
1

 SAS/Warehouse Administrator Usage and Enhancements
Terry Lewis, SAS Institute Inc., Cary, NC

ABSTRACT

SAS/Warehouse Administrator software makes it easier to build,
maintain, and access data warehouses by bringing the strengths of
the SAS System relative to data warehousing together into one
consistent interface plus adding additional capabilities not currently
available in other SAS system products.

This paper explains how to use SAS/Warehouse Administrator and
describes many of the enhancements that have been added to the
first release of SAS/Warehouse Administrator since it was first
introduced in an experimental form at SUGI 21 in 1996.

INTRODUCTION

The SAS system has long been used to provide data warehouse
functionality even before the term was coined. In 1995, we at SAS
Institute recognized that it would be helpful to supply a framework
that would gather together many of the tools in the SAS System
that lend themselves to data warehousing into a single product.
Additionally, some new functionality would also be introduced. This
product, known as SAS/Warehouse Administrator, enables a site
Data Warehouse Administrator (or DWA) or consultant to:

• Define data warehouses and warehouse business subjects
through an easy-to-use user interface. Warehouse elements
consist of a flexible hierarchy of data and non-data types,
including detail tables, summary tables, data marts and
information marts.

• Define the operational data sources that feed a warehouse.
• Define the processes by which operational data is

transformed, loaded and summarized into the various
warehouse elements. Supply tools to assist in the
transformation of data.

• Store a variety of metadata for all warehouse elements and
processes. Provide various tools to enable the browsing,
updating, searching and exporting of warehouse metadata.

• Generate SAS software code to build or load the warehouse
elements. Allow substitution or insertion of any user-written
code in the process.

• Build distributed warehouses.
• Store warehouse elements in non-SAS formats, for example,

DBMS formats.
• Provide job scheduling capabilities.

As the previous list indicates, the central focus of the product was
to provide a flexible, customizable architecture to aid the DWA in
the implementation phase of a warehouse project.

The production release of SAS/Warehouse Administrator is
scheduled for the first quarter of 1997.

REQUIREMENTS

The software runs on any SAS 6.12 platform, typically a PC
running Windows, and requires Base SAS software and
SAS/FSP software. The generated code from SAS/Warehouse
Administrator can run on any SAS 6.08 platform or above.
Additional SAS products may be required depending on what
warehouse facilities are used. For example, SAS/Connect
software would be required for remote processing and

SAS/Access software would be required for accessing or loading
data stored in DBMS tables.

OVERVIEW

The DWA will begin using SAS/Warehouse Administrator once the
following prerequisite steps have been completed:

• The warehouse project has been justified to management.
• The warehouse project team has been assembled.
• End users have been interviewed and business requirements

defined. IT requirements have been identified.
• The logical and physical data models for the warehouse

subject(s) have been designed.

Once the logical and physical data models have been designed,
SAS/Warehouse Administrator software may be used to graphically
prototype those designs to see if that is the desired warehouse
model. This can be done quickly, without filling in other information
that is required to actually build and load the warehouse elements.

It’s important to note that typically the DWA would not try to create
the entire warehouse at one time. The process of designing,
implementing and review is an iterative one, i.e., smaller,
incremental projects are much more manageable and produce
immediate results. A good rule of thumb is to implement, at most,
one subject area at a time.

Assuming you are the DWA, once you have the models and are
ready to build the warehouse, the following basic steps would be
followed:

1. Invoke SAS/Warehouse Administrator.
2. Define the metadata repositories, i.e., the warehouse

environment and any data warehouses. This is done at entry
to the product and in the Explorer window.

3. Define the input, i.e., the operational data sources, to the
warehouse. This is done in the Explorer window via
properties windows.

4. Define the various elements that compose the warehouse.
This could include detail tables, summary tables, data marts,
and information marts. This is also done in the Explorer
window via properties windows.

5. Define the processes that populate those warehouse
elements. This is done in the Process Editor.

6. Generate the code to load one or more warehouse elements.
This can be done in either the Process Editor or Explorer
window. SAS/Warehouse Administrator generates the
appropriate code based on the information, i.e., metadata,
you entered in the Properties windows within the Explorer or
Process Editor.

7. Either:
a) run the generated code immediately, or
b) save the code and run it later, or
c) pass the generated code to the Job Scheduler and run

it at some future date and time as a separate
executable job.

