
1

The SAS Data Warehouse: A Real World Example

Martin P. Bourque, SAS Institute Inc., Cary, NC

Abstract

This paper discusses building a data warehouse for
the Technical Support Division at SAS Institute. It
starts with the decision to build a data warehouse,
and proceeds through the planning stage to the
exploitation. It focuses on the need to be flexible at
all stages, and the reality that building a data
warehouse is an iterative process.

Introduction

Nightmare or golden opportunity? The division head
tells you to build a data warehouse. He also tells you
to do it using a release of software that has not yet
passed through Quality Assurance. In addition, you
will use a product that is still in the development
stage, and finally, your resources are scattered across
several departments. While these constraints are
unique to this project, you can be sure that your data
warehousing project will probably be equally unique.

So where do you start? In my case, the company
library. I had heard about data warehousing, read
about it in the trade publications and even listened to
some marketing people discuss the ‘market
potential’; but what did those words mean? As you
might expect, the library had many books and
articles on the subject, and after reading a half dozen
books and too many articles to count, I was able to
see that the experts agreed at the ‘macro’ level,
meaning 'data warehousing is a good thing,' but
disagreed at the ‘micro,' ‘this is how you should
implement your data warehouse’. This was the first
lesson learned: listen to the experts but be prepared
to design for your own unique situation. In addition,
play to your strengths. In our case, that meant the
SAS System.

What is a Data Warehouse?

We read and heard many definitions of data
warehouse and all seemed reasonable. The one that
we devised to explain our work is as follows:

A data warehouse is a repository of accurate, time
related information that can be used to better
understand your company.

Organizing the Design Team

After researching data warehousing and estimating
the required human resources to develop one, the

initial team was assembled. The team was
responsible for designing and planning the data
warehouse. As the only full time member of the
team, I became the Project Coordinator. All of the
other team members had to perform their Technical
Support duties before they could assist in the project.
As you might imagine, this caused a few task
scheduling problems. On the plus side, I had the
opportunity to learn more about many features of the
SAS System.

Goal Setting

Once the design team was in place our first task was
establishing our goals. We were fortunate that no
one required a detailed time line, but we knew that
we needed a functional system by the end of the year.
With this in mind, we matched our strengths against
our requirements and came up with our goal:

Build a data warehouse using the SAS/Warehouse
Administrator toolkit and Release 6.12 of the SAS
System for UNIX Environments. The data
warehouse will have a graphical user interface to be
used by Technical Support management. In addition,
the data warehouse and the interface should exploit
as many of the SAS System enhancements as
possible.

Project Planning

Now we needed a project plan. Although many of
the books we read during the research stage provided
guidelines for building a data warehouse, none of
them fit our situation exactly so we used them only
as a template. After we ‘cut and pasted’ various
ideas from other sources and added our own unique
requirements, we came up with a relatively short set
of guidelines. We did not go into a lot of detail,
keeping our project plan a set of guidelines meant to
keep us focused on our goal, rather than a road map
to project success.

Interviewing our Potential Customers

Our next step into the unknown was to interview our
customers, the Technical Support managers. Our
intent was not to find out what they wanted, but
rather what data they used. If we could determine
what information they used on a daily basis, we
could decide what data had to be collected for the
data warehouse. Once the data were collected,
reporting it would be a snap, or so we thought.

2

We did not have a set list of questions for our
interview subjects, and we did not require them to
prepare in any way. However, we did set a few
guidelines for ourselves:

• Pretend that you do not know anything about
your interview subject's data. This is tough to
do when you have worked in Technical Support
but necessary if you do not want to prejudice the
results.

• Concentrate on the types of data that your
subject uses and the relationships between them.

• Finally, do not lose control of the interview. You
ask the questions and keep the subject focused
on data and relationships.

