
ABSTRACT:

Map in an App: The Power of GIS software in SAS Applications
by Dave Jeffreys, Aaron Hill & Lisa Weber

SAS Institute inc.

In today’s competitive business environment, effective
business decisions are more critical than ever. The rapid
development and use of Geographic Information Systems

(GIS) technology allows organizations to improve business
processes and enhance decision support by combining leading

GIS technology with business data.

With map (spatial) and demographic (attribute) data becoming

less expensive and more accurate, more organizations are

looking at business geographies applications to gain a

competitive advantage. Business geographies applications
provide a powerful interface for exploring business data such
as sales, competition, and demographic information through an
intuitive mapping environment.

This paper will demonstrate examples of how to integrate
SAS/GIS software into organizational applications and link the

SAS System’s data analysis tools directly to the maps,
providing a more intuitive understanding of the data.

INTRODUCTION:

FACT The power of SASS graphics, statistical, forecasting
and additional diverse analytical tools provides the mechanism

for creating sophisticated decision support applications which

analyze and present critical business data to our users.

Frequently, the users of these decision support applications

are not SAS programmers, but business end-users. These
end-users need visual tools for investigating, analyzing and

presenting data in order to reinforce business decisions. With

the release of SAS/GIS software, application developers can
now provide powerful desktop mapping capabilities to these

business end-users.

SAS/GIS, as an integrated component of the SAS System, can

be linked to all SAS/EIS and SAS/AF applications. Moreover,

these applications can be launched from within SAS/GIS. This

allows application developers to tap into ‘out-of-the-box’
SAS/EIS objects or customized SAS/AF screens, thus linking
them directly to the mapping environment.

There is no doubt that the concept of ‘Map in an App’ is

catching the attention of SAS users world wide. To assist in
learning more about the concept of a “Map in an App’, the
following sections will outline the steps of how to integrate

SASJGIS into your SAS/EIS or SAS/AF applications. In
addition, linking the SAS System’s powerful analytical tools
into this environment will be highlighted and discussed.

INTEGRATING SAS/GIS WITH SAS APPLICATIONS:

There are two primary methods employed to achieve SAS/GIS
integration with SAS applications. The first method consists

of using the program action within SAS/GIS. SAS/GIS
program actions can execute SAS programs based on tables

created from features selected from the map. The second

method is the employment of a SAS/EIS or SAS/AF

application to control the session and utilize SAS/GIS as a

viewer component. SAS/G IS sessions which are driven from

SAS/EIS or SAS/AF applications provide users with powerful

SCL and data step processing capabilities for manipulating

data such as the theme data sets utilized by the map.
Application specific criteria can be used to modify a map’s

coverage or layer partitioning. A resulting map would display
information more pertinent to the application subject matter.

HOW TO SECTIONS:

Overview on linking your SAS/GIS map to external data.

Map features are associated with external data by key
variables common to both an external table and the spatial

data. The SAS/GIS program action is linked to the table and
will automatically create a subset of the table with rows which
contain matching key variables for the features selected in the

map. Thematic layers are tied to external tables using the

same method, but include an extra “theme” variable. Color or
size of the layer’s features are determined by the theme

variable. SAS/GIS uses SAS/SHARE to open these data sets

with record level locking, allowing GIS actions or applications

to simultaneously read or update them.

Specific examples:

Example 1: Download and display of web data via the

program action.

P--+

I Set data linked data set, keyed on COUNTY.

I Don’t bother with multiple selections; although,
I multiple selections could be handled too.
+---*l

data _null_;

sec
call symput(‘st’, put(STATE,z2.));
call symput(‘co’, put(COUNTY, z3.));

stop;
end;

filename xx URL
''hRp://venus.census. gov/cdrom/lookup/DB=C9 OSTF3NCMD
=RET/FMT=HTMuLEv=couNTY90/Fo=FIPs.sTATE/Fl .
FIPS.COUNTY90/SEL=&st, &co/T= P~=P60”

proxy=’http://inetgw. unx.sas.com’ ;

data _null_;

infile xx;
input

file ‘test. html’;

put _infile_;

run:

dm “wbrowse test. html”;

Example 2: Changing the theme data set of a layer
dynamically from application code. In this application, SAS/GIS

is used as a viewer.

