BUILDING AND USING MACRO VARIABLE LISTS

Clark Roberts, Decision Analytics

ABSTRACT

It is often necessary, in writing programs, to process the same logic
over a set of values. Everyone is familiar with the purpose of
ARRAYs and DO loops, to apply similar logic to several different
variables without repeating the code for each one. The SAS®
System provides several varieties of DO loop syntax, one in
particular, the DO iterative syntax has several flavors, including DO
index = list, which is especially useful if the values of the index
variable are not contiguous. Unfortunately, this syntax is limited to
data step processing and there isn't any equivalent to this in the
macro facility This paper will discuss how to use the SAS Macro
facility to emulate the DO list statement for processing a list of
character variables that can provide an application with dynamic data
driven capability. It will also discuss different ways that the macro
variable lists can be constructed. Several examples will be
presented to demonstrate the creation of the lists, including
examples that use information from the SAS Help Dictionary views,
and applications that use these lists to control process flow.

USING MACRO VARIABLE LISTS

The heart of the approach is the use of the %DO %WHILE
construct combined with the %SCAN function. The basic syntax for
the loop is:

%Slet i =1 ;
%do %while(%scan(&maclist,&I,%str()) ~= %str()) ;
%let var = %scan(&maclist,&i,%str()) ;

%slet i = %eval(&i + 1) ;
%send ;

The ALLCAPS.SAS macro (figure 1) in the examples section
demonstrates the use a macro variable list named CVARLIST in a
%DO %WHILE loop to capitalize all the variables in a given SAS
data set. The CVARLIST macro variable is built using the
GETCVAR macro (figure 1) discussed in the following section.

BUILDING MACRO VARIABLE LISTS

There are several ways to build the macro variable list that can be
used in the above loop structure:

1. Use a %LET statement to assign values to the list.
2. Assign values in a parameter of the macro.

3. Read the values from a file and dynamically build the
list.

The third option provides the most flexibility and allows dynamic
execution of the macro. An example of this is the GETCVAR.SAS
(figure 2) in the examples below which accesses the SAS Dictionary
Views in the SASHELP library to extract the names of all character
variables, insert the names into separate local macro variables, and
then create a global macro variable named CVARLIST which
contains all the names in a space delimited list format.

CONCLUSIONS

This ALLCAPS.SAS example could have been written more
concisely using the CALL EXECUTE statement as demonstrated in
the uncommented ALLCAPS2.SAS macro (figure 3). However, |
tend to build programs from existing modules that have been
previously tested, as much as possible. This approach can save a
lot of time when developing applications. An exception to this is
when performance is an issue and the existing macros are not
providing adequate efficiency. Another reason this example was
used was to keep within the space limitations of the proceedings.

The use of macro variable lists is more efficient than using CALL
EXECUTE when the list will be used in several places within an
application program. Since these types of applications tend to be
lengthy, they were excluded from the examples. It should be a
simple matter, however to extrapolate the ALLCAPS.SAS example
to more complex applications. Additional examples can also be
obtained by contacting the author.

ACKNOWLEDGMENTS

SAS is a registered trademark of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

CONTACT INFORMATION

For questions or further information the author can be contacted at
the following address:

Clark Roberts, Principal Consultant
Decision Analytics, A SAS Quality Partner
5663 Balboa Avenue, Suite 400
San Diego, California 92111

or by
Phone: (619)) 565-9627 or (619) 565-9998
Fax: (619) 565-9627
Voice Mail/Pager: (619) 975-0758
e-mail: dacmr@mindspring.com

Code for the examples in this paper and related programs can be
downloaded from the SAS File Contribution Server FTP site at:

ftp://ftp.uga.edu/pub/sas/contrib

or by contacting the author.

EXAMPLES

FIGURE 1 - ALLCAPS.SAS

AR AR AR AR AR R AR AR AR RAR AR R AR AR AR AR AR AR AR AR A AR AR AARAARARE
sxax

* FACILITY:

* DECISION ANALYTICS
.