Obviously, once the code has been executed, logs, tables, etc.,
should be checked to ensure the warehouse elements have been
loaded successfully.

The following sections explain each step in more detail.

2

INVOKING SAS/WAREHOUSE ADMINISTRATOR

To start SAS/Warehouse Administrator, invoke the SAS System in
display manager mode. Then, on the command line, type either

 DW

or

 DW FOLDER=library.catalog.entry.FOLDER

The DW command invokes a new facility in SAS 6.12 software --
the SAS Desktop. The SAS Desktop allows the end user to store
folders, libraries, catalogs and applications in an easy-to-use,
object-oriented interface. However, the primary use of the SAS
Desktop with SAS/Warehouse Administrator software is to facilitate
the creation and organization of Data Warehouse Environments
and related applications in a desktop folder.

If the FOLDER= parameter is not specified, SAS/Warehouse
Administrator uses the default folder
SASUSER.FOLDER.SAS_WA.FOLDER. This folder will be
created automatically if it does not already exist. An example of the
SAS Desktop is shown in Figure 1:

Figure 1 - The SAS Desktop

Figure 1 displays SAS Desktop that already contains three Data
Warehouse Environments and two application folders.

DEFINING THE WAREHOUSE ENVIRONMENT

When you enter SAS/Warehouse Administrator software the first
time, no Data Warehouse Environments will exist. To create one,
either open the File pull-down menu or open the pop-up menu
with the right mouse button, select Add Item >, then select
Data Warehouse Environment. SAS/Warehouse
Administrator opens the Properties window for Data Warehouse
Environment as shown in Figure 2:

Figure 2 - Warehouse Environment Properties Window

The information you enter on the Data Warehouse Environment
Properties window is used to generate a LIBNAME statement for
the environment. That LIBNAME path will serve as a repository for
numerous SAS data sets that will store global metadata
information, i.e., metadata that is not specific to a single
warehouse. By including server parameters in the Options: field,
the metadata may also be shared via SAS/Share software.

Once you have defined your Data Warehouse Environment, you
will want to position the cursor over the Data Warehouse
Environment icon on the SAS Desktop, open the pop-up menu and
select Edit. This will open the SAS/Warehouse Administrator
Explorer window as shown in figure 3:

Figure 3 - Explorer Window

The SAS/Warehouse Administrator Explorer window contains two
panes -- the left side is an organizational chart that depicts the
hierarchy of the Data Warehouse Environment. The right side
displays information on the currently selected warehouse element.
The information displayed on the right side depends on the view
that is currently selected. The View pull-down menu allows you to
select from five different views, Large Icons, Small Icons,
Details, Metadata-General and Metadata Details.
These different views enable you to easily see as much or as little
metadata as desired. SAS/Warehouse Administrator remembers
the view that you used last and will return to that view automatically
in your next session.

3

The first task you will want to do in the Explorer window is to define
a Data Warehouse. The Data Warehouse is similar to the Data
Warehouse Environment in that it is simply a representation of a
location to store metadata. However, where the Data Warehouse
Environment is used to store global metadata, the Data Warehouse
is used to store metadata specific to a single warehouse. To define
a Data Warehouse within an environment, open the Add pull-down
menu and select Data Warehouse. SAS/Warehouse
Administrator will immediately open the Data Warehouse Properties
window. This window contains two tabs: General and Metadata
Location, that allow you to enter general metadata like name,
description, owner and administrator as well as the location
information where the metadata will be stored. Figure 4 shows the
General tab on the Data Warehouse Properties window:

 Figure 4 - The General Tab

In addition to entering information in the text entry fields, you can
associate free-form Notes with the Data Warehouse by clicking on
the Notes button and filling in the subsequent Notes window.
Additionally, you can change the icon associated with the Data
Warehouse by clicking the Icon button.

The General Tab, as well as many other tabs, is used in the
Properties windows of several warehouse elements. This
facilitates a consistent look and feel as you continue to define more
warehouse elements.

Note that you can define multiple warehouses per Data Warehouse
Environment. This gives you a great deal of flexibility when
designing the hierarchy of information in the warehouse. You may
decide that storing all information in a single warehouse may be
unwieldy for larger projects. Performance may also be enhanced
with separate warehouses, since the metadata data sets will be
smaller.

