
CALL EXECUTE: How and Why
H. Ian Whitlock, Westat Inc.

Abstract

CALL EXECUTE is a relatively new DATA step function
which interacts with the SAS Macro Facility. It allows one
to send character data to the macro facility for immediate
macro execution during the execution of the DATA step.
It was introduced in SAW3 6.07 and documented in
Technical Report P-222 Changes and Enhancements to
Base SAS Software.

This paper gives examples showing how to use this
routine and why you might want to use it. It also explains
how macros invoked by CALL EXECUTE behave
differently from those invoked via the standard macro call.

Introduction

You are to organize a program to produce PROC PRINTs
for many different SAS data sets. How should the
program be organized? One interesting way is to treat the
list of data sets as data and write a program to use this
data.

data _null_ ;
input dsn $char50. ;
call execute

(“proc print”
,, data = 1, Ildsnll “;’l ~~
“run ;“) ;

cards ;
nat. rep
st. akrep
st. alrep
run ;

One might think we are trying to execute PROC PRINT in
a DATA step, but this is not what is happening. After
each record is read, CALL EXECUTE sends the character
string between the parentheses to the macro facility. The
macro facility sees no macro instructions so it dumps the
code into the input stack for processing when the DATA
step is finished. Thus the print steps are generated during
the execution of the DATA step, but they are not executed
until after the DATA step completes.

in pre-macro times one used PUT statements to write
SAS code to a file and then used ‘%oINCLUDE to execute
it. We achieved essentially the same result by using the
input stack instead of a new file. The main advantage is
that we don’t have to set up the file or delete. (In SAS
6.11 one can write code to a work catalog, hence
managing the file is now easier, and makes this old
method more attractive in some cases. In some systems
one can write external files to the SAS work directory, and
leave it to the system to clean them up.)

Example Without Macro Code

Consider writing a program to read a flat file containing
both data and specifications for reading the data. For
example:

*

v
v
v
*
D
D

specifications variable format
NMVAR 3.
DTVAR DATE7 .
CHVAR $CHAR4 .
data follows
10015JUL94ABCD
20012 DEC93WXYZ

In this example we would like to have the code:

data temp ;
infile in firstobs = 6 ;
input @3

nmvar 3.
dtvar date7.
chvar $char4.

3
run ;

Since the details change with the input data we want to
generate this code automatically. Except for the ’6’ the
first three lines are fixed. The block of code just after
‘input Q3 is a partial copy of what we read from the top of
the file. The last two lines are again fixed. We should be
able to structure the program as three CALL EXECUTES:

1. at _N_ = 1 to write the first block
2. on each observation of type V to handle the

varying input details
3. on the first observation of type D to write the

last block.

The only problem is that we won’t know the starting
observation until after we have read all the variables and
formats. We can move this option to an INFILE statement
in the last block, since a buffer accumulates options given
in INFILE statements.

data _null_ ;
length var $ 9 fnrt $ 15 ;

if n = 1 then call execute——
(‘data temp; infile in; ‘ [I

input @3 ‘) ;

infile in ;
input rectype $charl . @ ;

if rectype = ‘V’ then
do ;

input var $ fmt $;
call execute (var I] fmt) ;

end ;
else

if r’ectype = ‘D’ then
do ;

call execute
(‘; infile in firstobs = ‘ II

put (~n_ , ~.) II
; run ;

);
stop ;

end ;
run ;

Both this example andthe one given in the introduction
could have been solved using CALL SYMPUTtogenerate
arrays of macro variables and using macro code to
generate the required SAS code. What are the
disadvantages of using CALL SYMPUT for these
problems? The code would have been longer and more
complex, and it would have required sophisticated macro
code with a longer execution time. It is the direct
simplicity of the above code that makes CALL EXECUTE
appealing.

With the above examples in mind one should be able to
find many simple examples where CALL EXECUTE can
provide a simple solution to repetitive code problems. We
turn instead to the problem of how CALL EXECUTE works
when macro code is involved.