Data Modeling

We started the interviews by asking the customers to
name ten types of data that they use, which we listed
on a white board. Then we started to ask about
relationships between specific types of data. We
had to be very careful to stay focused and not let the
conversation drift off into the realm of deliverables,
timelines, specific reports, etc. As nicely as possible,
we had to make them understand that they were
there to provide us with information about the data
used to run the division.

Once the topic or the customer was exhausted, we
copied the white board diagram to paper so that the
information could be shared with the other design
team members. When all the interviews were
complete, it became apparent that each customer had
his/her own unique perspective and no one knew it
all. We laid all the diagrams on a table and derived
one uniform picture of the data used and the inter-
relationships. Many of you will recognize the
process we went through as the beginning stages of
creating a logical data model, which is commonly
used in the design of relational data bases. Data
Warehousing experts disagree on the value of a
logical data model in the making of a data
warehouse. In our case, we were simply attempting
to identify what data were important, and therefore,
required to be collected.

There is an alternative method of gathering
information about your data. Put everyone into one
room and conduct the interview once. This method
has the advantage of getting consensus on what the
data are and how it all relates. The disadvantage is
the logistics of getting a dozen managers to sit
through a couple of days of this activity. In our case,

we believed it would have been impossible, but this
method might work for your company

Constructing a Logical Data Model

The interview data were used to construct a logical
data model of the Technical Support Division. Once
again we did this because some books on data
warehousing implied that it would help us to
understand our environment and make our design
more appropriate. The authors appear to disagree on
how formal the logical data modeling process should
be. According to some authors, it should be as
rigorous as that used in designing a relational data
base. For others, it is a worthless expenditure of
time. Based on our experience, I believe it is
somewhere in the middle. If you have a formal,
complete and accurate logical data model already in
existence, by all means, use it. If your are starting
from ‘scratch’ then construct a logical data model
that provides enough information so that you can
identify and understand your operational data
sources and how they interact. In its simplest form,
logical data modeling is used to identify ‘subjects’,
‘entities’ and ‘attributes’.

Subjects represent a group of types of data to define
one aspect of a business. An example of a subject is
the types of data that define the problems or
questions that we receive from our SAS System
customers. Each subject is comprised of closely
related types of data elements that are called
entities. An example of an entity is all the data on a
customer who has contacted SAS Technical Support.
Each of these entities is further subdivided into
attributes, such as customer phone number.

When we constructed our logical data model we
arrived at five unique subjects.

• PROBLEMS - inquires entered by Technical
Support consultants or electronic services for
individuals and the companies they represent

• ORIGINS - the source of inquires entered by
Technical Support consultants or electronic
services

• STAFF - data about Technical Support
Consultants

• TSDEPT - data about Technical Support
departments

• MISC - information about related information.

3

Of all of these subjects, we selected one,
PROBLEMS, to initially implement to gain an
understanding of the whole data warehousing
process. I would recommend this approach. We went
to great lengths to explore the selected subject. The
process started and ended with a simple statement
defining the subject.

Once we had defined the subjects, we subdivided
each subject into its entities. This process also started
and ended with a simple but succinct statement
defining the entity.

We then defined all the attributes that comprise the
subject. An attribute can be a single data element or
field, such as a customer phone number. This
process is complex in that the characteristics and
domains of all the attributes must be defined.

• Give all of the attributes a unique name. This is
very important. Your operational data may have
the variable ‘phone’ in several files, each one
with a unique meaning. In a data warehouse
there is only one ‘phone’ column, although there
may be many columns that represent phone
numbers.

• Define the attributes. Characteristics such as
numeric or character, field length and value
ranges are identified here.

• Identify the data source of this attribute. From
where will this column be drawn? Will it be
calculated? If so, from what and how?

• Identify the ‘domain’ of the attribute. What are
the valid values that it can contain? This is very
important when the issue of data scrubbing must
be addressed.

• Define the data transformation or data scrubbing
that needs to be performed on a piece of
operational data before it can be placed into the
data warehouse.

