To Subset or Not to Subset

Janet E. Stuelpner, ASG, Inc., Cary, North Carolina

ABSTRACT

Sometimes you need all the data in a data set.
Sometimes you don’t. When testing a program,
it is better to use a subset of the data than the
whole population. How can you write a program
without the need to remove a bunch of code
after you are finished testing? Macros are the
answer. Macros can be great tools when trying
to subset data. By defining three small macros
at the beginning of your program (%iff, %wear,
%and), very few changes need to be made to
change from one subset to another. Or you can
just run the entire population from the data set.
This paper will show you how to do it.

INTRODUCTION

Sometimes it is beneficial to define macros in
separate autocall libraries. This allows the user
to invoke the same macro over and over again
without the need to change anything in the
macro. However, there are certain times when it
is necessary to change code within a macro for
each submission of a job. The data can be
subset easily with several macros defined in the
beginning of your source code. If all the data in
the database is keyed to the same variables
(e.g., patients, books, policies, accounts), these
macros are the perfect answer to testing code
before it is put into production. They are also
useful when it is necessary to produce reports
and/or listings on a small group of observations.
Let's see how they work.

SUBSETTING MACROS

When testing a program, especially a lengthy
one, it is handy to run only a few observations
through the program. This not only cuts down
on the runtime, but allows sufficient data to
debug the program. There are many ways to
reduce the number of observations in your

output data sets. Of course, one can always use
the OBS option. This can cause several
problems. One problem with this is that you only
get the first several observations (whatever
number is defined on the OBS statement) and
not necessarily complete information for an
individual item, whether it be patients, books,
transactions or widgets. This happens primarily
when your data has a vertical structure where
many observations define an item. If you chose
10 observations and in a specific data set it
takes 15 or 20 observations to define that item,
you will miss possibly half of the information.
The other problem is that you have to review the
code before it is run for the final time with all of
the data to remove all of the OBS statements.
This can be particularly tedious if you purposely
place OBS statements in your code. When
removing them, you have to pay very careful
attention to be sure that you do not remove the
wrong statements. Macros are used to insure
that each data set captures the same items and
code removal is not necessary, macros.

There are three situations where the macros are
needed and therefore, three macros are defined.
Remember, each file used must be keyed to the
same variables. The first is in a DATA step
where a subsetting IF can be used. The %iff
macro contains one IF statement that can be
used in any DATA step. Therefore, if the test
data will include only one city or state, the IF
statement will reflect that case. The second
situation is a PROC step. The use of the IF
statement is not allowed in SAS(®) procedures.
Here, a WHERE clause is used. Only one
WHERE can be used in any procedure, so, only
one is placed inside the macro %wear. (Note:
we can use a WHERE clause in a DATA step,
however, we can only use one. We can create a
compound situation using a WHERE ALSO,
however, this would need to hold true for all
DATA steps where this is used. Because we
can use many |F statements, it is safer in a
DATA step to use the %iff macro.) Lastly, a
situation exists where it is necessary to use a

compound statement. In this case, the WHERE
clause begins with the first part of the subset
condition and ends with %and. This macro
contains the same subsetting information as in
the other two macros, but the WHERE portion of
the statement is in the beginning of the
statement.

The nice feature of these macros is that they can
be used empty without causing a syntax error.
Therefore, while testing, the macro has code to
specify that certain items be used. When testing
is complete, the macro can have a different
subset of subjects for a small report or an interim
report. When the final listings and/or tables are
required, the macro is void of code and the
entire database population is utilized. (Note:
%and must have a minimum of a semi-colon or
an error condition will occur)

Below are a couple of short examples of
situations where these macros are useful. In
one example, only a few patient records are run
through the program to test out the code. When
the program is working to the programmer’s
satisfaction, the patient numbers can be
removed and the whole population is used. The
other example shows how subsets of a student
population are used for testing and then the
whole population can create the final report.

EXAMPLES

1. This example shows data typically found in
clinical trials. The first data set that is defined is
the demography data which can include sex,
race and date of birth. The next data set defines
the study medication taken by each patient.
Lastly, we have the adverse event data set.

This includes at least one observation for each
patient. If a patient has an event, the field NONE
will be blank. All of the data sets are merged
together and then a listing is output. All of the
data sets in this example are keyed to the
variables INV (investigator) and PAT (patient).

**Define database;
LIBNAME DB ‘C:\MYDIR\PATIENT\DATA’

**Define user written macros;
%macro iff;

IF PAT IN(1,5,23,48,55);
%mend iff:

%macro wear;
WHERE PAT IN(1,5,23,48,55);
%mend wear;

%macro and;
AND PAT IN(1,5,23,48,55);
%mend and;

**Begin program;
DATA DM,;
SET DB.DEMOG;
%iff;
AGE=(VDATE-DOB)/365.25;
KEEP INV PAT SEX RACE AGE;
RUN;

PROC SORT DATA=DM,;
BY INV PAT,;
RUN;

PROC SORT DATA=DB.STUDYMED
OUT=8SM
(KEEP=INV PAT DRUG);
%wear;
BY INV PAT;
RUN;

PROC SORT DATA=DB.AE
OUT=AE
(KEEP=INV PAT EVENT);
WHERE (NONE="") %and;
BY INV PAT;
RUN;

DATA ALLPATS;
MERGE DM(IN=D)
SM(IN=S)
AE(IN=A);
BY INV PAT;
IFA;
RUN;

PROC PRINT DATA=ALLPATS;
TITLE1 ‘LISTING OF AE PATIENTS’;
RUN;

2. This example shows data from a school. The
first step reads in data from a student file. This
data can include student identification, the
classes taken, whether a class was completed
and the grade received. These data sets are
keyed to STUID (student identification) and SSN
(social security number)

**Define database;
LIBNAME DB ‘C:\MYDIR\STUDENT\DATA’;

**Define user written macros;
%macro iff;

IF STUID IN(202, 356, 422),
%mend iff;

%macro wear;
WHERE STUID IN(202,356,422);
%mend wear;

%macro and;
AND STUID IN(202,356,422);
%mend and;

**Begin program;
DATA CLASS;
SET DB.CLASS;
%iff;
IF CLASS='MATH’ THEN CREDITS=4;
ELSE CREDITS=3;
RUN;

PROC SORT DATA=CLASS;
BY STUID SSN;
RUN;

PROC FREQ DATA=CLASS;
%wear,
TABLES CLASS;

RUN:

PROC PRINT DATA=CLASS;

WHERE DROP="NQ’ %and;

TITLE1 ‘COURSE COMPLETIONS’;
RUN;

CONCLUSIONS

We can see that there are some very good
reasons to subset data as we are testing our
source code. It can cut runtime significantly.
We have a great deal less output to review. The
macros defined in this paper can help to achieve
these benefits from subsetting the data.
Because they are defined instream and placed
at the beginning of the program, as
recommended, they are easy to change. As
long as all of your data sets are keyed to the
same variable, this solution works well.

SAS is a registered trademark or trademark of
SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Janet Stuelpner

ASG, Inc.

326 Old Norwalk Road
New Canaan, CT 06840

(203) 966-7520 (voice)
(203) 966-8027 (fax)
jstuelpner@worldnet.att.net

	Main TOC

