
1

The Realities of Downsizing: Moving a SAS Application from
MVS to UNIX

Kimberly J. LeBouton, K.J.L. Computing

Abstract

Downsizing in the current business world is
deemed necessary for companies to remain
competitive. Companies are downsizing
mainframe applications to smaller platforms in
the hope of saving money and gaining
productivity for both users and developers. This
paper will explore the realities of downsizing an
MVS SAS application to UNIX at a major
manufacturing company.

Managing the Project

• Business reasons for moving the SAS
application to the UNIX platform.

• Key issues in planning and managing the
transition.
• What operating system to use for UNIX

emulation: Windows NT or Windows
95?

• Downsizing when the new platform is
not yet in place.

• Convincing “mainframe dinosaurs” that
UNIX is a productive world for SAS
programmers.

Key Technical Issues

• Moving 20 gigs of data across platforms on a
weekly basis.

• Managing over 300 datasets.
• Converting SAS code.

To conclude, a financial picture will be presented
to show what gains were actually made in
reducing mainframe CPU utilization.

Managing the Project

Why Move to UNIX?

The Service Engineering Information (SEI)
department started as most end user computing
groups do—not enough I.S. resources to fulfill
user demands. COBOL reports could not be
written fast enough to meet needs. Also,
analysts wanted access to analytical tools in
order to analyze their data. Thus, SAS was
purchased and installed on MVS in 1985 to meet
the unfulfilled needs of the user community.
SAS datasets were built and end users were
trained in the rudiments of SAS.

By 1990, SAS programmers used SAS/AF to
develop menu systems that create sophisticated
analytical programs. The menus were used
primarily by analysts to study warranty issues
related to the product lines. The SAS programs
developed from input by the analysts interleave
many different datasets and use many SAS
products, such as SAS/STAT, SAS/ETS, and
SAS/GRAPH. The programs were then run
either interactively or in batch.

Due to the volume of data and the sophistication
of the analysis, mainframe CPU and DASD
utilization for the Service Engineering group was
very high. The average mainframe CPU
utilization was 2.8 hours per day. This
accounted for fifty percent of the MIPS on the
end-user mainframe side (i.e., LPARC).
Twenty-seven GB of permanent storage and 2.5
GB temporary storage were required. The
average queue time was about one hour and
forty minutes, while average CPU usage was

2

about one minute. The users felt response time
was often slow. Batch turnaround normally
took a day, which did not satisfy emergency
needs for information.

Service level on the mainframe had been
degrading as more users wanted access to data.
In addition, the atomic level of the data
warehouse was being implemented on LPARC.
To compound the problem, the decision was
made to cease adding resources to the end users’
machine. This led the SEI department to
seriously consider if the current operating
environment was the right solution for their
computing needs.

Early in 1995, a study was conducted by SAS
Consulting Services to explore resource usage,
environment, and customer performance
expectations.1 Their conclusions were as
follows: (1) off load cycles to improve
performance, (2) move to a distributed
environment, (3) create summary datasets and
modify existing datasets to move to a LAN
server; and (4) implement coding changes to
improve efficiency.

These suggestions from SAS, and others
proposed by the Information System Department
(ISD), resulted in the development of a project
to explore moving SEI processes from
MVS/TSO to a RS6000/UNIX environment.
This move was organized into two phases. The
first phase, which began in late 1995, entailed a
feasibility analysis of transferring SAS resources
to the RS6000. Issues included cost efficiencies,
resource utilization and performance,
transportability of SAS code, and a comparison
of data accessibility methods (i.e., SAS datasets,
SAS views, and/or DB2 views). The findings
were encouraging. SAS code conversion
required minimal changes, and decreases in
elapsed times were significant. I joined the
project at the beginning of the second phase,
which was the actual migration of SAS code and

associated data to the RS6000. It was decided
that both phases of this project would be
independent of mainframe Data Warehouse
implementation.

This paper has two objectives: (1) To identify
issues that caused a schedule slippage despite the
application of traditional project scheduling
techniques, and (2) To develop prescriptive
approaches to help minimize the impact of these
issues on future projects.