Example With Macro Code

CALL SYMPUT chooses the environment for the macro
variables that it creates. If the variable already exists,
then the environment of that variable is chosen. If the
environment of the “SYMPUT” contains local variables,
then the new “SYMPUT” variable is also local to this
environment otherwise the variable will be put in the first
local environment encountered with local variables, or in
the global environment when no such local environment is
encountered. One often finds the need to force the
variable to be global. This means declaring the variable
ahead of time. How can this be done when the name of
the variable is data? CALL EXECUTE comes to the
rescue.

data _null_ ;
input name $ value !$;
call execute

(‘%global ‘ llname~l ‘;’ II
‘%let’ Ilnamell =’ [1

value II ‘;’

);
cards ;
abc xyz

;

This example is different from the previous one in that we
are now sending open macro code instructions to the
macro facility. It is important that the ?40GLOBAL and
O/OLETtokens be enclosed in single quotes. At compile
time the word scanner looks inside double quotes and
sends tokens beginning with a ‘A-sign to the macro
facility. We want the tokens sent during execution time,
not compile time; hence it is important to hide the %-signs
in single quotes.

When the DATA step containing the CALL SYMPUT
statement is housed in a macro, it would often be nice to

guarantee that the created variable will be local. You
might expect to replace the YoGLOBAL with a YoLOCAL,
but this cannot be done. %GLOBAL statements are open
code macro statements; YoLOCAL statements must be
macro compiled when the macro is read and we would be
trying to send it during macro execution time. CALL
EXECUTE can handle macro instructions, but only those
that do not involve macro compilation.

Example Invoking a Macro

Very quickly one learns that it is a pain to spell out a lot of
SAS code using CALL EXECUTE. Is there a better way?
Yes, macros generate SAS code, hence it is better to use
CALL EXECUTE to send the short message, ‘invoke a
macro” rather than give the SAS code directly.
Remember that the invocation of a macro can appear in
open code.

For example, suppose we have the error handling code
below to be executed whenever the data set ERRS has
observations.

data w ;
merge

errs (in=w)
original ;

by baseid ;
run ;

proc print data = w (obs = 500) ;
run ;

%Put serious errors - halting ;
endsas ;

We could house the code in a macro FATALERR and
then use the following code to invoke the macro.

data _null_ ;
set errs (obs = 1) ;
call execute (‘%fatalerr’) ;

run ;

What happens? If the step does not stop with the first
execution of the SET statement because ERRS is empty,
then the string ‘YoFATALERR is sent to the macro facility
for execution. In effect, we have written

%IF ERRS is not empty %then %FATALERR;

When the macro executes, it first generates the code for
the DATA step, and then code for the PROC PRINT, both
of which are dumped into the input stack for processing.
Now the %PUT message is written to the log and finally
the ENDSAS statement is dumped into the input stack.
Note that the %PUT message is written to the log before
the merge step is compiled, but after it is generated.
When the DATA step containing the CALL EXECUTE
finishes, the merge and print steps are compiled and
executed, followed by the ENDSAS request. In general,
as a result of executing a macro via CALL EXECUTE, the
macro facility sends constant text to the input stack and
processes macro instructions sequentially.

If the macro FATALERR had been invoked directly each
step would have been generated, compiled, and then

2

executed, before the next step. Hence there is a subtle,
but important, difference here. With the CALL EXECUTE
invocation each step is generated sequentially, but none
are compiled or executed until after the DATA step
containing the CALL EXECUTE is finished. This means
that the generated steps are executed outside the macro
environment that generated them. Under direct macro
invocation the steps would sequentially compile and
execute within the macro environment instead of outside
it. Consequently, one must be vety careful when writing
macros to be invoked through CALL EXECUTE.
Fortunately, a lot of the time it doesn’t matter.