This analysis and the documents that resulted
became very important as the project progressed.
Some of you might recognize it as ‘metadata’, that
is, data about data.

Designing a Physical Data Warehouse

At this point in the project we had to decide on a
physical data warehouse design. Naturally it was a
foregone conclusion that we would use SAS data
sets, but what kind of schema? There are two major

schools of thought on this issue, Star schema and its
derivatives or Relational schema and its derivatives.

A Star schema has ‘facts’ and ‘dimensions’. A fact
is a piece of data that is additive. For example, gross
sales can be accumulated by day, month or year. A
dimension is a grouping of similar data, such as all
information related to sales, less its facts. One
advantage of star schema is that it originated with
data warehousing as its focus. It is therefore
optimized for fast access to large tables of data.

The Relational schema was designed with online
transaction data collection as its focus. It is
optimized for getting data into and out of a data
base. Relational schema has the advantage of being
well understood. For this reason, we chose to design
a relational schema.

Choosing our Development Platform

In conjunction with the planning and documenting
noted above, we were exploring Release 6.12 of the
SAS System for UNIX Environments. We wanted to
showcase the new features of the release in our data
warehouse exploitation phase. Originally we had
planned to use PC’s running Windows 95 instead of
UNIX workstations, but our request for additional
PC hardware was turned down. Once again we
learned the valuable lesson that we must be flexible
at all times.

Working With SAS/Warehouse Administrator

The best way to think of SAS/Warehouse
Administrator is as a repository for all the
information about your data warehouse. It is not a
DBMS, and it is not the warehouse. Data
warehouses can and have been built without
SAS/Warehouse Administrator, but we found it to be
a great way to leverage our metadata into ‘meta-
information’.

 Data warehouses are capable of creating a lot of
metadata. Many times the metadata consist of hand
written documents or computer text files.
SAS/Warehouse Administrator offered us the
opportunity to create and save metadata in an easy to
use manner, as well as a set of tools to automate and
organize the building and maintenance of a data
warehouse. At the time, SAS/Warehouse
Administrator software was under development.
This was not necessarily a bad situation as it gave us
a chance to provide user feedback to the developers.
As we learned the product we reported ‘bugs’ that
were rapidly fixed and we requested features, many
of which were implemented. In essence, we helped
shape the product, and not too many users have that

4

opportunity. On the down side, we were using code
that was very new and we constantly had to deal with
the question, ‘ is it a bug or a feature?’
Occasionally, after we had learned how to use a
feature, it was re-written. If it was not for developers
who wanted the best product they could build, life
would have been very difficult.

Eventually we reached a point in our analysis and
knowledge where we could start loading information
into SAS/Warehouse Administrator. This meant
specifying the operational data that was used to feed
the warehouse. It also meant defining the initial
subject and the detail tables that made it up. The
detail tables had columns with attributes, so this
information had to be entered. We also had to define
to SAS/Warehouse Administrator the data scrubbing
routines and the data transformation to perform.

At this point we found out that our earlier analysis
was sometimes right on target, and at other times
way off. The time we spent on defining our subjects,
entities and attributes were ‘right on target,’ but our
assumptions about capacity planning, granularity
and data scrubbing were not. Fortunately, SAS/
Warehouse Administrator made adjustments
relatively easy. The most valuable features were its
use of global metadata, its ability to generate code
from entered metadata, and its interface to the SAS
System Access products.

When all of this was completed, SAS/Warehouse
Administrator was able to generate SAS code to load
the operational data into the data warehouse.

Building the Warehouse

Some of the issues we had to resolve as we built the
data warehouse were:

• Job Scheduling

SAS/ Warehouse Administrator had a job
scheduler but it only supported UNIX system V
cron. Also, it would only schedule on the
processors where you were running
SAS/Warehouse Administrator. There was also
no facility for conditional execution of jobs. We
got around these situations by saving the
SAS/Warehouse Administrator generated code
into SAS catalogs located on other UNIX
processors. We then issued our own cron
commands and wrote a small set of utilities for
managing job control. We did not invest a lot of
time in this as the SAS/Warehouse
Administrator development team recognizes the
deficiencies of the job scheduler and has plans to
remedy them as soon as possible.