Managing the Transition

Prior to my joining the project, a project
schedule had been established with all of the
known requisite components necessary to
finalize the second phase. Several components,
outside my control, were late. For example, it
was planned that the three permanent SAS
programmers would have access to UNIX
beginning in March, but due to competing
hardware and software delays, access was not
available until September. In addition, the
analysts did not have access to UNIX until late
November. One of the programmers received a
UNIX workstation to test in late July, but we
faced a significant schedule variance by that
time. Although the plan was for me to spend the
majority of my time converting SAS code, more
than sixty percent of my time was spent
establishing methods to download the data on a
regular basis. This is one of the key issues of
downsizing, that is, the extent of effort necessary
to transfer data was not completely understood
at the planning stage.

Accessing UNIX

Much of the delay in getting the programmers
onto UNIX was due to the fact that the
approved PC operating system, Windows 3.1,
had difficulty handling the UNIX emulation
software, eXceed. The move to a 32 bit
operating system was not planned to be made

3

until later in the year, but this project forced an
early decision on this issue. We tested Win NT

and eXceed for Win 3.1 for over a month with
very stable results, but Windows 95 was
selected as the approved operating system. As
mentioned above, a UNIX workstation was also
tested, but the programmers did not want an
additional terminal on their desk. The
programmers and analysts also wanted to be able
to continue to “cut-and-paste” SAS output into
other software applications. The UNIX
workstation could not handle this requirement,
at this time. When the programmers were finally
able to access UNIX, they were thrown a curve
with the new operating system. In fact, they
were faced with a new learning curve. This is
another key issue in downsizing, the often
overlooked task of researching, selecting and
testing the operating system prior to project
implementation. Alternatively, the task could
have been to confirm the capability of the
existing operating system to handle the
emulation software.

New Platform Issues

Printing also took longer than planned. The
status quo was to print out very large reports for
corporate headquarters. This type of printing
would be required of the new platform too. The
schedule estimated that this printing capability
would be in place by May, but it was not
available until October. Throughout this delay,
matters were further complicated when it was
arbitrarily determined that the mainframe printer
could not be used as a UNIX printer. In the end,
the mainframe printer was able to be defined as a
UNIX printer. The key issue here is to be
suspect of simple “no” answers and to do your
own research to determine whether the
roadblock truly exists.

A high quality color printer was brought into the
SEI department to be tested as a UNIX printer
in September, although it was planned to be
delivered in April. Another department had an

identical printer since April, but it was not
defined as a UNIX printer until late June. Prior
to being defined, if you wanted to send UNIX
output to this printer, you were required to use
FTP code and a very long address. Although
the other department’s printer was available in
June, it was not accessible to us because it was
located in a secured area. Therefore, the
schedule slipped another several months since
our printer did not arrive until September. The
key point here is to define the required hardware
and factor in adequate lead time for delivery.

Printing to the mainframe printer and printing to
the color printer required separate UNIX
printing commands, with different printing
options. To get the text printouts to match for
both printers, time was spent determining which
font would allow for the same printing options in
SAS. Large sections of the AF programs
referred to printing. This SAS code conversion
was left undone until the printing environment
was fully in place.

Convincing ‘Mainframe Dinosaurs’

One of the original concerns of this project was
the anticipated resistance of users to a new
platform, but fortunately the mainframe become
more sluggish. Response times became so bad
that UNIX was now viewed as the promised
land. Since the data was being continually
refreshed, UNIX could be used for ad-hoc
requests.

The SAS programmers were comfortable using
the SAS Display Manager on the mainframe,
which works similarly on the new platform.
Also, the Windows-look of the RS6000 under
AIX was very familiar. Several years ago this
group had training with SAS/AF FRAME, but
were not able to exploit many of the features
until they began to use SAS on the RS6000.
The on-site UNIX support personnel were
comfortable with UNIX commands, but the SAS

4

programmers are forcing them to learn more
about the windowing nature of AIX. The
sluggish mainframe, the familiarity of SAS
Display Manager, and the windowing features of
AIX resulted in little to no resistance to the new
platform.

