
1

MAGIC WITH CALL EXECUTE

Bob Virgile
Robert Virgile Associates, Inc.

Overview

CALL EXECUTE lets you stack up SAS® language
statements which will run once the current DATA step
completes. With a little imagination, this allows you to
do the impossible.

Mixing DATA and PROC Steps

You can't mix DATA and PROC steps. Each SAS
step must complete before the next step begins. For
example, this program is illegal:

DATA _NULL_;
SET SALES END=NOMORE;
TOTAL + AMOUNT;
IF NOMORE;
IF TOTAL < 1000000 THEN DO;
 PROC MEANS DATA=SALES;
 CLASS STATE;
END;
ELSE DO;
 PROC MEANS DATA=SALES;
 CLASS STATE YEAR;
END;

However, CALL EXECUTE lets you designate the
PROC and CLASS statements as statements to be
added once the DATA step completes. This
approach works, and requires minimal modification to
the original:

DATA _NULL_;
SET SALES END=NOMORE;
TOTAL + AMOUNT;
IF NOMORE;
IF TOTAL < 1000000 THEN DO;
 CALL EXECUTE
 ('PROC MEANS DATA=SALES;
 CLASS STATE;');
END;
ELSE DO;
 CALL EXECUTE
 ('PROC MEANS DATA=SALES;
 CLASS STATE YEAR;');
END;
RUN; /* required */

To use CALL EXECUTE, two features must be in
place. First, the macro processor must be turned on.
Secondly, the DATA step must end with a RUN
statement. Beyond that, you have great flexibility
available. For example, You can use many CALL
EXECUTEs in a single DATA step. The code they
generate just continues to stack up to be run once the
current DATA step completes. The argument to
CALL EXECUTE can be a character string (as in the
current example), or a more complex expression,
such as:

CALL EXECUTE (
'PROC PRINT DATA = MOVIES.ROCKY'
|| LEFT(PUT(N,2.)) || ';');

As usual, any variable names not enclosed in quotes
get resolved to their values. The result must
generate a valid SAS statement.

The argument to CALL EXECUTE can include
references to macros or to macro variables.
Covering all the variations on that theme would be too
lengthy a job for this tip.

Macro Programming in Open Code

You can't use %IF %THEN %ELSE or %DO %END
outside of a macro definition. For example, this code
would be illegal outside of a macro definition:

%IF &CITY = BOSTON %THEN %DO;
 PROC CONTENTS DATA=BOSTON;
%END;
%ELSE %DO;
 PROC PRINT DATA=ANOTHER.CITY;
%END;

Instead, you would have to enclose the entire block of
code inside of a macro, and then call the macro:

2

%MACRO MUSTUSE;

 %IF &CITY = BOSTON %THEN %DO;
 PROC CONTENTS DATA=BOSTON;
 %END;
 %ELSE %DO;
 PROC PRINT DATA=ANOTHER.CITY;
 %END;

%MEND MUSTUSE;

%MUSEUSE

Once again, CALL EXECUTE comes to the rescue,
letting you replace a macro comparison with a DATA
step comparison:

DATA _NULL_;
IF LEFT("&CITY") = "BOSTON" Robert Virgile
THEN CALL EXECUTE (
'PROC CONTENTS DATA=BOSTON;');
ELSE CALL EXECUTE (
'PROC PRINT DATA=ANOTHER.CITY;');
RUN;

I expect this to be a temporary work-around, which
handles just some of the macro %IF %THEN
comparisons. At some point in the future, I expect
that macro programming statements will be permitted
in open code.

In similar fashion, %DO %END are not permitted in
open code. CALL EXECUTE can eliminate the need,
at the same time simplifying the program. This
program attempts to print the first 10 observations
from every SAS data set in the library:

PROC CONTENTS DATA=LIB._ALL_
 NOPRINT OUT=TEMP (KEEP=MEMNAME);

PROC SORT DATA=TEMP NODUPKEY;
BY MEMNAME;

DATA _NULL_;
SET TEMP END=NOMORE;
CALL SYMPUT
('D' || COMPRESS(PUT(_N_,3.)),
 TRIM(MEMNAME));
IF NOMORE THAN CALL SYMPUT
('TOTDS', PUT(_N_,3.));
RUN;

%DO I=1 %TO &TOTDS;

 PROC PRINT DATA=LIB.&&D&I (OBS=10);
 TITLE "*** &&D&I ***";
 RUN;

%END;

As was the case with %IF %THEN, this program
would need to define a macro, just to be able to
execute the %DO loop. Instead, CALL EXECUTE

comes to the rescue. After PROC SORT, the DATA
step and the %DO loop can be replaced by a single
DATA step:

DATA _NULL_;
SET TEMP;
CALL EXECUTE ('PROC PRINT DATA='
|| MEMNAME ||
'(OBS=10); TITLE "*** ' ||
TRIM(MEMNAME) || ' ***"; RUN;');
RUN;

Even if %DO loops are eventually permitted in open
code, CALL EXECUTE may be the simpler solution.

Contact information:

 Robert Virgile Associates, Inc.
 3 Rock Street
 Woburn, MA 01801
 (617) 938-0307

SAS is a registered trademark of SAS Institute, Inc.

	Main TOC