• Disk Space

There is a joke that ‘you can not be too rich or
have too much disk space’. It is true. When we
did our first capacity planning estimates, we
figured the size of our major tables, factored in
some growth and some padding. We did not
realize that work files, summary files, multiple
dimension data bases (MDDBs) and other
warehouse exploitation tools can take as much
space as the data warehouse tables upon which
they are based. Luckily, we watched our disk
usage carefully and requested additional space
before it became a serious problem.

• The temptations to circumvent SAS/Warehouse
Administrator were great. It would have been
relatively easy to write and then schedule jobs
outside of SAS/Warehouse Administrator. But
once this was done we would have lost the
concept of a central repository of metadata. For
a data warehouse to have long term
maintainability, all the metadata should be
under its umbrella. This provides one location
for people to search for information about the
data warehouse. Another plus is that the
SAS/Warehouse Administrator developers are
planning metadata exploitation tools, such as an
API that will make our lives easier in the future.

• As we examined the loaded data warehouse
tables, we noticed that our data scrubbing was
not as complete as we had hoped. This only
becomes apparent if you perform a proc freq
against a table or if you attempted to use the
data in a meaningful manner. In an ideal world
these issues would have been resolved at the
design stage but in reality many data scrubbing
procedures are not written until necessary. This
was our experience.

• We did not have a dedicated processor to do our
data warehouse loading. At first we had to share
a 50MHz UNIX workstation with the UNIX
technical support department. When they used
this processor, it was for testing purposes, but if
they were testing and we were building then
someone was going to suffer. Usually that was
the data warehouse because, after all, we were
the guest. After having loads fail for a lack of
space and having loads run for hours longer
than we had anticipated, we decided to search
for a new home. We were able to find a 75MHz
processor that we were able to upgrade to 128
Mb of memory. This helped our load time
greatly. The down side was that we still share

5

the processor with another department. My
recommendation to others building a data
warehouse is to get dedicated processors with as
much memory as you can from the very start.

Maintaining the Data Warehouse

Was our project complete? Not even close! We now
had to address the issue of data warehouse
maintenance.

One ongoing data warehouse maintenance issue is
additional operational data sources and additional
columns. No matter how much you may think you
have identified all the inputs that you need, someone
will identify a missing piece of data. If this is
operational data from an existing defined data source
or an entirely new data source, SAS/ Warehouse
Administrator makes adjustment relatively
painlessly. The same is true of a new data warehouse
detail table or column. The need for a new column
sometimes comes about when fields need to be
combined or broken down into different fields to
make exploitation easier. For example, we have
several date fields that we disassembled into
individual month/day/years fields. This need may not
be apparent from the start but evolves through usage.

Another area of maintenance comes about as
enhancements and bug fixes appear for your
software, in our case SAS/Warehouse Administrator.
In order to take advantage of enhancements, we had
to examine what we had done, and in some cases, do
it over. If you are using well established software this
may not be the problem it was for us, but it is a
consideration.

Finally, as your knowledge of your software toolset
increases, you will want to reconsider your earlier
work. Our knowledge of SAS/Warehouse
Administrator was an obvious area of concern for us,
but Release 6.12 of the SAS System was still
unreleased at the time we were doing our initial
work. We stumbled into many features that helped
us, and sometimes forced us to examine prior work.