‘Index’ radio selection. The list box showing the available
data sets is initialized, etc.

init:

~--- Initialize the widgets, user array to get ds names7/
control asis;

%let DSLIB = SUG122;
%let STATAREA. COUNTY;

%let LBLDS = &DSLIB.CNTY_LBL;

%let BRK1 = 80;

O/det BRK2 = 120;

O/oletBRK3 = 200;

...

The map is initially invoked from the application. The
launching icon is then grayed.

map:

~--- Invoke GIS and gray icon+/
call notify(‘map’,’_gray_’);
call notify(’update’,’_ungray_’);

call execcmdi(‘gis “map=sugi22.dbm. county’’;’);
return;

This label is driven when a new variable is selected for the

current data set. The county layer has already been themed
on a numeric summaty variable, which takes on values of 1 to
4. A variable has been formatted for display in the GIS
legend.

The code below will either choose indexed break points for the

variable or will run the univariate procedure to compute them.

These breaks will be used to replace the summary variable

when the map is updated from the update label, driven by

‘Update’ button.

vars:

call notify(‘vars’, ‘_get_last_sel_’, row, sel, label);

call notify(‘varlabel’, ‘_set_text_’, label);
var = varname(dsid, row);

~--- Unprotect the variable label and format range fields
also uprotect the update button and radio box..........”/

call notify(‘varlabel’,’_unprotect_’);
call notify(‘vail ‘,’_unprotect_’);
call notify(‘va12’,’_unprotect_’);
call notify(‘va13,’_unprotect_’);
call notify(‘radiobin’,’_ungray_’);
call notify(‘update’,’_ungray_’);

~--- check the radio box buttons for the univariate button.*/

call notify(‘radiobin’,’_get_station_’,’Univariate’,butnum);

call notify(‘radiobin’,’_issel_’, butnum ,unival);

indxval = not unival;

P--- if the univariate button is pushed then use
Default breaks are supplied in percentages for use with the univatiate ..*/

if unival eq 1 then do;

submit continue;

proc univariate data=&dsname noprin~

var &va~

output out=work.themeuni mean=mean ql =cutl

median=cut2 q3=cut3;

run;

endsubmit;

~ reassign the cut off values ‘/
udsid = open(‘work.themeuni’);
if udsid ne O then do;

call set(udsid);
rc = fetch(udsid);
rc = close(udsid);

udsid = O;
end:

end;
else

link dfltbrks;
call notify(‘vail ‘,’_set_value_’, cutl);
call notify(‘va12’,’_set_value_’, cut2);
call notify(‘va13’,’_set_value_’, cut3);

return;

dfltbrks:

cutl = &BRKl ;

cut2 = &BRK2;

cut3 = &BRK3;
return;

The update label replaces the summary variable from the

univariate results computed above or uses the default break

points supplied in the init section. Finally a single command
is issued to GIS, which will update map based on the current

data set and theme variable chosen. In this way GIS is used
as a viewer component for the application.

update:
/’--- Update the reusable HML categorization variable....*/
call notify(‘radiobin’,’_get_station_’,’Univariate’,butnum);

call notify(‘radiobin’,’_issel_’, butnum,unival);
indxval = not unival;

if indxval eq 1 then do;

rc = varstat(dsid, var, ‘MEAN’, mean);

submit continue;
data &dsname; modify &dsname;

index = &vars / &mean * 1or);

endsubmits;

end;

else do;

submit continue;

data &dsnamess; modify &dsname;

index = &va6

endsubmi~

end;

submit continue;
if index c= &Vall then hml = 1;

else if index <= &Va12 then hml = 2;
else if index <= &Va13 then hml = 3;

else hml = 4;

format hml hml.;

run;

endsubmit;

/’--- Retheme the map with the new summary.................*/
submit continue;

dm gis “Layer ReTheme &STATAREA data= &dsname”;
endsubmi~

return;

Example 3: Using SAS/GIS to launch and interact with
other components of the SAS system.