.

SYSTEM NAME:

* COMMON SAS TOOLS LIBRARY

* PROGRAM:
* ALLCAPS.SAS

* LANGUAGE/VERSION:
* SAS 6.08

* DESCRIPTION:

* THIS MACRO CONVERTS ALL CHARACTER VARIABLES IN THE

* &inlib..&inds DATA SET TO UPPER CASE AND WRITES THE

* CONVERTED RECORDS TO THE &outlib..&outds DATA SET.

* THE NAMES OF THE CHARACTER VARIABLES ARE OBTAINED

* BY A CALL TO THE %getcvar MACRO. IF &inlib IS BLANK,

* THEN THE DATA SET IS READ FROM THE SAS WORK LIBRARY. IF
* &outlib OR &outds IS BLANK, THEY ARE SET TO THEIR

* RESPECTIVE &in COUNTERPARTS. IF THE SASHELP LIBRARY

* HAS NOT BEEN ALLOCATED, OR THE SPECIFIED SAS DATA SET

* IS EMPTY OR DOES NOT EXIST, THEN THE GLOBAL MACRO VARIABLE
* &ncvars WILL RETURN A VALUE OF 0 (zero)

* CALLED BY:
* [various programs]

* MACROS CALLED:

* GETCVAR -
* RETURNS THE NAMES OF ALL CHARACTER VARIABLES IN A
SPECIFIED SAS DATA SET IN A MACROVARIABLE LIST

*

* FILES READ:
* [none]

* DATA SETS READ:
* &inlib..&inds

* FILES CREATED:
* [none]

* DATA SETS CREATED:
* &outlib..&outds

* FILES INCLUDED:
* GETCVAR.SAS -
* Refer to definition in MACROS CALLED section above

* MACRO VARIABLES:

* [passed from calling program]

*

* &inlib THE LIBRARY WHERE THE INPUT DATA SET RESIDES
*

* &inds THE SAS DATA SET CONTAINING THE CHARACTER
* VARIABLES TO BE CONVERTED TO UPPERCASE

*

* &outlib THE LIBRARY WHERE THE RESULTING DATA SET
* WILL BE WRITTEN TO. IF BLANK THEN

* THE LIBRARY IN &inlib WILL BE ASSUMED

*

* soutds THE OUTPUT DATA SET WHERE THE CONVERTED

* DATA WILL BE WRITTEN. IF BLANK, THEN THE
* DATA SET SPECIFIED IN &inds WILL BE ASSUMED
*

* [internal]

*

* &i USED AS AN INDEX FOR LOOPING

*

* [globals used]

*

* &ncvars THE NUMBER OF CHARACTER VARIABLES IN THE
* INPUT DATA SET

*

* &cvarlist A LIST OF THE NAMES OF THE CHARACTER
VARIABLES

* IN THE INPUT DATA SET

*
I I I R R R R R R R R R R XXX EEESEIT]

Exxx

* REVISION HISTORY:

* V01.001 CLARK ROBERTS 13-FEB-
1995
* INITIAL VERSION

I I I R R R R R R R R R R XXX EEESEIT]

Exxx
H
AR A AR AR R R R R R R R R R R R R R R R R R AR R AR AR A AR A AR AR AR AR AR AR AR AR AR AR AR AR AR RRRRAS

*

*** INCLUDE REQUIRED FILES

AR A AR AR R R R R R R R R R R R R R R R R R AR R AR AR A AR A AR AR AR AR AR AR AR AR AR AR AR AR AR RRRRAS

*
H
%include 'getcvar.sas';

%macro allcaps{inlib = work,

inds =,
outlib 5
outds =

%local ij;

%global ncvars;