A Bad Example Using a %INCLUDE

Consider a simpler approach using %INCLUDE. Suppose
we have the code

proc print data = &data ;
run ;

in a file REP.SAS, and we used CALL EXECUTE in the
following way:

data _null_ ;
input dsn $char50
call execute

(‘%let data = ‘
‘%include “rep

cards ;
nat. rep
st. akrep
st. alrep
run ;

.
J

ldsnl~’;’,11
sas” ; “

During the execution of this step the macro variable is
changed three times ending up with the value ST. ALREP.
Three copies of the %INCLUDE instruction are sent to the
input stack. Remember that ‘MoINCLUDE is not a macro
instruction! But now they all execute giving PROC
PRINTs of ST.ALREP. The variable DATA changed
during execution of the CALL EXECUTE DATA step;
hence at the end of execution the value of &DATA is the
final value ST. ALREP. So each time the include file is
subsequently compiled &DATA resolves to ST. ALREP.

Contrast this with invoking the macro PRINTIT

%macro printit (data =) ;
proc print data = &data ;
run ;

%mend printit ;

using

data _null_ ;
input dsn $char50. ;
call execute

(’%printit (data = ‘1 I dsn II ‘)’

);
cards ;
nat rep
st .akrep
st. alrep
run ;

Here the parameter DATA is resolved during execution of
the macro, which is during the DATA step execution.
Hence the correct value is used.

The DATA Step Function Reference Problem

Consider the macro:

YOmacro ml (p) ;
data _null_;

p=&p;
q = symget (’p’) ;
put ‘%MI :’ p= q= ;

run ;
O/Omend ml ;

Direct invocation %Ml (1) produces the message

%Ml : p=l q=l

as one would expect. But the code:

data _null_ ;
call execute (‘%MI (1) ‘) ;

run ;

either produces the error message, “NOTE: Invalid
argument to function SYMGET at line 1 column 39.”, or it
works and most likely produces an unexpected result.
Using the system option MPRINT doesn’t help because it
shows that exactly the same code is produced whether
CALL EXECUTE or direct invocation is used.

What happened? The line “P = &P ;“ generated the line
“P = 1 ;“ showing that the parameter P existed and had
the value 1 when the line was generated. The line “Q =
SYMGET (‘P’) ;’ is constant text and generates itself.
So what went wrong? The data step executed after the
DATA step containing the CALL EXECUTE; hence it was
after the macro Ml completed execution (during the
invoking DATA step). But P was a parameter of Ml;
hence it no longer existed when the line “Q = SYMGET (
‘P’) ;“ was compiled. Thus either the compiler complains
that the macro variable P doesn’t exist. It’s life ended
when the macro Ml finished generating code, but the
generated DATA step executed after the CALL EXECUTE
step finished, i.e. long after Ml finished.

On the other hand, the code would work if there happened
to be a macro variable P in the execution environment. Of
course, this would probably produce the wrong value,
since it is the wrong variable. Worse yet, it might
accidentally produce the correct result.

Are there other ways to achieve this bad result? Sure.
One could use the RESOLVE function or CALL
EXECUTE. In each case a DATA step function interfacing
with the macro facility is used to delay access to the
variable until the containing DATA step executes in the
wrong macro environment. Can one produce an error
with a direct macro reference to the variable? I don’t think
so, because any direct reference would have to be
resolved in the correct environment.

The DATA Step Function Assignment
Problem

In the last example the reference to a macro variable was
bad because of the delayed execution making use of the
variable. In this example the problem is that the
assignment of the variable is delayed until after its use.

Consider the two step macro M2:

%macro m2 (data =)

%local commvar ;

data _null_ ;
call symput

(‘commvar’
stop ;
set &data nobs

run ;

1

J nobs) ;

= nobs ;

%if &commvar = O %then
%do ;

/’ error processing ‘1
%end ;
%else
%do ;

1’ normal processing ‘1
%enci ;

%mend m2 ;

lfM2 is invoked directly everything is fine. In fact the
code illustrates a standard macro technique for
communicating between steps. In this case the first step
communicates the size of a SAS data set in order to make
a decision about which branch of hvo possibilities to
execute.

