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Abstract:  JMP is an interactive statistical analysis
program that promotes the visualization and discovery
of important patterns and outliers in your data.  It
accomplishes this through unique graphics and the
dynamic linking of points.  JMP's charter is to harness
both statistics and graphics together at one time so that
data analysis becomes understandable, enjoyable, and
even fun!  The use of leverage plots, desirability and
interaction profilers, parallel axis graphs, Gabriel bi-
plots, the interactive linking of graphs, and the use of
animation, magnifying. lasso, and slider tools will be
shown with examples from science, engineering and
finance.

Introduction: JMP is to data analysis what X-rays
and Ultrasound images are to medicine. Sall (1990) in
describing leverage plots gives this analogy, "consider
the case of a doctor who can learn a lot by examining
the patient from the outside, but a series of X-ray
pictures that show how things look inside is often
essential for the best diagnosis.  What the linear-model
doctor needs is an inside picture of the data - one that
shows how each observation functions in producing
parameter estimates and test statistics". This analogy
in fact extends to other design features in JMP.  It is
the interactive and revealing nature of JMP that many
times makes it an excellent tool for data diagnosis.

Example 1: The cautious bull (Dynamic
Linking)

An investor owns an index fund that is indexed to the
Dow Jones Industrials.  He is a cautious optimist and is
willing to sell part of his fund whenever there's an
indication of a downturn. He uses the CumHST
oscillator proposed in Daughtry, Pinder, Tang, and
Gjertsen (1995) as his technical indicator Figures 1a,
1b, and Table 1.  By plotting both the indicator and the
Dow Jones index simultaneously any buy or sell signals
generated by the indicator get reflected in the plot of
Dow Jones Industrials.  As an extension if he had
multiple indicators then by using different colors and
markers he could look for confirmations in signals.
The signals in a period from October 1995 to March
1996 is shown.  Here we only have four round-turn
transactions. The first and third result in very small
losses reflecting the cautious nature of the investor.
The second and fourth represent substantial gains (see
Table 1).

Example 2: Am I Normal? (Lillifors
confidence bands, magnifying tool, kernel
slider, stem & leaf plot)

Figure 2a represents an x-y measurement for 200 chips
on a wafer.  The engineer wants to perform capability
analysis to determine if these circuits meet
specification.  Is this x-y dimension normally
distributed? Figure 2a gives no real indication one way
or the other but Table 2 shows that the answer is
emphatically "no", in fact there are less than 7 chances
in 1000 that this data is coming from a normal
population!  We also have our first clues from both the
smooth curve (with kenel smoother of .000683) and the
normal quantile plot of why it's non normal.  In the
region from 1.495 to 1.5 there appear to be
substantially more values than what we could expect
from a normal distribution.  Using the magnifying glass
tool we can "go inside" and see where normality is
violated (Figure 2b).  By highlighting and coloring we
can see the exact point on the stem and leaf (Figure 2c).
Strictly  speaking, in it's current form this data should
not be subjected to capability analysis.

Example 3: Counting T-Cells (Non-parametric
density estimation)

There is a tremendous amount of investigation going on
worldwide to understand AIDS and the HIV virus.  What
is the mechanism by which one becomes HIV and what
is the transition to AIDS and what markers do we have
for measurement?  The Hertzenberg Laboratory at
Stanford University is a leader in using flow cytometry
to address some of these questions.  Sample data from
their laboratory is shown in Figures 3a and 3b.  A flow
cytometer separates and counts different kinds of white
blood cells in a person's blood sample by the
differential scattering of laser light on the sample.  A
scatter of 30,000 points from a patient blood sample is
shown.  Here we are plotting the differential laser
scattering of CD8 (Helper TCells) vs. CD3 (Killer
TCells).  Notice in these figures  the equal probability
(quantile density) contours for counts in each of the
sub populations.  Using the magnifier and lasso tools
we can get a get a good count of how many and where
90% of the high CD3s and high CD8s reside.  AIDS
patients will have different TCell profiles than those

that just are HIV+so investigators can use graphs and
contours like these in AIDS related clinical trials as
progression of disease markers. Version 3.2
(Macintosh) now reads flow cytometry (FACS) data
directly as an import option.