DEFINING INPUT DATA SOURCES

After you have defined the metadata stores, i.e., the Data
Warehouse Environment and the Data Warehouse, you will want to
define the operational data sources that supply input data to one or
more of your warehouse elements.

Operational data sources are represented by defining an
Operational Data Definition or ODD. An ODD is typically either a
SAS table or something that looks like a SAS table, i.e., a view. To
access operational data stored in flat files, you define a SAS Data

step view that functions as the SAS/Warehouse Administrator
ODD. To access operational data stored in DBMS tables, you
define either a SAS/ACCESS view or PROC SQL view that
functions as the ODD.

ODDs are logically grouped into ODD groups. You may have as
many ODDs or ODD groups as you like. ODD groups are defined
similarly to Data Warehouses, i.e., in the Explorer window, open
the Add pull-down menu and select Operational Data Group.
Note that unlike the Data Warehouse object, the new ODD group is
added immediately to the hierarchy with a default name. To
change the name, select Properties… off the pull-down or right
mouse button pop-up menu. Optionally, you can use the Rename…
function off the right mouse button pop-up menu.

To define an ODD within an ODD group, open the Add pull-down
menu (or via the right mouse button pop-up menu) and select
Operational Data Definition . Once the icon shows up in
the hierarchy, select Properties… to invoke the ODD Properties
window. The ODD Properties window contains three tabs:
General, Data Location, and Columns.

The General tab has been previously discussed. The Data
Location tab prompts you for the location of the ODD via the host,
SAS library, and SAS table/view fields. Note that this tab requests
information on the location of the ODD itself, which, in many cases,
is different from the location of the actual operational table. For
example, a DBMS table you are accessing as an operational data
source may reside on MVS, however, a PROC SQL view that
functions as the ODD of that DBMS table may reside on your local
PC if you used the remote capabilities of the Query Window to
define the view.

Note that if you do not have an ODD defined yet, you may invoke a
number of tools to define the ODD from the Tools… pull-down
menu as shown in Figure 5:

 Figure 5 - The Tools Menu

The Access Window, External File Interface, and Query Window
may all be used to define views on to Operational data sources
that may then serve as ODDs within SAS/Warehouse
Administrator.

Location context is an important thing to remember when
completing the HOST field on the Data Location tab. Normally, the
HOST for an ODD is local or remote based on the context of the

4

job that runs that accesses the ODD. Note that the platform the job
executes on may not be the same location as the platform that is
executing SAS/Warehouse Administrator.

The Columns tab is used to define the columns in the ODD to
SAS/Warehouse Administrator. The column information, such as
name, type, length, format, informat and description, may be typed
in and added singly for each column, or you may use one of
several methods available from the Import button or pull-down
menu selection. You can import column metadata from the data
location you supplied on the Data Location tab or from a variety of
other sources:

Figure 6 - The Columns Tab

This facility allows you to easily define column metadata without
spending a lot of type typing in column information. Column
metadata may also be imported from other ODDs, from any
allocated SAS data set, from the output of a PROC CONTENTS
OUT= operation, or from COBOL File Definitions via the COB2SAS
program.

As with the General tab, the Data Location tab and the Columns tab
are used in the Properties windows of other warehouse elements.

DEFINING WAREHOUSE ELEMENTS

ODD groups and ODDs are components of a Data Warehouse
Environment, but not components of a Data Warehouse. This was
by design so that ODDs could be shared between multiple
warehouses without having to define them more than once.
However, there are many different types of elements within a Data
Warehouse. The two primary warehouse elements are Subjects
and Data Marts.

Subjects are the business subjects of your business enterprise.
Examples of business subjects are “Customer”, “Sales”, and
“Purchases”. These subjects may then be composed of a number
of different data collections that may reside as SAS data sets,
database tables, Multi-Dimensional Data Bases, charts, reports, or
graphs. Figure 7 shows the logical structure within a subject:

Subject 1

Subject n

Data Warehouse

Detail

Detail Table 1

Detail Table n

Summary Group 1

Summary Level 1

Summary Level 6

MDDB 1

MDDB n

Summary Group n

Information Mart 1

Infomart Item 1

Infomart Item n

Information Mart n

Figure 7 - Structure within a Subject

The detail element can function simply as a grouping element like
an ODD group, or it can actually be defined as a table or view on to
multiple, related detail tables. You may only have one detail
element per subject.

Detail tables are the most granular tables in a subject and are the
elements that contain the initial load of data that comes from the
operational data sources (after it has been transformed).

