
1

The SAS/IntrNet™ Application Dispatcher
Donald J. Henderson, SAS Institute Inc.

Edmund Burnette, SAS Institute Inc.
Vincent DelGobbo, SAS Institute Inc.

John Leveille, SAS Institute Inc.

ABSTRACT

The Application Dispatcher component of SAS/IntrNet
Software allows a user to run a specified SAS®
Application program on demand and return the
generated Internet Content to a Web Browser.

The Application Dispatcher is one of the compute
services of SAS/IntrNet software and is composed of the
following components:

1. The Application Broker CGI
The link between the Web Browser and the compute
services. Resides on the Web Server and forwards
requests for processing to the Application Server(s).

2. The Application Server
An SCL program that listens for requests from the
Dispatcher on a defined TCP/IP socket. The
Application Server runs the specified SAS
Application.

3. SAS Applications
SAS programs that perform specified processing.
They generate the results (Internet Content) which
are sent back to the Web Browser by the
Application Server via the Dispatcher. SAS/IntrNet
software includes several Dispatcher Applications.
The majority are customer supplied.

This paper will provide an overview of the SAS/IntrNet
Application Dispatcher and will include several demos
of SAS/IntrNet Applications and samples available from
SAS Institute.

NOTE: At the time this paper was finalized the
SAS/IntrNet Application Dispatcher was about to be
released in alpha form. It is expected that feedback and
comments from the alpha release will likely change the
exact functionality of the Application Dispatcher. For
more up-to-date information on the current feature set
and capabilities of the SAS/IntrNet Application
Dispatcher, including complete documentation, please
visit the web site for the Institute’s Web Tools:

http://www.sas.com/rnd/web

and follow the links for products, specifically the
Application Dispatcher.

INTRODUCTION

The Application Dispatcher is a general-purpose
gateway that allows a user to invoke SAS code on the
Web server machine or another machine and get the
results back in HTML or other formats. An already
running SAS session performs the desired processing.
(Note that the capability to launch a new SAS session
for each request is planned for the next scheduled
release of the SAS/IntrNet Application Dispatcher.)

The Broker CGI component is an ACTION invoked by
an HTML form; hidden fields in the form select a
predefined service to access and identify the code to run.
Other fields such as text areas and checkboxes are
converted to SAS macro variables so they may be used
by the SAS code to customize the output returned to the
user. Long text strings are broken up into multiple
variables.

The Application Server is a SAS SCL program which
listens for input from the Broker CGI on a defined
TCP/IP socket; runs the requested application and sends
the results back to the users browser via the Broker CGI.

This paper explores how to define what program should
be run, where it should be run, how parameters are
passed to the program from HTML and how the results
are returned to the browser.

PROCESSING FLOW

Web applications are constructed so the user’s browser
provides the user interface functions of querying the user
as to what they want to do as well as displaying and
formatting the results. In
most cases the request for
processing starts with the
user filling out a form such
as that shown in Figure 1.

Upon pressing the submit
button, the Application
Dispatcher begins
processing, which is shown
graphically in Figure 2.

Figure 1: Sample Form

2

1 The user clicks on the submit button.

2 The Broker CGI program begins execution on
the web server and does the following:
2.1 Verifies that all of the parameter

names to be passed to the Application
Server are valid SAS names.

2.2 Creates, if necessary, multiple values
for any parameter as discussed in
Appendix A.

2.3 Checks a defined configuration file to
verify that the field _service, which
specifies what Application Server is to
perform the processing, is defined.

2.4 If the selected value of _service
defines a pool of Application Servers,
the Broker CGI will select one of them
to forward the request to.

2.5 Using the TCP/IP socket (the machine
name/IP address and port number),
defined in the configuration file for the
_service, the request is forwarded to
an Application Server.

2.6 If the Application Server does not
respond (i.e., is not listening on the
TCP/IP socket) will either:
2.6.1 Select another Application

Server if the _service defined
a pool of Servers.