Technical Issues

Weekly Transfer of Data

The biggest single issue for this project was
getting over twenty gigs of data down to the
RS6000 on a weekly basis. As previously
stated, this alone took over sixty percent of my
time. The twenty gigs of data were comprised
of 356 datasets, primarily SAS datasets. These
datasets changed so much in a week that it was
necessary to bring down a new copy every week.
The data needed to be refreshed by start of
business on Monday mornings.

Three different approaches were tried before we
determined the best transfer method. The first
approach, which was conducted involved testing
SAS/CONNECT for over a month to see if we
could get the data down by Monday morning.
The connection for SAS/CONNECT originated
on the RS6000, but we were only able to
transfer the data on late Saturday night or early
Monday mornings, because of maintenance to
the mainframe on Sundays. The transfer speed
using SAS/CONNECT was too slow to work
within the stated constraints.

We also had connection problems. Programs
were created to restart, if the connection broke,
but the mainframe account would get locked up
for hours. We were unsure what was causing
this problem, SAS, RS6000 or MVS, but we
needed to get the data down. It was concluded
that SAS/CONNECT would not be able to
handle the demands of such a large, frequent
transfer.

Aside: As suggested in the Hardy, Barrios, and
Muller paper (see reference section),
SAS/CONNECT has never been seriously tested
in the opposite direction. That is, have
SAS/CONNECT originate on MVS and push
the data to the RS6000. This will be explored
when dealing with the smaller daily downloads
of data.

The second approach was to try to use the
FILENAME FTP transfer method that became
available with version 6.11 of base SAS. Had
we been able to use SAS/CONNECT, we would
not have needed holding tanks for our data on
both platforms, which we knew was a
requirement of PROC CPORT and PROC
CIMPORT. FILENAME FTP only required a
holding area on MVS to get the data down.
Unfortunately, we have had problems with this
method, and still have an outstanding tracking
number with SAS Technical support.

The final approach was to create production jobs
using PROC CPORT, and then FTP the file
down to the RS6000. A SAS program was
developed on the RS6000 to grab the
transported file and turn it into a SAS dataset
with PROC CIMPORT. The SAS dataset also
needed to be resorted, because of the EBCDIC
to ASCII conversion. See Appendix I for an
example of the four steps used to get the data
down.

Because we had spent so much time working on
the first two approaches, we were really
pressured to get the data down fast. Working
within the constraints of not processing on
Sundays and also wanting to be sure that the
data update was complete on MVS, we started
eight production jobs under two separate job
streams on Monday mornings at 2:00AM. The
jobs would finish around 10:30AM on Mondays.
It took over three hours of CPU time to CPORT
the data and over 8 hours of I/O processing to
transfer the data down to the RS6000.

5

Successful downloads became a reality in late
July.

To cut transfer rates in half, hopes were placed
on CLIO/S—an IBM data transfer product.
CLIO/S, which was scheduled to be installed by
May for another RS6000 project, was not
installed until late September. Due to some
irregular UNIX installation, CLIO/S never
performed as was hoped. Because of this, we
needed to modify the production jobs to get the
data transferred early on Mondays. We were
also having some problems with our current
production jobs. The datasets grow in size each
week as the year continues. Some of the larger
datasets were causing the production jobs to fail,
because of space limitations. Due to CLIO/S
not working as planned, and the space limitation,
the eight production jobs were rewritten into 72
production jobs. All but one of the production
jobs were able to follow the production jobs that
created the MVS datasets. The six largest
datasets, that accounted for over 20 percent of
the 20 gigs of transferred data, were immediately
sent to tape after the completion of their
respective production job.

Managing Over 300 Datasets

The many programs that were needed to transfer
the datasets were easier to create and maintain
because of the “pipe” option on FILENAME
under UNIX. This option, combined with SAS
DATA _NULL_ report writing, was used to
create the JCL for the production jobs and over
six hundred separate FTP transfer programs.
See Appendix II for code used to create the
FTP programs.