Summary groups are groups of related summary tables and/or
MDDBs and are derived from their related detail tables. You may
have any number of summary groups. A summary group defines
the default class and analysis variables that are used when building
the dimensions for each summary level within the group.

Summary levels (also known as summary tables) are time-based
tables and are summarized by the default variables identified in the
summary group. Each summary level corresponds to a particular
time dimension such as day, week, month, year, etc. Six different
time periods are available for summarization.

Information marts, or infomarts, are logical groupings of information
mart items. An information mart item contains or displays
information derived from data in a detail or summary level.
Typically, they are charts, reports or graphs stored in SAS catalog
entries. However, they also may be stored queries, text files, or
even other executable applications that are invoked when opened.

5

Figure 8 shows the logical structure within Data Mart groups:

Data Mart Group 1

Data Mart Group n

Data Warehouse

Data Mart 1

Data Mart n

Information Mart 1

Infomart Item 1

Infomart Item n

Information Mart n

Subject 1

Subject n

Figure 8 - Structure within a Data Mart Group

Data Marts are tables of data that are typically subsets of one or
more subject tables and are designed to address the information
requirements of a specific end-user community, such as a
department or an individual. Data marts may also be used to store
the results of ad hoc queries or cross-subject analyses and usually
reside closer to the end user, for example, a Data Warehouse may
reside on an enterprise-wide Unix Server, however, a data mart
may reside on the end user’s desktop PC.

Defining warehouse elements is a similar process to defining the
ODD groups and ODDs. You use the pull-down menus or the right
mouse button in the Explorer window to add warehouse elements
to the hierarchy. You then edit those elements via their Properties
windows. Many of the Property window tabs are similar, if not
identical, to other tabs you have already seen when defining ODDs.
However, there are some new tabs that pertain to the definition of
the physical storage characteristics of warehouse tables. Figure 9
shows the physical storage tab that is displayed when defining or
editing the properties of a detail table:

Figure 9 - Physical Storage Tab

The storage format of a detail (or summary) table may be either
SAS or DBMS format. The Load Technique may be either
“Refresh” to reload the entire table or “Append” to append new
transactions coming from the operational data source to the detail
table. Once those two fields have been completed, click on the
Define button to display the appropriate Table Properties window.
Different windows are displayed based on what you selected as the
storage format.

If you selected the SAS storage format, a SAS Table Properties
window will be displayed that will allow you to define the physical
location of the SAS table, any read/write/alter passwords, SAS data
set options like compression and encryption, and any desired data
set indexes. The index tab is a relatively new addition that allows
you to define single or multiple indexes as well as update and
delete those indexes:

Figure 10 - The Index Tab

If you chose instead to store your detail table in a DBMS storage
format, clicking on the Define button will display the DBMS Table
Properties window as shown in Figure 11:

6

Figure 11 - DBMS Table Properties Window

The Location tab contains important information about how the
DBMS table is to be accessed. The table is accessed by defining a
DBMS connection object that contains information about the DBMS
format, e.g., Oracle, as well as information on DBMS userids,
schemas, passwords, and other options as shown in Figure 12:

Figure 12 - DBMS Connection Properties Window

This information is used to generate the appropriate SQL to create
and load the DBMS table in the load job.

Once you have initially defined your detail and detail tables, it’s a
good idea to proceed with defining the process that will populate
those tables (via the Process Editor), rather than defining more
warehouse elements such as summary tables and infomarts.
Once you have tested the loading of the detail tables, then other
warehouse elements, such as summary tables and data marts,
may be defined easily via similar techniques.

DEFINING WAREHOUSE PROCESSES

Once the desired warehouse elements have been defined with the
Explorer and properties windows, you are now ready to determine
how those elements are to be populated. This is done by using a
new tool known as the Process Editor. The Process Editor is

accessible from many different windows by way of pull-down
menus, pop-up menus, the toolbox, and push buttons, all via the
Process… or Process Editor selection.

The Process Editor enables you to define how data flows from your
Operational data sources, through any optional transformation
steps, and into the load step for the target table. Additionally, the
Process Editor defines how other warehouse elements, such as
summary tables or data marts, are populated.

The easiest way to explain how the Process Editor works is to go
through a simple example of defining a load process for a detail
table.