2.6.2 If the _service is not a pool of
Applications Servers or if
none of the Application
Servers respond, it generates
an error page that is returned
to the user’s browser.

3 The Application Server receives the request by
reading the data sent from the Broker CGI on
the TCP/IP Socket. It’s primary tasks are:
3.1 Define macro variables for parameters

passed from the HTML page.
3.2 Examine _program, passed from the

HTML page. It’s value is the program
name to run. The Application Server
determines if the program is located in
an administrator defined Application
Library.

3.3 Define the special reserved filenames:
3.3.1 _WEBOUT for text/html

output.
3.3.2 _GRPHOUT for graphical

output.
NOTE: In the next scheduled
release of Application
Dispatcher, a separate
filename for graphical output
may not be needed.

3.4 If the program is found, the
Application Server will run the
program. If not, the Application
Server will return an error page to the
user’s browser.

3.5 Return the results to the user’s
browser.

INVOKING DISPATCHER - A
SIMPLE EXAMPLE

A SAS/IntrNet Application Dispatcher Application
starts with a request from a browser. The HTML
references the Broker CGI component and provides the
two required fields, _service and _program. An example

Figure 2: Processing Flow

3

in which the browser user selects a data set to display
will be used to illustrate this.

Figure 3 shows the HMTL form displayed in a browser
that the user sees. The output generated when the user

selects the Generate Table button is displayed in Figure
4. The HTML for the form is displayed in Figure 5.

The action attribute of the form tag specifies the location
of the Broker CGI component and the architecture of
CGI causes that program to begin executing on the Web
Server when the “Generate Table” button is selected.
The Broker CGI checks in a configuration file for the

details of the service mkt-appserver, as designated in the
HTML hidden field _service. Once the Application
Server begins its processing, it checks the value
provided for the field _program. The details for _service
and _program are briefly discussed in the following
subsections. Complete documentation can be found for
these topics at

http://www.sas.com/rnd/web.

Specifying Services in the Configuration File

In the Dispatcher configuration file an administrator
defines "services" which are logical compute servers for
user’s applications to use. In the alpha version the only
supported service types are Socket services which
connect to a SAS Application Server which is already
running on some machine and listening on a TCP/IP
port. A socket service is defined as follows, with the
values in italics filled in with the appropriate values:

SocketService serviceid "A long description goes here"
 Server nodename|IPaddress
 Port 5001

This can be extended to work with a pool of server
machines and ports. In the simplest case, another
identical server is running on another machine, and half
the requests should be directed to the first machine and
half to the other. To do this, the Server line is changed
to:

 Server nodename1|IPaddress1 nodename2|Ipaddress2

Figure 3: User's Browser Display

Figure 4: The Output

<html>
<head>
<title>Simple Example - Select Data to Display</title>
</head>
<body bgcolor="#FFFFFF">
<form action="http://www.unx.sas.com/cgi-bin/broker">
<h2>Select Data to Display</h2>
Data Set:
<select name="Dataset">
 <option>SASHELP.RETAIL</option>
 <option>SASHELP.REVHUB</option>
</select>
<p><input type="submit" value="Generate Table">
<input type="hidden" name="_program"
 value="mktdemo.example1.sas">
<input type="hidden" name="_service"
 value="mkt-appserver">
</form>
</body>
</html>

Figure5: The HTML Source

4

Because the Port line was not changed, Dispatcher
assumes the same port on both machines. In many
environments it makes sense to start more than one
Application Server on each machine; the number will
depend on the nature of jobs and the capacity of the
machine. To define that three Applications Servers are
running on each machine and are listening on ports
5001, 5002, and 5003, change the Port line to read:

 Port 5001 5002 5003

This means there are three Application Servers running
on each of two machines, for a total of six Application
Servers. Each server has a 1/6 chance of getting sent a
request to process. Because CGI programs, including the
Broker CGI, are stateless, the Broker CGI simply picks a
random number between 1 and 6 and uses that number
to determine the server/port combination to which it will
forward the request.