D L LR E R L L L]
*** TEST THE PASSED PARAMETERS AND ASSIGN DEFAULTS IF

xxx
*** NECESSARY. IF &inds IS BLANK, THEN SET NCVARS TO 0

xxx

*** AND GENERATE A WARNING MESSAGE ON THE SAS LOG

xxx
AR AR A A AR AR AR AR AR AR AR A A A AR AR A AR AR AR A AR AR A A A AR AR A AR AR AR A AR AR AAR
H
%if &inds *= %str() %then %do;
%if &inlib = %str() %then %let inlib = work;

%if &outlib = %str() %then %let outlib = &inlib;
%if &outds = %str() %then %let outds = &inds;

I I Ty

*** CALL THE %getcvar MACRO TO OBTAIN THE NUMBER OF

xxx
*** CHARACTER VARIABLES IN THE &inlib SAS DATA SET AND A
xxx
*** LIST OF THESE VARIABLES.
xxx

I I Ty
H

%getcvar(lib=&inlib,ds=&inds);

I I Ty

*** USE THE RETURNED LIST TO CAPITALIZE ALL CHARACTER

xxx

*** &inlib SAS DATA SET AND

xxx

I I Ty

data &outlib..&outds;
set &inlib..&inds;
%do %while (%scan{&cvarlist,&i,%str()) "= %str());
%scan(&cvarlist,&i,%str{)) =
upcase (%scan{&cvarlist,&i,%str()));
%let i = %eval(&i + 1);
%end ;
%let ncvars = %eval(&i - 1);
run;

%end;
%else %let ncvars = %str(-1);

R R L LR R T L R L e T T T T T
*** GENERATE A WARNING MESSAGE ON THE SAS LOG IF ANY i
*** PROBLEMS OCCUR i
R R L LR R T L R L e T T T T T
H

%if &ncvars <= 0 %then %do;

data _null_;
put // ;

PUL @1 A4 daaaaaa stk kA A AR A AR AR AR AR AR R AR AR AR
H

put @4 'WARNING: Character Variables were not 'y

put @4 ' converted to uppercase. Either
put @4 ' the SASHELP library was not H
put @4 ' allocated, or the specified SAS '
put @4 ' data set is empty or missing. '
put @4 '
put @4 ' (ref: ALLCAPS.SAS)
PUL @1 ' # % f s s a s d A A A A R AR KRR R AR AR AR AR AR AR
put // ;
run;
%end;

%mend allcaps;

R R R AR A AR AR AR A AR A A A AR A AR A AR AR AR A AR
R R R AR A AR AR AR A AR A A A AR A AR A AR AR AR A AR

*** END OF PROGRAM: ALLCAPS.SAS

R R R AR A AR AR AR A AR A A A AR A AR A AR AR AR A AR

EEEEEEEEEEERREEES

R R R AR A AR AR AR A AR A A A AR A AR A AR AR AR A AR

FIGURE 2 - GETCVAR.SAS

AR A AR AR R R R R R R R R R R R R R R R R R AR R AR AR A AR A AR AR AR AR AR AR AR AR AR AR AR AR AR RRRRAS

Exxx

*

FACILITY:
DECISION ANALYTICS

SYSTEM NAME:
COMMON SAS TOOLS LIBRARY

PROGRAM :
GETCVAR.SAS

LANGUAGE /VERSION:
SAS 6.08

DESCRIPTION:

THIS MACRO USES THE VCOLUMN SAS DATA DICTIONARY VIEW
IN THE SASHELP LIBRARY TO EXTRACT THE NAMES OF ALL THE
CHARACTER VARIABLES IN THE SAS DATA SET GIVEN BY THE
&lib and &ds PARAMETERS PASSED TO GETCVAR. A GLOBAL
MACRO VARIABLE IS CREATED AS OUTPUT FROM THE PROCESS:
A SPACE DELIMITED LIST CALLED &cvarlist IS POPULATED
WITH THE NAMES OF THE CHARACTER VARIABLES.