In our example, assume you have defined a detail table called
CUSTOMER DETAIL TABLE that contains information about
customers. Invoking the Process Editor on the Customer detail
table shows only a single icon, since no process has yet been
defined:

Figure 13 - Process for New Detail Table

Note that the Process Editor displays the name, type of warehouse
element, and description that you completed on the properties
window for that detail table. Additionally, the Process Type radio
box indicates whether or not a process step has been defined for
that object, and, if so, whether or not the code will be generated by
SAS/Warehouse Administrator or supplied by you.

The first thing you will want to do is to decide what ODDs are input
to that Customer Detail table. To do that, you define an Operational
Data Mapping for the table. The Operational Data Mapping defines
how columns in the ODD are mapped to columns in the detail table.
To add a Mapping, select the Customer Detail table and open the
pop-up menu with the right mouse button and select
Add>Operational Data Mapping . SAS/Warehouse
Administrator displays a small selection box that requires you to
select which ODDs are input to the Customer table. In our
example, we select the INSTALLATIONS ODD:

7

Figure 14 - Selecting Operational Sources

After you choose your input ODDs, you will notice that the process
diagram has been updated as shown in Figure 15:

Figure 15 - Updated Process Diagram

You read the process diagram from bottom to top, i.e., the sources
are at the bottom and the data flow proceeds upward towards the
target table at the top.

Note that the ODD and the detail table are depicted as icons where
the Mapping object is depicted as a simple text box. Iconed objects
denote “loadable” entries such as tables. They represent both data
(the table itself) and the code used to load that table. The pop-up
menu for iconed objects contain an “Edit Load Step” selection that
is used to specify how the load code for that table is to be
generated.

Text box objects, like the mapping object, are “process” entries that
primarily represent source code only, i.e., there are no pre-defined
warehouse objects (like detail tables or ODDs) associated with
process objects.

To define the process for the Mapping object, we select the object
and open the pop-up menu with the right mouse button and select
Properties. The following Mapping Process Properties window
is displayed:

Figure 16 - Mapping Process Properties Window

The Source Code tab, as shown in Figure 16, is where you specify
whether or not you want SAS/Warehouse Administrator to generate
the code to do the mapping of columns, or if you will be supplying
the code via a SAS catalog source entry.

The Execution tab specifies the host where the mapping source
code should run. If this is a remote host, then the source code is
automatically enclosed in an RSUBMIT block.

The Output Data tab specifies the output data set that will be
produced as a result of the mapping process.

One of the most important tabs on this window is the Column
Mapping tab. This tab allows you to define how the detail table
columns are to be mapped to the ODD columns. You can specify
that you want the detail table columns to be mapped directly, one-
to-one, with the ODD columns, i.e., column values are directly
copied without transformation. To do this, you click the button
labeled 1 to 1 Mappings… This will display the One-to-One
Column Mapping window that will allow you to choose which
columns map to each other:

Figure 17 - One-to-One Mapping Window

Alternatively, you can specify that detail table columns can be
derived from ODD columns by some formula or other type of
translation. By pressing the Derive Mapping button,
SAS/Warehouse Administrator displays an Expression Builder
window that allows you to construct many different types of

8

transformations on column values as they are being extracted from
the ODD:

Figure 18 - Expression Builder Window

Once you have completed the information on those four tabs, your
mapping is complete and may be saved by pressing OK. You may
optionally set some various options via the Options tab, or supply a
WHERE clause for the generated mapping code via the WHERE
tab. The General tab is used to change the name of the Mapping
object as it appears in the Process Editor.

There are currently three other types of process objects besides
Operational Data Mappings:

• Data Transfers
• Record Selectors
• User Exits

Data Transfer process objects generate code that is used to
transfer data from one host to another. SAS/Warehouse
Administrator generates code that uses PROC UPLOAD or PROC
DOWNLOAD to move the data.

Record Selector process objects are used to subset data according
to the criteria you specify. Record selectors are frequently used to
extract just the changed data from any input ODDs.

User exit process objects are code fragments that you want
SAS/Warehouse Administrator to insert into the process and run.
They are frequently used to transform data before loading into the
target table, or to generate reports.

For example, perhaps you wanted to include a user exit between
the Mapping object and the load step that would print a PROC
CONTENTS of the extracted data from the Mapping step. You
would select the Mapping object, click the right mouse button to
open the pop-up menu and select Insert>User Exit. A User
Exit process object would be inserted in the process flow as shown
in Figure 19:

Figure 19 - Process after adding a User Exit

You would then invoke the Properties window on the new User Exit
and complete the Source Code tab so that it points to your PROC
CONTENTS source code in a SAS catalog SOURCE entry.