Multiple Server and Port lines can be used to
accommodate asymmetrical configurations. For
example:

 Server A B
 Port 1000 2000
 Port 3000
 Server B
 Port 1500 2500

In this example, the server/port combinations are
A:1000, A:2000, A:3000,B:1000, B:1500, B:2000,
B:2500, and B:3000. Each has a 1 in 8 chance of
being selected.

Since some machines are more powerful than others,
Dispatcher allows the assignment of weights to
machines, for example,

 Server machine1 machine2*5

Machine1 has a 1 in 6 chance of being assigned a
request, while machine2 has a 5 in 6 chance.

Specifying the Program to Run

The field _program specifies the name of the program to
be invoked. The program can be:

1. An external file containing SAS source code.
2. A SAS source entry containing SAS source code.
3. The name of a compiled SAS macro.
4. A SAS SCL entry containing a compiled SCL

program.

The programs must be located in an directory that is
defined by an administrator to the Application Server.
The first node in the name specifies the nickname for
the directory. This nickname can also be thought of as a
libname. However, it is more flexible since we can also
refer to external files contained in that directory.

Consider the example above where the value of
_program was mkt.example1.sas. The Application
Server looked in the directory defined to it as mkt for the
external file example1.sas. The syntax for each of the
above types of programs that can be run is:

1. An external file containing SAS source code.
A three level name. The first node in the name is
the directory (i.e., the nickname for the directory).
The second node is the actual filename as it is
defined to the server operating system. The third
node for external files is always sas. The
Application Server recognizes a three level name
whose third node is sas as an external file.

2. A SAS source entry containing SAS source code.
The four level name of the source entry, including
.SOURCE. The first node is the directory or
libname, the second node is the catalog name, the
third node is the actual entry name and the fourth
node is source.

3. The name of a compiled SAS macro.
The four level name of the macro entry, including
the .MACRO) for a compiled SAS macro entry.
The first node is the directory or libname, the
second node is the catalog name, the third node is
the macro name and the fourth node is macro. Note
that the macro source code need not be located in
the same catalog.

4. A SAS SCL entry containing a compiled SCL
program.
The four level name of the SCL entry, including
.SCL. The first node is the directory or libname, the
second node is the catalog name, the third node is
the name of the compiled SCL entry and the fourth
node is scl.

In order for the user’s browser to display the output, the
program must generate appropriate Internet Content
such as HMTL, GIF, JPEG output. The SAS program
that generated the output in Figure 4 is shown in Figure
6. This program uses the DS2HTM macro which is one
of the Web Publishing Tools available from SAS
Institute. The Web Publishing Tools are freely
downloadable from http://www.sas.com/rnd/web.
These tools can be used in SAS/IntrNet Application
Dispatcher applications to generate Internet Content.
Thus, it is not necessary for SAS programmers to know
HTML.

5

Note the use of _WEBOUT as the fileref to which the
output is to be directed. Also note that the data set
selected in the HTML page is referenced in the SAS
program as a macro variable.

A GRAPHICS EXAMPLE

Generating graphical output and returning it to the users

browser is also straightforward. Figure 7 shows a
program that generates a bar chart from the
SASHELP.RETAIL data set. Note the use of macro
variable references for the chart variable value (&cvar)
and the analysis variable (&svar). The values for these
are specified in the HTML form.

The program uses the GIF260 driver to generate a GIF
file. The GIF260 driver is another of the Web
Publishing Tools now available. The gprolog option is
used to generate the header needed by browser to
recognize that the output being sent to the browser is gif
output.

GENERATING RESULTS
CONTAINING HTML TEXT AND
GRAPHICS

SAS/IntrNet Application programs can create either
HTML or graphics. One program cannot do both at the
same time. One program can, however, generate an
HTML page containing an image tag which calls the

broker a second time thereby attaining a dynamic page
with embedded graphics.
Consider an example where from the initial HTML
form, the user will select two variables - a grouping
variable and an analysis variable. For our example, we
will use the SASHELP.RETAIL data set. The desired
output is an HTML table that shows the sum of the
analysis variable for each value of the grouping variable.