CALLED BY:
[various programs]

MACROS CALLED:
[none]

FILES READ:
[none]

DATA SETS (SAS VIEWS) READ:
SASHELP .VCOLUMN
A SAS SQL VIEW THAT CONTAINS INFORMATION DOWN TO THE
VARIABLE LEVEL FOR EACH DATA SET IN EVERY SAS DATA LIBRARY
THAT IS CURRENTLY DEFINED WITH A LIBNAME

FILES CREATED:
[none]

DATA SETS CREATED:
[none]

FILES INCLUDED:
[none]

MACRO VARIABLES:
[passed from calling program]

&lib THE NAME OF THE DATA LIBRARY THAT CONTAINS
THE SAS DATA SET TO BE QUERIED

&ds THE NAME OF THE SAS DATA SET WHERE THE NAMES
OF THE CHARACTER VARIABLES WILL BE EXTRACTED
FROM

[internal]

&i USED AS A LOOPING INDEX

&ncvars NUMBER OF CHARACTER VARIABLES IN THE DATA SET

[globals created]

A SPACE DELIMITED LIST CONTAINING THE NAMES
OF THE CHARACTER VARIABLES IN THE DATA SET

&cvarlist

REVISION HISTORY:
V01.001 CLARK ROBERTS 13-FEB-

INITIAL VERSION

I I I R R R R R R R R R R XXX EEESEIT]

Exxx

%macro getcvar(lib = work,

ds =
)

%global cvarlist;

%local i
ncvars

%let ncvars = 0;
%let cvarlist = ;

I I I I I T I T T TT IS

i EXTRACT THE NAMES OF THE CHARACTER VARIABLES IN THE
xxx

i &1lib..&ds DATA SET FROM THE VCOLUMN SAS DATA DICTIONARY
xxx

i VIEW IN THE SASHELP LIBRARY.
xxx

I I I I I T I T T TT IS

data _null_;
set sashelp.vcolumn(where=(libname = "%upcase(&lib)" and
memname = "Supcase(&ds)" and
upcase (memtype) = "DATA" and
upcase (type) =: 'C'
)

) end = eof;
H
retain n 0;
n+ 1;
call symput('cvar'||left(put(n,4.0)),name);
if eof then call symput('ncvars',put(n,4.0));
run;

I I I I I T I T T TT IS

i POPULATE THE GLOBAL MACRO VARIABLE &cvarlist WITH THE
xxx

i NAMES OF THE CHARACTER VARIABLES EXTRACTED IN THE
xxx

i PREVIOUS STEP. DELIMIT THE ENTRIES WITH ONE BLANK SPACE
xxx

AR AR A AR AR AR AR A A AR AR A AR AR AR A AR AR A A A AR AR A AR AR A A A AR AR A AR AR AR AR
H
%do i = 1 %to &ncvars;

%let cvarlist = &cvarlist%str()&&&cvar&i;
%end;

%mend getcvar;

R R R AR AR AR AR A AR AR A AR AR A AR R
R R R AR AR AR AR A AR AR A AR AR A AR R

i END OF PROGRAM: GETCVAR.SAS

R R R AR AR AR AR A AR AR A AR AR A AR R

EEEEEEE

R R R AR AR AR AR A AR AR A AR AR A AR R

FIGURE 3 - ALLCAPS2.SAS

%macro allcaps2(inlib = work
inds =,
outlib =,
outds =
)
H
%if &inlib = %then %let inlib = work;
%if &inds = %then %let inds = temp;
%if &outlib = %then %let outlib = &inlib;
%if &outds = %then %let outds = &inds;
data _null_;
set sashelp.vcolumn{where=(libname = "%upcase(&inlib)" and
memname = "%upcase(&inds)" and
upcase (memtype) = "DATA" and
upcase(type) =: 'C'
)
) end = eof;
H
if _n_ =1 then
call execute('"data &outlib..&outds; set &inlib..&inds;");
call execute(name||' = upcase('||name|]|');")

if eof then call execute('run;');
run;

%mend allcaps2;

	Main TOC