Note that we used the Insert> selection in the previous
example, rather than Add>. Insert> means to add a “target” to
the currently selected entry, i.e., closer to the top of the process
flow diagram. Add> means to add a “source” to the current entry,
i.e., closer to the bottom of the diagram.

The last thing you will want to do is to define how the detail table is
to be loaded. Up until now, we have only defined how the input
data are accessed and prepared, i.e., transformed into the correct
format in preparation for loading into the target table. To define the
details of the Load step, select the detail table and open the pop-up
menu with the right mouse button and select Edit Load Step…
This will invoke the Load Process Attributes window that contains
some tabs that you saw before on the Mapping Properties window.
You can specify how the source code for the load step is to be
generated, where the code should run, what options are in effect,
and if any post-processing step should run after the load step. The
post-processing step can be used to perform statistics on the
loaded table, send completion messages or reports to the DWA, or
for any other purpose.

Since the processes for all objects in our example have been
defined, you are now ready to generate code to load the Customers
detail table.

There are many other facilities in the Process Editor that are
beyond the scope of this paper. The Process Editor is an incredibly
flexible tool that can be used to define practically any kind of
warehouse process. It also serves as an effective documentation
tool that describes how warehouse tables and columns are
populated. At SAS Institute, we have even used the Process Editor
to document data flows and source-target relationships for
processes that are not even actual warehouse applications.

GENERATING CODE

Once you have completed the definition of the process metadata
for the warehouse element you are working on, you may start
generating the code that will be used to load that element. To view
the code that will be generated, go to the Process Editor for the
warehouse element you are loading and open the pop-up menu for
that selected element with the right mouse button. Select the View

9

Code… function to view the generated code. You have the option of
viewing code for the selected element or for the entire process tree.

It is recommended that you view the generated code for many of
the process editor objects, such as ODDs, Data Transfer objects,
Mapping objects, etc. to get a sense of what those objects do and
how they can be used in the process diagram. For example, if an
ODD has been defined as remote, an RSUBMIT block is
automatically generated by SAS/Warehouse Administrator:

options comamid=tcp;
filename rlink "tcptso.scr";
%let MVS=mvs.mycompany.com;
signon MVS;
rsubmit MVS;
libname mvsdata
"mvsdata.test.sasdata"
;
endrsubmit;

SAS/Warehouse Administrator generates the code in the Process
Editor from bottom to top, left to right. Whenever you generate
code to load a table, SAS/Warehouse Administrator generates the
code needed to access any warehouse elements that are input to
the table, as well as the code to load the table itself. To be more
specific, when View Code is selected for a “loadable” element,
such as a detail or summary table, the code that is generated
contains all of the processing down to the next “loadable” element
in the process diagram. When another “loadable” element is
encountered, only the code needed to access that element is
generated, i.e., it’s associated Load Step code is not generated.
For example, if you were generating code to load a summary table,
SAS/Warehouse Administrator would generate the code to access
the detail tables that are input to the summary table, but it would not
generate code to load those detail tables.

User Exits are inserted in the generated code without modification.

Each individual step in the process, by default, sets the &SYSLAST
macro variable to communicate the last data set created to the next
step in the process. For example, this code fragment below was
generated for a mapping object and detail table. It shows how the
WORK.EXTPROD view created in the mapping step is accessed in
the next step by the SET _LAST_ statement:

 /**/
/* Name: mapping */
/* Description: Execute the Process for this
step */
/* Generated: 08JAN97:10:02:58 */
/**/
PROC SQL;
CREATE VIEW WORK.extprod AS
SELECT
pdb.PRODNUM AS PRODNUM length=8
,
pdb.PRODNAME AS PRODNAME length=15
,
pdb.PRODID AS PRODID length=9
FROM
PDB.pdb
;
QUIT;
%let syslast=WORK.extprod;

/**/
/* Name: Product detail table */
/* Description: Execute the Process for this
step */
/* Generated: 08JAN97:10:02:59 */
/**/
libname _whdata
"dwdemo_whdata"
;

DATA WORK.A00000W8 / VIEW=WORK.A00000W8;
SET _LAST_;
 length _loadtm 8;
 _loadtm=input("&SYSDATE"||’
’||"&SYSTIME",DATETIME.);
RUN;

There is an option to remove the definition of the &SYSLAST macro
variable, however, it is then up to you to ensure that the flow of data
through the process is correct.