Below the HTML table we wish to display the same data
in a bar chart. The output is shown in Figure 8. This
requires that two programs be run. The first will
generate the HTML table and will generate an HTML
IMG tag that will run another Dispatcher Application to
generate the graph and is shown in Figure 9.

Here, the SAS/IntrNet Application Dispatcher is run
from an embedded HTML reference instead of from the
ACTION parameter of an HTML form. The reference in
the IMG tag invokes the program shown in Figure 7.
The program shown in Figure 9 also shows the use of
the special macro variable _url which is made available
to Dispatcher Applications and whose value is the name
of the Broker CGI component. The macro variable _url
can be used by a Dispatcher Application that needs to
generate HTML which contains other references to
Dispatcher Applications. The special macro variable

Figure 8. Combined Text/Graphic Output

goptions reset=all gsfname=_grphout gsfmode=replace
 dev=gif260 ftext=swiss htext=1.5
 gprolog='Content-type: image/gif' '0D0A0D0A'x;
title;

proc gchart data=sashelp.retail;
 hbar &cvar/sumvar=&svar discrete nolegend nostats;
run;

Figure 7: A Graphics Program

%ds2htm(data=&dataset,
 htmlfref=_webout,
 openmode=replace,
 bgtype=color,
 bg=white,
 clbgcolr=black,
 clcolor=white,
 runmode=S,
 caption=&dataset Data Set)

Figure 6: Sample SAS Program.

6

_service is also used. Recall that _service is a required
parameter and the value of this macro variable can be
used so programs do not have to hard-code the value.
These macro variables as well as other special macro
variables available to Dispatcher Applications are
discussed briefly in Appendix A.

CONCLUSION

SAS Institute is actively developing on the Application
Dispatcher and many enhancements are expected. At
the time this paper was written in early January 1997
the following items are planned for future releases.
However, note that this list may be made obsolete by
feedback from the alpha release scheduled for mid-
January 1997.

1. Adding a protocol that allows a new SAS session to
be launched on the Web Server in response to a
browser request.

Launching a new SAS session is most appropriate
when:

- The startup time for invoking the SAS System is
not an issue.
- The program to be run is a long running job.
- The program has side effects which could impact
other programs.

Utilizing an already running SAS session is most
appropriate when:

- The startup time to invoke the SAS System is an
issue.

- Quick response for a short program is desirable.
- The programs are stable and have no side effects.
- The SAS session must be run on a machine other
than the Web Server machine or a machine that the
Web Server can initiate a remote process on.

2. Expanding the load balancing capabilities so that it
does not just randomly select which Application
Server a request should be forwarded to.

3. Other protocols for invoking the SAS System on the
server being considered are:
- Linking to SAS Version 6 Domain Name Services
- Directly linking to a running SAS/Connect session

4. Enabling Application Dispatcher Applications to
remember the state across multiple requests from
the client.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions
of the following individuals in the development of the
SAS/IntrNet Application Dispatcher and this paper.

• Renee Harper
• Aaron Hill
• Chip Kelly
• Liza Lucas
• Michael Stiefhoff
• Jack Wallace
• Bryan Wolfe

SAS and SAS/IntrNet are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

proc sql;
 create view totals as
 select &cvar, sum(&svar) as &svar format=dollar8.
 from sashelp.retail group &cvar;
%ds2htm(data=totals,
 var=&cvar &svar,
 htmlfref=_webout,
 openmode=replace,
 bgtype=color,
 bg=white,
 clbgcolr=black,
 clcolor=white,
 runmode=S)
data _null_;
 file _webout mod;
 put '<IMG SRC="' "&_url?_service=mkt-appserver"
 '&_program=mktdemo.chart.sas&cvar=' "&cvar"
 '&svar=' "&svar" '">';
run;

Figure 9: Combined Text/Graphic Program

7

APPENDIX A: HTML TO SAS
SOFTWARE COMMUNICATION

The first link in ‘browser to SAS server’ communication
is the generation of HTML "name/value" pairs. Macro
variables are used to make name/value pairs available to
SAS programs and macro variable names are set to the
value of the HTML names while the values of macro
variables are set to the HTML values.