Converting SAS Code

Because of the portability of SAS code, the
conversion of SAS code was minimal. It was
decided that the SAS code was to work both on
MVS and UNIX. Modified SAS autoexecs are
shown in Appendix III for MVS and UNIX.
Also shown are examples of the SCL code to
support the dual platform approach. The key
issue here is that what was originally thought to
be a SAS programming effort turned out to be a
macro-level project management effort.

Conclusion

To summarize, I hope that what I presented in
this paper will serve as a guide to those who will
be involved with downsizing an application. I
have tried to point out areas that caused
schedule slippage and also provide remedies to
these problem areas. Adding tasks to a
traditional timeline may be the only remedy, but
it is better to anticipate the problems before they
arise.

Since the transfer of data is such a timely issue, I
want to readdress it one last time. Whether it be
related to transferring information via the
Internet, refreshing a data warehouse, or
transferring data between two different
computer platforms, the technology has not
caught up with the high demand for the need to
move data quickly. Make sure that you have
planned the requisite steps necessary to have the
data available for use on the new platform.

Although financial gains are not yet available
from the completion of this project, the
following is known. The downsizing added
some additional CPU time on the production
mainframe and also required additional DASD.
The analysts will not be completely removed
from the mainframe, but their CPU usage on the
end user machine will be significantly less.

6

Other Technical Resources

The following Internet mail lists, with their
respective addresses, were used during this
project:

SAS-L
listserv@uga.cc.uga.edu

AIX-L
listserv@pucc.princeton.edu

EXCEED-L
exceedusers-request@hummingbird.com

Acknowledgments

A special thanks to those who responded to my
many postings on SAS-L concerning this
project, especially Tim Berryhill, Tim
Latendress, Greg Barnes Nelson, and Karsten
Self.

Thanks to Tracy Cermack who was instrumental
in getting this project started, reviewed this
paper for content, and for coining the term
“mainframe dinosaurs.”

Also, thanks goes to my husband, Al LeBouton,
who was my editor, and also found numerous
activities for our sons to do, while I worked on
this paper and presentation.

Notes

1The unpublished study is titled, Technical
Services Engineering and Auto Warranty SAS

End-User Computing Study by SAS Consulting
Services Inc. for American Honda Motor
Company, and was given to the company on
June 9, 1995.

References

Andrais, B. and Kirtz, J. (1994), Moving off the
Mainframe: Downsizing and Cost
Reductions. Proceedings of the Nineteenth
Annual SAS Users Group International
Conference, Cary, NC: SAS Institute Inc.,
643-653.

Carr, R., and Bretheim, D. (1995), The Other
Five Percent: Writing SAS Code for
Multiple Operating Systems. Proceedings
of the Twentieth Annual SAS Users
Group International Conference, Cary, NC:
SAS Institute Inc., 94-99.

Cohn, D. (1994), An AIX Companion.
Englewood Cliffs: Prentice-Hall, Inc.

Fischell, T. (1993), SAS Transport Files or
SAS/CONNECT Software: Considerations
for the Proper Choice. Proceedings of the
Eighteenth Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 1243-1250.

Grippo, K., Chen, J. and Brown, L. (1995),
Building a Data Warehouse with SAS

Software in the UNIX Environment.
Proceedings of the Twentieth Annual SAS

Users Group International Conference,
Cary, NC: SAS Institute Inc., 519-524.

Hardy, K., Barrios, A., and Muller Sally (1996),

You Want Me to Move How Many Thousand
Files from MVS to UNIX? Proceedings of
the Twenty First Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 1611-1621.

Hoffman, D. (1996), The Push to “Get Off of
the Mainframe” and Move to Client/Server:

Is the Software Industry Keeping Up With

7

the Demand for Data Storage and Access?
Proceedings of the Twenty First Annual
SAS Users Group International
Conference, Cary, NC: SAS Institute Inc.,
1473-1478.