EXECUTING GENERATED CODE

Once you have reviewed the code for the warehouse element you
wish to load, select that element (either in the Explorer window or
Process Editor window) and select Run… from the pop-up menu,
File pull-down menu or toolbox. SAS/Warehouse Administrator
opens the Load Generation/Execution Properties window:

Figure 20 - Load Generation/Execution Properties Window

This window gives you the option of generating code that is tailored
to be run in either batch or interactive mode. Interactive mode
assumes you will be running the generated code in the current
session, so does not allocate the metadata data sets. Interactive
mode is useful for testing the code, however is not practical if you
are working with large amounts of data. If you select batch mode,
SAS/Warehouse Administrator generates the LIBNAME statements
to access metadata.

Additionally, you have the option of either editing the job, saving the
job source code to a catalog source entry or external file, or
passing the generated source code to the Job Scheduler.

ADDITIONAL TOOLS

SAS/Warehouse Administrator also offers other new tools and
interfaces that assist you in building warehouses.

Setup Window

The Setup Window allows you to define, in one interface, any items
that are used globally. This includes SAS Libraries, Hosts, DBMS
Connections, and Contacts:

10

Figure 21 - The Setup Window

Items may be either added, edited or removed. This window is
useful if you have a large number of global items to enter at once.

Metadata Search Capabilities

Once you have a large warehouse already built, you may find it
necessary to locate a particular item of information. The Metadata
Search window, shown in Figure 22, makes this easy to perform:

Figure 22 - The Metadata Search Window

You access the Metadata Search window by opening the Tools
pull-down menu and selecting Search Metadata… This window
provides the ability to search for a character string in the NAME
and/or DESCRIPTION fields of any warehouse element. Various
options are available to either limit the search or modify the search
criteria.

When the list of matching warehouse elements is displayed, you
can select individual items and click on the Properties button to
view the appropriate properties window for that selected item. If the
item is a column object, the properties window for the owning
warehouse table is displayed.

Metadata Export Capabilities

SAS/Warehouse Administrator provides the ability to export the
metadata to either an EIS metabase or SAS data sets. You can

then use the exported metadata in other SAS or SAS/EIS
applications.

Miscellaneous

SAS/Warehouse Administrator contains a number of useful data
utilities from the Explorer window. To access those utilities, select
a warehouse element that represents a table, such as an ODD or
detail table. Open the pull-down menu under Tools or the pop-up
menu via the right mouse button and select Data Utilities >.
You should see a list of actions as shown in Figure 23:

Figure 23 - Data Utilities

For example, selecting Contents will issue a PROC CONTENTS
against the data set, displaying the complete attributes of the table.

As with many other SAS applications, you can drag and drop
tables. For example, you could add a SAS/EIS application on your
SAS/Warehouse Administrator folder. You could then drag a table
from the Explorer window and drop it on top of that application.
This will invoke the SAS/EIS application with the table as its
primary input.

CONCLUSION

SAS/Warehouse Administrator software provides a flexible
framework for effective warehouse management through a
metadata-driven architecture. It provides business subject
definition, table and column definition, summarization, process
editing and numerous other capabilities that facilitate the building,
maintenance, and exploitation of data warehouses.
SAS/Warehouse Administrator further strengthens the ability of the
SAS System to be used as an effective data warehouse tool.

REFERENCES

Lewis, Terry, SAS Institute Inc. (1996), “Data Warehousing with the
SAS System”, Western Users of SAS Software Proceedings of the
Fourth Annual Regional Conference

SAS Institute Inc. (1996), SAS/Warehouse Administrator User’s
Guide, Cary, NC: SAS Institute Inc.

11

AUTHOR CONTACT

Terry Lewis, SAS Institute Inc., 100 SAS Campus Dr., Cary, NC
27513, (919)677-8000, ext. 7778, email snotll@mvs.sas.com

SAS, SAS/ACCESS, SAS/SHARE, SAS/CONNECT, SAS/EIS, and
SAS/WAREHOUSE ADMINISTRATOR are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ORACLE is a registered trademark or
trademark of Oracle Corporation. indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

	Main TOC