The Application Dispatcher automatically creates and
assigns values to macro variables corresponding to the
HTML name/value pairs. As a result, the SAS
programmer need not be concerned with obtaining the
values specified by the user on the HTML page.
However, HTML names must correspond to valid SAS
names since non-valid SAS names will be rejected by
the Dispatcher.

There are several cases where it is not possible to
directly map the values from an HTML page to a single
macro variable. This is discussed in the next section

Multiple Values for a Single HTML Name

HTML allows multiple values to be passed using a
single HTML name, however, SAS macro variables do
not allow multiple values. Macro variables could contain
a list of values which a SAS program could parse to
recreate the distinct values. However, the Application
Dispatcher uses a different method to handle multiple
values.

When the Application Dispatcher receives multiple
values for a single name, it appends a suffix to the
original name creating multiple macro variables.
Consider an example where the HTML has four
checkbox fields, all called CBOX:

<INPUT TYPE=”checkbox” NAME=”cbox” VALUE=’first’> First
Check Box
<INPUT TYPE=”checkbox” NAME=”cbox” VALUE=’second’>

Second Check Box
<INPUT TYPE=”checkbox” NAME=”cbox” VALUE=’third’>

Third Check Box
<INPUT TYPE=”checkbox” NAME=”cbox” VALUE=’fourth’>

Fourth Check Box

If all four values are checked, the Application
Dispatcher will define the following macro variables and
values (note that you cannot assume that the values will
be passed in the indicated order, e.g., the third checkbox
could be the last value passed):

CBOX0: 4
CBOX: first
CBOX1: first

CBOX2: second
CBOX3: third
CBOX4: fourth

The macro variable, CBOX0, is created to contain the
total number of values received. Note that both CBOX
and CBOX1 have the same value.

In a case where a checkbox is not selected, the browser
may not send a blank value for the name and the SAS
program must be prepared for such a scenario.

In a similar situation, if only the third checkbox is
selected, the Application Dispatcher only recognizes a
single value:

 CBOX: third.

The Application Dispatcher does not know that there
could have been multiple values, so it does not rename
them. However, since the first value is available as both
CBOX and CBOX1, the program only needs to check
CBOX0 to determine if multiple values were generated.

For most situations, it is recommended that the HTML
program not use a name more than once. However, there
are two situations where this is not possible.

First are SELECT tags (i.e., list boxes) that allow
multiple selections. The selected values are passed as
multiple values for a single name. Thus, if a list box
(e.g., lbox) allows for multiple selections and only one
selection is made, the value will be passed with a name
of lbox. If three selections are made, the number of
selections is passed as the value of lbox0 and the three
values (in no predictable order) are passed as
lbox1/lbox, lbox2 and lbox3.

Second, are TEXTAREA tags (or long text fields). Only
one value is passed from the browser. However, such
values can be longer than 200 characters and can
contain carriage returns. In order to make these values
more usable, the Dispatcher will treat these as multiple
name/value pairs if the value is longer than a specified
width (default width is 80) or if it contains at least one
carriage return. In these cases, multiple macro variables
will be created from the text value as follows:

• split at carriage return,

• or at the first blank before char #n,

• or at char #n if there is no blank

The value for n is specified using the hidden field
_fldwdth. As previously discussed, the total number of

8

values passed is stored in a macro variable with a 0
suffix.

The original HTML names must be chosen with care
when new macro variables will be created as a result of
multiple values. As always, the macro variable names
created to contain multiple values must be eight
characters or less to be valid.

