX_13;
 LENGTH CHAR $ 1;
 INPUT CHAR @@;
 X = INPUT(
 TRANSLATE(
 UPCASE(CHAR),'01','NY'),1.);
DATALINES;
N Y n y A B 0 1
;
PROC PRINT DATA=EX_13 NOOBS;
 TITLE 'LISTING OF EXAMPLE 13';
RUN;

The UPCASE function sets all values to upper
case. Next, the TRANSLATE function converts
 values of 'N' to '0' and 'Y' to '1'. Finally, the IN-
PUT function converts the numerals '0' and '1'
to the numbers 0 and 1 respectively.

Substituting One Word for Another in a
String

A relatively new function (as of version 6.07 on
personal computers), TRANWRD (translate
word), can perform a search and replace op-
eration on a string variable. For example, you
may want to standardize addresses by convert-
ing the words 'Street', 'Avenue', and 'Road' to
the abbreviations 'St.', 'Ave.', and 'Rd.' respec-
tively. Look at the following program:

DATA CONVERT;
 INPUT @1 ADDRESS $20. ;
 *** Convert Street, Avenue and
 Boulevard to their abbreviations;
 ADDRESS =
 TRANWRD(ADDRESS,'Street','St.');
 ADDRESS =
 TRANWRD (ADDRESS,'Avenue','Ave.');
 ADDRESS =
 TRANWRD (ADDRESS,'Road','Rd.');
DATALINES;
89 Lazy Brook Road
123 River Rd.
12 Main Street
;
PROC PRINT DATA=CONVERT;
 TITLE 'Listing of Data Set
CONVERT';
RUN;

 The syntax of the TRANWRD function is:

TRANWRD (char_var,'find_str','replace_str');

That is, the function will replace every occur-
rence of find_str with replace_str. Notice that
the order of the find and replace strings are re-
versed compared to the TRANSLATE function
where the to_string comes before the
from_string as arguments to the function. In
this example, 'Street' will be converted to 'St.',
'Avenue' to 'Ave.', and 'Road' to 'Rd.'. The list-
ing below confirms this fact:

/LVWLQJ RI 'DWD 6HW &219(57

2%6 $''5(66

� �� /D]\ %URRN 5G�
� ��� 5LYHU 5G�
� �� 0DLQ 6W�

Soundex Conversion

SAS software provides a soundex function
which returns the soundex equivalent of a
name. Soundex equivalents of names allow
you to match two names from two different

7

sources even though they might be spelled dif-
ferently. Great care is needed when using this
function since many very dissimilar looking
names may translate to the same soundex
equivalent. The soundex equivalent of most
names will result in strange looking codes such
as C3 or A352. Here is a sample program and
the results of the soundex translations:

DATA EX_14;
 LENGTH NAME1-NAME3 $ 10;
 INPUT NAME1-NAME3;
 S1 = SOUNDEX(NAME1);
 S2 = SOUNDEX(NAME2);
 S3 = SOUNDEX(NAME3);
DATALINES;
CODY KODY CADI
CLINE KLEIN CLANA
SMITH SMYTHE ADAMS
;
PROC PRINT DATA=EX_14 NOOBS;
 TITLE 'LISTING OF EXAMPLE 14';
RUN;

This program with result in the following soun-
dex matches:

Name Soundex Equivalent
CODY C3
KODY K3
CADI C3
CLINE C45
KLEIN K45
CLANA C45
SMITH S53
SMYTHE S53
ADAMS A352

Conclusions

So ends our tour through some of the more
useful character functions. So go out there
and have a ball with strings!

SAS is a registered trademark or trademark of SAS Insti-
tute Inc. in the USA and other countries, ® indicated USA
registration.

Ronald P. Cody, Ed.D.
Robert Wood Johnson Medical School
Department of Environmental and Community Medicine
675 Hoes Lane
Piscataway, NJ 08822
(908)235-4490
cody@umdnj,edu

8

	Main TOC