Example 4: Portfolio Pruning and Stock
Selection (Matching Variable plots, Gabriel
Bi-plots, Mahalanobis outlier detection plots)

For this example put yourself in the shoes of a
portfolio manager.  The policy he must follow based on
company guidelines is to "prune" or sell any stock
after a quarter year period if it's relative strength with
respect to its original price is less than 1 and buy more
of the best performing stock(s) instead.  He decides to
use a parallel coordinate plot (matching variable
analysis) to quickly decide if any pruning needs to
take place see Figure 4a.  This example shows that for
this 13 week period all stocks ended up by at least 6%
except for SGP which didn't meet the pruning cutoff
criteria.  This portfolio manager true to the company's
policy sells SGP and buys more LLY stock.  Incidentally
although this plot is shown only for a few stocks it is
particularly useful for portfolios of hundreds or
thousands of stocks!

Imagine also that in this same office we have a second
portfolio manager whose interest is in semiconductors
and computer networking companies.  He has
information gleaned from Investors Business Daily on
these two market sectors (this is actual data for
semiconductors on 12/29/94 and for computer
networking companies on 12/28/94).  He then wants to
filter his selection of stocks by looking for interesting
outliers.  Using the spin plot in JMP and putting x, y,
and z on the first three principal components we get a
Gabriel bi-plot which depicts the variables (columns)
as spokes, the first three principal components as axes,
and the stocks as points (Figure 4b).  We can
immediately see that Cisco and Micron Technology were
standouts in that they were  high in Return on Equity
and Net % Profit Margin but low in %Debt. To look at
any other outliers he decides to look at any 5
dimensional outliers (in Net % Profit Margin, Return on
Equity, %Debt, Beta, and Undervalued Index) in the
jackknifed Mahalanobis distance plot (Figure 4c). Five
other stocks, Three Com, Ascend.  Cheyenne Systems,
Microdyne and Apertus Tech appear for consideration.
(Four of these stocks, Cisco, Three Com, Ascend, and
Micron Technology all increased more than 200%
within a year after the Dec. '94 analysis was done).

Example 5:  It varies (Variability plots, Gage
R & R report)

Many manufacturers need to make their products and
make measurements with gages (i.e., calipers,
voltmeters, etc.)  The trouble is that these gage
measurements are made across production lines,
operators, parts (i.e.. wafers or steppers if you are a
chip manufacturer), day of the week, and other factors,
and each of these entities within the process introduces

a possible source of variation measured by the gage.  As
an example suppose XYZ Corporation produces widgets
(parts) and has several workers (operators) producing
these widgets.  The burning question is if there is
significant variation, is it due to part#, Operator, or
possibly their interaction.  The appropriate Gage R &R
analysis is shown in Figures 5a and Table 5. Since part
variation is explaining 81.61% of the tolerance, we can
easily examine that variation in Figure 5b by just
interchanging the specification of part# and Operator.
We see that this widget production line is quite
variable (Parts 1, 5 and 10 are low) and that part# and
the part# x Operator interaction needs attention.

Example 6: Just DOE it! (Prediction Profiler,
Scatter Plots of Interactions, Contour
Profiler)

A unique mix of prediction profiles, effect and
interaction plots and overlay contours makes JMP very
useful to a company wanting to do both the generation
and the analysis of designed experiments.  In this
example a chip manufacturer takes multiple chip
measurements across several wafers in an attempt to
find out what settings should be made for Thickness
(thickness of photoresist), PEB (post-exposed bake
time), PUDDLE (developer puddle time on the wafer),
Time (exposed time), and Focus (lens setting) to meet a
tolerance setting for the chips in both the wx and yz
directions and yet simultaneously minimize the
standard deviation in chip size in both directions.  The
desirability profiler in JMP will give good, robust
values that are reasonably optimal.  The engineer can
then overlay contours to see the "sweet spot" regions of
acceptable designs.  In this example we set our
desirabilities for the means to 1.38 with a tolerance of
+ or - .02 and simultaneously want "smaller is better"
for the standard deviations. With a full response
surface model we get preferred settings for each of the
independent variables (Fig 6a).  The profiler, together
with the interaction plot for SD ckt yz, and a contour
plot showing the "sweet spot" region for Thickness vs.
Time are shown in Figures 6a, 6b, and 6c.