Exploiting the Data Warehouse

A data warehouse without a user interface is like a
building without doors or windows. All of the
reading and preparation we did for the data
warehouse has no value if people cannot use it to
solve problems or analyze business. We spent as
much time and effort on the user interface as we did
actually building the data warehouse.
SAS/Warehouse Administrator is an excellent tool
for building and maintaining a data warehouse, but
it has no pretensions about being a user tool. It is

strictly a tool for the warehouse administrator. This
may change in the future, but for now we had to
build our own warehouse exploitation tools.

We started by gathering ideas from data
warehousing books and other sources. One idea was
that the user interface should be accessible to several
different categories of customers. For the casual user,
you should provide a means of viewing reports or
graphical objects that your data warehousing
loading generated over night. This allows relatively
fast response times and all the user has to do is point
and click on their selection. For the user who wants
to do ad hoc reporting, we provided access to
SAS/INSIGHT software, the SAS Query window
and SAS/ASSIST software. These products allowed
people to access the warehouse detail tables or
summary files that we created overnight, and then do
custom reporting or querying at their speed to match
their needs. Finally, for the people that want to slice
and dice multidimensional data, we provided large
MDDBs that, although relatively slow in displaying,
provide a level of analysis that is difficult to
accomplish with standard report formats. We
generated these MDDBs overnight during the data
warehouse loading process.

Once we had an idea of what we wanted , we decided
that SAS/EIS software was the quickest and easiest
tool to use.

We were well aware that any GUI we constructed
must be able to grow and adapt as the warehouse
grew and adapted to the customer needs. It had
already become apparent that more subjects would
soon be added and the few customers that had seen
the prototype interface were already offering
suggestions. The exploitation stage also exposed the
issues of capacity planning and data scrubbing. For
one, we were going to use MDDBs to allow our
customers to do analysis in ways that a report or
graph simply would not allow. But MDDBs require
significant CPU and disk storage resources.
Although we were forewarned of these issues, we
never understood how significant they were until we
processed actual data.

The GUI also exposed a weakness in our data
warehouse design. This was especially true for our
time variables. Our data warehouse had several SAS
date format fields used by the GUI but sometimes we
wanted only a component of a field, for example, the
year or the month. Now, we can let the user
interface calculate these values every time they are
needed or, as we decided to do, calculate them at
data warehouse load time so that they are available
to all exploitation applications. We believe that this

6

is an area that a Star Schema would have handled
better than the relational model that we used.

Certainly there are always last minute changes in
any project. Just as we had ‘frozen’ our data
warehouse user interface and were content to slowly
build on our one subject data warehouse, something
new appeared. SAS Institute purchased a new phone
switch! This new device was capable of providing
‘cradle to grave’ phone call logging. This was the
kind of information that the technical support
managers had been yearning for. The new switch
was to be installed over the Christmas holiday and
everyone wanted its data included in the data
warehouse as soon as possible. We are working on
this as this paper is written.

Conclusion

Even though we have not had time to reflect on the
lessons learned from a one subject data warehouse,
we believe that it is worth the time and effort to
attempt to take this slow and evolutionary approach.
We can guarantee that there will be delays,
unforeseen problems, and unusual demands in the
construction of your data warehouse. The secret to
success is to assume that things will go wrong before
they do, have contingencies plans in place, and make
quick implementation changes as the environment
changes. In other words, be flexible.

Acknowledgments

The following staff members of SAS Technical
Support contributed to the building of the data
warehouse, the building of the user interface and the
preparation of this paper:

Art Alexander, David Driggs, Yvonne Selby, Greg
Cooper, Tina Hobbs, Chris Noto, Jake Jacobs, Joy
Reel, Jon Schiltz, Danny Hamrick, Jason Moore,
Phil Gibbs, Dorothy Proulx.

SAS, SAS/EIS, SAS/ASSIST, SAS/INSIGHT,
SAS/Warehouse Administrator are registered trade
marks or trademarks of SAS Institute in the USA
and other countries. ® indicates USA registration.

Martin P. Bourque

SAS Institute Inc.
Cary, NC 27713
sasmpb@unx.sas.com

	Main TOC