Lindsey, M. (1996), Cross Platform Generation
of Reports from Oracle Using SAS on
MVS, Macintosh and AIX. Proceedings of
the Twenty First Annual SAS Users
Group International Conference, Cary, NC:
SAS Institute Inc., 718-723.

Nelson, G.B. (1995), The SAS System UNIX
Primer. Proceedings of the Twentieth
Annual SAS Users Group International
Conference, Cary, NC: SAS Institute Inc.,
1416-1419.

Plath, D. (1994), Downsizing a Mainframe SAS

Application to UNIX: An Application
Developer’s Perspective. Proceedings of the
Nineteenth Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 438-441.

SAS Institute Inc. (1993), SAS Companion for
UNIX Environment: Language,
Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1993), SAS Companion for
UNIX Environment: User Interfaces,
Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc.,(1990), SAS Companion for
the UNIX Environment and Derivatives,
Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1995), SAS Software:
Changes and Enhancements, Release 6.11,
Cary, NC: SAS Institute Inc.

Scott, S. (1993), Why We Replaced DB2

Software with SAS Software as a
Relational DBMS for a 30-Gigabyte
User Information System. Proceedings of
the Eighteenth Annual SAS Users Group
International Conference, Cary, NC: SAS
Institute Inc., 187-196.

Wayte, L. (1996), SAS to the Rescue! A
UNIX System Administrator’s Tool.
Proceedings of the Twenty First Annual
SAS Users Group International
Conference, Cary, NC: SAS Institute Inc.,
1451-1456.

Witmer, B. and Dower, D. (1995), Mainframe
to Windows in a Snap: Moving a SAS

Application Among Operating Platforms.
Proceedings of the Twentieth Annual SAS

Users Group International Conference,
Cary, NC: SAS Institute Inc., 1348-1352.

Young, M.L. and Levine, J. (1995), UNIX for
Dummies. Foster City, CA: IDG Books
Worldwide, Inc.

8

About the Author

Kim LeBouton is an independent consultant with
14 years experience with SAS. Her areas of
expertise include base SAS, SAS/STAT,
SAS/FSP, and SAS/AF software. She has a
BA degree in Psychology from California State
University, Long Beach and a MA degree in
Educational Statistics from UCLA. Kim has
been selected as WUSS 1997 Co-Chair. She has
recently applied to become a SAS Institute
Quality Partner.

Kim LeBouton
K.J.L. Computing
3431 Yellowtail Drive
Rossmoor, CA 90720
(562) 594-9235
email: Kim_LeBouton@msn.com

Appendix I: Transfer Program

Main Program

//PCZ02J01 JOB 01CCZ,'LABOR TRANSFER ',CLASS=A,MSGCLASS=M,
// TIME=1440,REGION=4096K
//*
//JOBLIB DD DSN=SYS3.LINKLIB,DISP=SHR
//*
//CALL001 EXEC SASSYS,CONFIG='CB18.MXG.USERLIB.BKUP(CONFIGK1)'
//ICPLIB DD DSN=ICP.SAS.LABOR,DISP=SHR
//XPORT DD DSN=HM.CZ99AB.D01.SAS.LABOR.XPORT(+1),
// DISP=(NEW,CATLG,DELETE),
// RECFM=FB,
// LRECL=80,
// SPACE=(80,(2,1),RLSE),
// AVGREC=M,
// UNIT=DISK
//SYSIN DD DSN=SYS3.SAS.PROGRAMS(CZ99XP),DISP=SHR
//*
//CALL002 EXEC CZ99AB,
// MEMBER=C0201X01,
// NODE4=SAS,
// NODE5=LABOR
//*
//CALL003 EXEC SASSYS,CONFIG='CB18.MXG.USERLIB.BKUP(CONFIGK1)'
//FTPRUN DD DSN=HM.CZ99AB.D01.SAS.LABOR.FTP(+1),
// DISP=(OLD,KEEP,KEEP)
//SYSIN DD DSN=SYS3.SAS.PROGRAMS(CZ99FT),DISP=SHR
//*
//CALL004 EXEC CZ99AC,MEMBER=C0201F01
//*