For example, an HTML listbox with a name of
LISTBOX limits the number of multiple values to nine
because LISTBOX10 is not a valid SAS name. Keep in
mind that HTML does not allow you to specify a number
of selections other than 1 or MULTIPLE. In cases where
names greater than 8 characters would be required, the
Dispatcher will send an error page back to the user
informing them of the error.

Another issue to consider when multiple value names
are chosen is to avoid names that end in numbers. For
example the names LBOX and LBOX1 should not be
used in the same application due to the unavoidable
confusion if new numbered macro variables were created
as a result of multiple values.

Hidden Fields in HTML

HTML allows the creation of ‘hidden fields’ which are
name/value pairs that do not appear on the form. Hidden
fields can be used as a mechanism to pass parameters to
the SAS program. For example, an HTML page could
pass a list of variables to a SAS program for processing.
A single SAS program could then be referenced by
many HTML files. Another example might be a query
application where the user specifies the query details
(e.g., what variables and subset) but the data set is
specified as a hidden field.

The Application Dispatcher uses another class of hidden
fields. The Dispatcher recognizes the following HTML
names. A leading underscore (_) is used as a
convention to distinguish these hidden fields from user
fields:

• _DEBUG

This field can be used to specify a variety of
debugging options. Values are:

1 Echo all fields
2 Print elapsed time after each run (default)
4 Don't run, just dump information on all
services
8 Skip all execution processing
16 Dump output in hex/ASCII

128 Send back log file
256 Trace socket connection attempts

Note that these values are additive. For example, a
value of _DEBUG of 130 specifies that the elapsed
time and the SAS log file should both be included
in the results sent back to the browser.

• _FLDWDTH

This field specifies the maximum length for any
character value. Its use is described above.

• _SERVICE

This field defines the service to use for the request.
Service specifies both the protocol (method to
invoke the SAS system) and the specific
implementation of the that protocol.

Other Available Fields

The following fields are created by the Dispatcher and
are not specified in the HTML. The Dispatcher passes
these macro variables to the Application for
‘housekeeping’ purposes.

• _ADMAIL

This field contains the email address of the
administrator for the selected service. This field is
intended to be used if the submitted program needs
to generate a mailto tag.

• _ADMIN

This field contains the name of the administrator
for the selected service and should be used with
_admail.

• _URL

This field contains the url address for the Broker
component of the Dispatcher.

• _VERSION

This fields contains an internal version number for
the Broker component of the Dispatcher.

Environment variables can also be made available to
Dispatcher Applications. Such variables are defined in
the Broker CGI configuration file. The syntax for this is:

Export environment-variable-name SAS-macrovar-name

9

Some typical examples might be:

• Web server hostname
Export SERVER_NAME _SRVNAME

• User's DNS name if known
Export REMOTE_HOST _RMTHOST

• User's IP address
Export REMOTE_ADDR _RMTADDR

• User name if authorized
Export REMOTE_USER _RMTUSER

• Browser name
Export HTTP_USER_AGENT _HTUA

• Referring page, if known
Export HTTP_REFERER _HTREFER

Note that the SAS macro variable names listed above are
only suggestions. The administrator can define any valid
SAS names.

Using Environment Variables to Add
Security to Dispatcher Applications

While environment variables can be used in a number of
ways, a common use will be to add application level
security to a Dispatcher Application. HTPASSWD, for
example, which comes with standard HTTPD can be
used to control access to the Broker CGI and prompt
users for a userid and password. The environment
variable REMOTE_USER will be set to the system
userid of the person who is successfully running the
Broker CGI. REMOTE_USER is passed to the
Application Server as &_RMTUSER. The Dispatcher
Application can then check the value of &_RMTUSER
to see if it matches an observation in the security data
set. Optionally, a security access level from that data set
can also be used to control what features the user has
access to.

 Alternatively, REMOTE_ADDR could be used to
determine access based on the client's IP number.

	Main TOC