Examples 7,8: "Maxed out" (Leverage Plots)

Leverage plots for General Linear Hypotheses have been
described extensively by Sall (1990). Here we first
show the utility of leverage plots with an artificial
example from Huber (1981) Figure 7a. If we fit Y with
both the linear and quadratic models for X and look at
the residual plots they are not revealing observation
6's true outlying nature in Fig. 7c.  But a leverage plot
for Y vs. X exposes point 6 as being far along the
slanted fitted line (Fig. 7d).  So whereas residual plots
expose interior data points as the vertical deviations
from the reference predicted value line the leverage



plot pictures the points along a sloped line which
represents that line where the variable is constrained
to be in the model.  Highly leveraged points are useful
for showing outliers that are near the beginning or end
of the data and are exposed not with residual plots but
with leverage plots.

Lastly we look at a treatment which may or may not
increase oxygen consumption.  Patients are randomly
assigned to treatment "T" or control "C".  They are then
asked to run or jog 1 mile on a treadmill.  Oxygen
Consumption (Oxy), Runtime, RunPulse, MaxPulse,
RestPulse, Age, Wt. and Sex are recorded.  The stepwise
model for Oxy vs. all effects except Name is shown with
leverage plots for effects.  In this Aerobics data set
"Max" stands out not so much as an outlier but as a
very highly leveraged point for Runtime, and it's
collinear partners RunPulse and MaxPulse.

Summary:

Using JMP is a refreshing way to make discoveries (a
few mouse clicks) and bring joy back to data analysis
(supporting graphs included with the analysis).
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Date DJI Cum HST Gain/Loss
10/12/95 4764.88 17439
10/25/95 4753.68 16082     -11.20
10/30/95 4756.57 15369
12/18/95 5075.21 18690     318.64
12/20/95 5059.32 19802
1/10/96 5032.94 20560      -26.38
1/16/96 5088.22 21087
4/8/96 5594.37 24443      506.15

Table 1: Trades by the "Cautious Bull"
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Figure 1a: Buy and sell signals occur whenever the
indicator "beats" the previous high (buy signal) or low
(sell signal) or "beats" the sloped line of two previous
highs (buy signal) or two previous lows (sell signal).
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Figure 1b.  Due to dynamic linkage we see the result of each
buy or sell dictated by our indicator CUMHST.
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Table 2: There's only a .7% chance that Ckt ef
is normally distributed!

Ckt ef

1.497

1.498

1.499

1.500

1.501
.50

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 .1 .2

 Normal Quantile

Violated here

Lillifors 
Confidence 
bands for 
normality
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Figure 3a. Plot of CD8(helper) vs CD3(Killer) TCells
 with equal probability contours
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Figure 3b. Using the magnifier tool gives a more
detailed view of the high CD3 and high Cd8 subset.
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Figure 4c: Outlier Detection Plot reveals more stocks.

Measurement Unit Analysis
Repeatability (EV)
Reproducibility (AV)
Operator * Part Variation (IV)
Gage R&R (RR)
Part Variation (PV)
Total Variation (TV)
Sigma Multiple
Tolerance
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 1.0000000
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 39.0518
  7.5155
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 81.6144

Table 5: Gage R&R Report showing part# Variation.

Variability Chart

M
ea

su
re

m
en

t

0 .3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

George Tom

part# within Operator
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Figure 6a.  JMP's Prediction Profiler with desirability settings. Here we see that by setting a tight "most
desirable" setting at 1.38 for the means, and a "smaller is better" setting for the standard deviations, the
last row in the profiler displays the best combination of factor settings to best accomodate these
desirability constraints.



Interaction Profiles: MN ckt wx
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Figure 6b.  JMP's two-way interaction profiler.  For good, robust designs we want to "design on flats"
when at all possible.  This will make a factor relatively insensitive to other factor settings and thus
minimize variability. In this plot we see that a factor setting of PUDDLE=70 would lead to excess
variability with a small change in setting of Thickness, PEB, or time but that PUDDLE=85 designs more on
flats and is therefore is preferable as a setting for robust engineering design.
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one of the corners of the sweet spot and designing at that corner may be appropriate.
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Figure 7b: Residuals form the linear fit
showing obsservation 4, not 6, as the
largest residual.
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Figure 7c: Residual plot for y vs a quadratic
model in x. Note that the highly leveraged
point, 6, has a very small residual.
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Figure 7d: Residual plot of y vs predicted y
also masks the true nature of point 6 for the
linear fit of y vs. x.
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Figure 7e.  Point 6's true nature is revealed
in a leverage plot.  Since it is far out along the
x axis it is having a very big effect on the
parameter estimate for x and it may cause us to
consider an alternative model.  In this case the
quadratic model was sufficient giving an R2=.952
and a much more reasonable residual plot
(compare figures 7b and 7c).
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