Step 1 SAS Program (CZ99XP)

PROC CPORT LIBRARY=ICPLIB FILE=XPORT;
RUN;

Step 2 PROCLIB (CZ99AB)

//CZ99AB PROC MEMBER=MEMBER,NODE4=NODE4,NODE5=NODE5
//*
0/CZ99AB05 EXEC PGM=FTP
//SYSPRINT DD DSN=HM.CZ99AB.D01.&NODE4..&NODE5..FTP(+1),
// DISP=(NEW,CATLG,DELETE),
// RECFM=FBA,LRECL=80,
// SPACE=(80,(10,10),RLSE),AVGREC=K,
// UNIT=DISK
//INPUT DD DSN=SYS3.OPTNCTL(&MEMBER),DISP=SHR

FTP Program (C0201X01)

RS6000 Name
UNIX Account
UNIX Password
locsite autor di
put 'hm.cz99ab.d01.sas.labor.xport(0)' /appl/work/sas.labor.xport
quit

9

Step 3 SAS Program (CZ99FT)

 DATA FTP(KEEP=MSG) CLEAN(KEEP=FTPCLEAN);
 INFILE FTPRUN PAD END=LAST;
 INPUT MSG $133.;
 /* ADDITIONAL MESSAGES MAY NEED TO BE ADDED AS MORE */
 /* POTENTIAL ERRORS OF FTP ARE FOUND */
 IF INDEX(UPCASE(MSG),'ABEND') OR
 INDEX(UPCASE(MSG),'ABORT') OR
 INDEX(UPCASE(MSG),'ERROR') OR
 INDEX(UPCASE(MSG),'FILE NOT FOUND') THEN NOTCLEAN+1;
 OUTPUT FTP;
 IF LAST THEN DO;
 IF NOTCLEAN>1 THEN FTPCLEAN='N';
 ELSE FTPCLEAN='Y';
 OUTPUT CLEAN;
 END;
RUN;

 /* DETERMINE IF CLEAN TRANSPOSE OCCURED */
 /* THE TWO SETS ARE REQUIRED IN CASE IT */
 /* WAS NOT A CLEAN RUN AND THE MSGS NEED*/
 /* TO BE ADDED */
DATA COMPARE;
 IF _N_=1 THEN SET CLEAN;
 SET FTP;
 FILE FTPRUN; IF FTPCLEAN='N' THEN DO;
 IF _N_=1 THEN PUT @1 'N' @10 "&SYSDATE" @20 "&SYSTIME";
 PUT MSG;
 END;
 ELSE DO;
 PUT @1 'Y' @10 "&SYSDATE" @20 "&SYSTIME";
 STOP;
 END;
RUN;

Step 4 PROCLIB (CZ99AC)

//CZ99AC PROC MEMBER=MEMBER
//*
//CZ99AC05 EXEC PGM=FTP
//SYSPRINT DD SYSOUT=*
//INPUT DD DSN=SYS3.OPTNCTL(&MEMBER),DISP=SHR

FTP Program (C0201F01)

RS6000 Name
UNIX Account
UNIX Password
locsite autor di
put 'hm.cz99ab.d01.sas.labor.ftp(0)' /appl/work/sas.labor.ftp
quit