How would the invocation of M2 via CALL EXECUTE
work? By the first line of the macro, COMMVAR is a local
variable. But, it is assigned by CALL SYMPUT in an
executing DATA step that will not execute until after the
macro has finished. On the other hand the reference
&COMMVAR in the %IF statement will resolve during the
macro’s execution to the null value. Thus, the ‘YoELSE
block of code will always be generated.

Again it is a timing issue created by a DATA step function
interface to the macro facility. This time, it is the
assignment that is delayed, so that the assignment is
made in the wrong environment. In the previous example
it was access after assignment that was delayed and took
place in the wrong macro environment.

Should one conclude that the presence of DATA step
function interface to the macro facility is necessary to
cause problems? No, there are other ways to assign
macro variables which require SAS execution (as
opposed to macro execution). Consider

%macro m3 (data = , var =) ;

proc sql ;
select &var from &data ;
%put sqlobs = &sqlobs ;

quit ;

%mend m3 ;

Again one must remember that when M3 is invoked via
CALL EXECUTE the execution of the PROC SQL code
will be delayed until after the DATA step making the CALL
EXECUTE finishes, but that the ‘YoPUT will execute during
this step; hence before the generated PROC SQL code
executes and assigns the correct value to SQLOBS.
There will be no error messages when there has been a
prior execution of PROC SQL.

Conclusion

Examples have been given to show that the CALL
EXECUTE subroutine is a valuable addition to the
language. It is particularly powerful when used to invoke
macros. On the other hand, one must really understand
how SAS code and macro code are processed in order to
avoid the pitfalls. Hopefully the examples given here are
enough to give one a good intuition about the power and
the problems of this technique. Like many powerful
features in SAS, CALL EXECUTE is too good to ignore
and yet may be dangerous for the unwary.

CALL EXECUTE can dramatically simplify many problems
previously handled by CALL SYMPUT and arrays of
macro variables. Although somewhat messier, PUT
statements to write SAS code and then the use of
O/OINCLUDE to execute the code can often be used in
place of CALL EXECUTE. If PUT statements are
preferred, then remember the advantages of putting the
code in the work directory either directly or via a source
catalog.

When using CALL EXECUTE, one should distinguish two
kinds of character data

● constant text which is dumped into the input
stack for later execution

● macro instructions which are executed
immediately

I have had a hidden agenda. In addition to looking at
CALL EXECUTE, I wanted to bring out the importance of
recognizing and understanding the four crucial times in
the execution of a SAS program:

1. Macro compile time
2. Macro execution time
3. SAS compile time
4. SAS execution time

SAS is a rich and different language from all the more
traditional programming languages because of the
intertwining of these times in a SAS program.

The author can be contacted by mail

H. Ian Whitlock
Westat
1650 Research Boulevard
Rockville, MD 20850-3129

or e-mail

whitloil%westat~mcimail. com

4

References

Riba, S. David (1996). SELF-MODIFYING SAS@3
PROGRAMS: A DATA STEP INTERFACE. Proceedings
of the Foutth Annual SoutEast SAS Users Group
Conference. SESLJG Atlanta, GA. pp. 42-49.

Riba, S. David (1996). SELF-MODIFYING SAS@
PROGRAMS : A DATA STEP INTERFACE. Proceedings
of the Ninth Annual NorthEast SAS Users Group
Confemme. NESUG Boston, MA. pp. 188-195.

SAS Institute, Inc., SAS@ Technical Repod P-222,
Changes and Enhancements to Base SAS@ Software,
Re/ease 6.07, Cary, NC. SAS Institute Inc., 1991. pp 311-
312.

Whitlock, H. Ian (1994). CALL EXECUTE Versus CALL
SYMPUT. Proceedings of the Seventh Annual NorthEast
SAS Users Group Conference. NESUG, Philadelphia,
PA. pp. 254-255.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ~ indicates
USA registration.

	Main TOC