I

/’--- App SCL, driven by GIS from program action............*/
init:

control always;
length name $35 title $16;

/’--- Create a global list item with the name of the
frame and a value of the window title*/

call send(_se[f_, ‘_get_name_’, name);

title = getnitemc(_self_, ‘name’);
if title = “ then _status_ = ‘H’;

env = envlist(‘g’);
rc = setnitemc(env, title, name);

~--- Initialize frame contents ...*/
link update;

return;

main:

P--- Subsequent action evocations will send a command,

which will be processed here. Ignore the command

text, but update the contents based on the SAS/GIS

program action output ...*/
link update;

call nextcmdo;

3

return;

term:
/’--- Ensure that the global list item is removed................*/
if name ~ “ & nameditem(env, name) then

rc = delnitem(env, name);

return;

update:
~--- Application specific widget updating goes here

This is where the bar chart is populated and updated
with each SAS/GIS action invocation*/

...
return;

P.SCL program action for initializing and then updating the

application window. The global list item stored by the

application’s init section is used to target the update
command to the correct window ..*/

%let appname = &APPLIB..&APPLCAT..APPl .FRAME;
length app $16;

inik

~---Send Update command to the application if running......*/
env = envlist(‘g’);

app = getnitemc(env, “&appname”, 1, 1, ““);
if app ~ “ then do;

submit

dm ‘Next &app; Update’;
endsubmit
end;

else
P--- Start the application ...'/
call display(“&appname”);

return;

APPLICATION EXAMPLES:

Following the guidelines above, many SAS/GIS customers

have taken advantage of adding mapping capabilities to their

decision support applications and the results have been

powerful!

For example, SAS users in the Health Care industry are using

SAS/GIS for a variety of activities such as mapping their

market share, pinpointing their hospital locations and the

locations of their competitors, and displaying other key
variables. Resulting maps visually establish the areas from
which their patients as well as their competitor’s patients

emanate, the areas containing high concentrations of specific
medical occurrences, and other customized requests. Color

coding the map based on particular criteria demonstrates
where profitable new clinics or offices could be established or
where focused marketing efforts can reacquire cusfomers.

SAS/GIS provides an interactive map which allows the user to
launch reports, graphics and further analysis, providing them

a key advantage in making sound business decisions.

large decision support applications to improve lending
practices and to investigate branch placement based on
demographics and market share. SAS/GIS can describe
where a bank’s customers are in relation to bank branches,

ATMS and competition as well as represent the demographics
of borrowers. This visual representation of information can
help banks quickly interpret the business occuring in their

territories and make more informed decisions. Linking this
mapping environment to their current analytical methods
provides banks with an effective tool that surpasses traditional
graphics and reports.

Similar applications have been seen in areas of retail,

insurance, government and other industries where
geographies play a key role. Desktop mapping is exploding

into the business community as businesses find and see the

value of adding mapping technology to their decision support

applications.

FUTURE:

In the near future, look for the release of a SAS/GIS Frame

object to expand SAS/GIS’s integration with SAS/EIS

applications. The goal is to provide SAS/EIS and SAS/AF

users with a mapping product that is fully integratable with
new or existing applications, exacting ease-of-use as an

essential characteristic. Additional goals for the product
include, but are not limited to, enhancing PROC GIS,
providing a more powerful batch tool and refining the
geocoding capabilities.

Acknowledgments

The following SAS/GIS team members contributed to the

preparation of this paper

Barry Hicks Sandi Smith

Jack Bulkley

SASIAF, SASIEIS, SASIGIS and SAS/lNSIGHT are registered

trademarks or trademarks of SAS Institute Inc. in the USA and

other countries.

Dave Jeffreys sasdkj @unx.sas.com 677-8000

Aaron Hill sascyh @unx.sas.com 677-8000

Lisa Weber saslny@unx.sas.com 677-8000

In the Bank Industry, SAS users have integrated SAS/GIS into

4

	Main TOC