Appendix II Program Creation

filename units pipe 'ls -d /appl/icp/icp.sas.*/';
data minijcl;
 infile units pad;
 input entire $35.;
 if index(entire,'cust.') or index(entire,'labor') or
index(entire,'model') or
 index(entire,'parts');
run;
data minijcl;
 set minijcl;
 typdat='A';
 typdatn='01';
 jobname=compress('PCZ99J'!!typdatn);
 rmicp=substr(entire,11);
 icpdsn=compress(rmicp,'/');
 rmpref=substr(entire,19);
 dsn=compress(rmpref,'/');
 /* MVS Data Sets */
 uicpdsn=upcase(icpdsn);
 udsn=upcase(dsn);
 node4=scan(udsn,1);
 node5=scan(udsn,2);
 if node5=' ' then do;
 node5=node4;
 node4='SAS';
 end;
 node4=trim(node4);
 hpdsn=compress('HH.CZ99AB.D01.'!!node4!!'.'!!node5);
 uxptdsn=trim(hpdsn)!!left('.XPORT');
 uxptdsn1=trim(hpdsn)!!left('.XPORT(+1)');
 uftpdsn=trim(hpdsn)!!left('.FTP');
 uftpdsn1=trim(hpdsn)!!left('.FTP(+1)');
 xportmem=compress('CZ99'!!typdat!!'X'!!put(_n_,z2.0));
 ftpmem=compress('CZ99'!!typdat!!'F'!!put(_n_,z2.0));
 file '$HOME/pcz99j01.sas';
 if _n_=1 then put
"//" JOBNAME " JOB 01CCU,'OTHER FILE TRANSFER
',CLASS=A,MSGCLASS=M,"
/'// TIME=1440'
/'//*'
/'//JOBLIB DD DSN=SYS3.LINKLIB,DISP=SHR';
 step+1;
 put
'//*'
/'//CALL' step z3.0 ' EXEC SASSYS'
/'//ICPLIB DD DSN=' uicpdsn +(-1) ',DISP=SHR'
/'//XPORT DD DSN=' uxptdsn1 +(-1) ','
/'// DISP=(NEW,CATLG,DELETE),'
/'// RECFM=FB,'
/'// LRECL=80,'
/'// SPACE=(80,(500,100),RLSE),'
/'// AVGREC=M,'
/'// UNIT=DISK'
/'//SYSIN DD DSN=SYS3.SAS.PROGRAMS(CZ99XP),DISP=SHR'
/'//*';
 step+1;
 put
 '//CALL' step z3.0 ' EXEC TCZ99AB,'
/'// MEMBER=' xportmem +(-1) ','
/'// NODE4=' node4 +(-1) ','
/'// NODE5=' node5
/'//*';
 step+1;
 put
 '//CALL' step z3.0 ' EXEC SASSYS'
/'//FTPRUN DD DSN=' uftpdsn1 +(-1) ','
/'// DISP=(OLD,KEEP,KEEP)'
/'//SYSIN DD DSN=SYS3.SAS.PROGRAMS(CZ99FT),DISP=SHR'
/'//*';
 step+1;
 put
'//CALL' step z3.0 ' EXEC TCZ99AC,MEMBER=' ftpmem;
run;

proc fslist file='$HOME/pcz99j01.sas';
run;

10

Appendix III SAS Code Conversion

UNIX Autoexec

 /**/
 /** MVS/UNIX CONVERSION **/
 /** TO PROVIDE A MORE GLOBAL ACCESS TO **/
 /** LIBNAMES/FILENAMES THE FOLLOWING **/
 /** VARIABLES HAVE BEEN CREATED. **/
 /** SYSTEM $4 TOGGLE BETWEEN MVS/UNIX **/
 /** PERMROOT $20 UNIX NEEDS ROOT DIRECTORY**/
 /** AND MVS DOESN'T. USED **/
 /** ICP FOR MVS, SINCE '' **/
 /** PUT IN AN EXTRA SPACE TO **/
 /** MVS FILE TO RESOLVE **/
 /** access $20 allows for disp=shr */
 /** wait $20 allows for wait=30 */
 /** wait5 $20 allows for wait=5 */
 /**/

data _null_;
 call symput('iddlc',lowcase(sysget('USER')));
run;

options ls=132 pagesize=59;
options printcmd="enscript";
dm 'formname default';

 %let access =;
 %let afsave =/appl/sei/&iddlc/afsave;
 %let annos
=/appl/sei/utility_files/sas_datasets/map_datasets;
 %let ctryds =/appl/sei/utility_files/sas_datasets;
 %let fmtlib =fmtlib;
 %let graphv6 =/appl/sei/&iddlc/menu_system_output/graphics;
 %let ib04root=/appl/icp/icp;
 %let libnfmt =/appl/sei/utility_files/sas_format_library;
 %let ossystem=UNIX;
 %let outstuff=/u/ia06/tempsave.sasdata;
 %let permroot=/appl/icp/icp;
 %let wait =;
 %let wait5 =;

options pagesize=500;
libname sei6 '/appl/sei/cb04/sas_programs/seimenu';
filename out '$HOME/sasout.data';
filename batch '$HOME/batch.sas';
libname library '/appl/sei/utility_files/sas_format_library/';
libname afsave "/appl/sei/&iddlc/afsave";

MVS Autoexec

 /**/
 /** MVS/UNIX CONVERSION **/
 /** TO PROVIDE A MORE GLOBAL ACCESS TO **/
 /** LIBNAMES/FILENAMES THE FOLLOWING **/
 /** VARIABLES HAVE BEEN CREATED. **/
 /** SYSTEM $4 TOGGLE BETWEEN MVS/UNIX **/
 /** PERMROOT $20 UNIX NEEDS ROOT DIRECTORY**/
 /** AND MVS DOESN'T. USED **/
 /** ICP FOR MVS, SINCE '' **/
 /** PUT IN AN EXTRA SPACE TO **/
 /** MVS FILE TO RESOLVE **/
 /** ACCESS $20 allows for disp=shr */
 /** wait $20 allows for wait=30 */
 /** wait5 $20 allows for wait=5 */
 /**/
 %let access=disp=shr;
 %let afsave=.afsave.sasdata;
 %let annos=ia06.annotate.sasdata;
 %let ctryds=ia06.ctryds.sasdata;
 %let fmtlib=fmtlib;
 %let graphv6=.graphv6.sasdata;
 %let libnfmt=cb04.format.library;
 %let ossystem=mvs;
 %let outstuff=ia06.tempsave.sasdata;
 %let permroot=icp;
 %let wait=wait=30;
 %let wait5=wait=5;

LIBNAME LIBRARY 'CB04.FORMAT.LIBRARY' DISP=SHR;
DM 'AF C=SEI6.MAINCAT.MAIN.MENU NOBORDER=YES' CONTINUE;

SCL Code

INIT:

 LENGTH SYSTEM $4
 LIBNFMT PERMROOT CTRYDS AFSAVEDS GRAPHV6 $60
 ACCESS RUNTIME $8
 PRT WAIT WAIT5 $7
 CTRYSTRG $200;

 CONTROL ASIS;

 ACCESS=SYMGET('ACCESS'); /* SYSTEM VARIABLE DEFINITION */
 CTRYDS=SYMGET('CTRYDS'); /* SEE CORRESPONDING AUTOEXEC */
 AFSAVEDS=SYMGET('AFSAVE'); /* FOR DESCRIPTION */
 GRAPHV6=SYMGET('GRAPHV6');
 LIBNFMT=SYMGET('LIBNFMT');
 PERMROOT=SYMGET('PERMROOT');
 SYSTEM=SYMGET('OSSYSTEM');
 WAIT=SYMGET('WAIT');
 WAIT5=SYMGET('WAIT5');

 IF SYSTEM=UPCASE('MVS') THEN DO;
 CALL EXECCMDI('GCURSOR OFF');
 IDD=SYMGET('SYSJOBID');
 END;

 IF SYSTEM=UPCASE('UNIX') THEN DO;
 IDD=SYSGET('USER');
 IDDLC=LOWCASE(SYSGET('USER'));
 END;

 /* CALL PRINT ROUTINE */
 PRTFMT=COMPRESS('$'!!OSSYSTEM!!'PRT.');
 PRT=PUTC(IDD,PRTFMT);
 NAME=PUTC(UPCASE(IDD),'$SEIFMT.');

 /* OPENING DATASET THAT STORES SCREEN SELECTIONS */
 RC=LIBNAME('AFSAVE',AFSAVEDS);
 DSID=OPEN('AFSAVE.WARRSALE','U');
 CALL SET(DSID);

RETURN;

11

	Main TOC

