
Let’s Not Forget E-Mail

Jack Shoemaker, United Risk Assessment & Management, Cheshire, CT

With all the excitement surrounding the growth
and popularity of the World Wide Web, it’s easy to forget
about that ubiquitous piece of the Internet known as
electronic mail, or e-mail for short. Nearly everyone who
browses SGML documents - the raw material of the World
Wide Web - has an e-mail address to boot. The same can
not be said for the converse. Plenty of people have e-mail,
but aren’t able to browse SGML documents. SGML?
Although SGML is the correct way to refer this class of
formatted text documents, HTML is more commonly used,
and [will simply use the term ‘Web document’ in this paper
to mean anything that you can retrieve with a Web
browser.

So, if you’re a content provider - someone who
creates Web documents in the hope that someone else
will drop by for a visit - you’ve lopped off a good potilon of
your potential market, if you limit yourself to only Web-
based information delivery. And, if you’re a potential
information consumer with only e-mail access, you have a
legitimate gripe with the content provider.

But this is rapidly changing. Although certainly
true a year and a half ago, and mostly true even a year
ago, Internet access providers have made Web browsing
so accessible, that the notion of e-mail without browsing
capability is already something of an anachronism. Will
the opposite occur? Will there be legions of Web browsers
who don’t have e-mail? Probably not because e-mail
provides an information delivery channel which
complements and enhances the Web-based environment.

Consider the friend of many a SAS programmer -
SAS-L. SAS-L is a mailing list managed and run by a
piece of software known as LISTSERV. Four sites in the
world graciously allocate some of their computer resources
to keep the LISTSERV program up and running. The
program is often referred to as the ‘list server’. The list
server does three things. It broadcasts mail from one user
to all other users on the [is~ it adds users and their e-mail
addresses to the list; and, it deletes users from the list.
There’s more, but at the core this is all there is to it. Jane
has a piece of e-mail she wishes to distribute to everyone
else on the SAS-L mailing list. She sends her message
along to one of the list servers, that is she addresses the
e-mail to say, sas-l@vm. mafist. edu, and voila, her
message appears in the in mailbox of nearly 10,000 SAS
users world-wide.

Contrast this with a Web-based alternative. Jane
would write up her message and link it to her home page.
She would wait for someone to stop by, notice her link
reference, and browse her message. In the first instance,
with e-mail, she is pushing the information out to her

audience; in the second instance, she is waiting for
someone to pull the information from her site.

SAS-L is actually a bit more involved than the
preceding discussion lets on. The mailing list and re-
distribution function maintained by the four SAS-L peers is
mirrored in the USENET newsgroup known as, comp.soft-
sys.sas.

Newsgroups are collections of e-mail-like
messages organized in such a way as to promote
browsing and responding. You need a piece of software
called a ‘news reader’ to read and post ‘articles’ in
USENET newsgroups. In addition you need access to a
‘news spooler’ which feeds your news reader the news.
The popular browsers, Netscape Navigator and Microsoft
Internet Explorer, each come with news readers built-in.
Most Internet service providers provide a news spool, so in
many cases, news reading is available right inside your
favorite browser, although some configuration is often
required.

Returning to our SAS-L example, the mirroring of
SAS-L and comp.sof&-sys.sas means that Jane’s message
is sent not only to everyone on the SAS-L list, but is also
posted to comp.soft-sys.sas. Conversely, all postings to
comp.soft-sys.sas make their way into the mailboxes of the
members of the SAS-L lists. Browsing and responding to
newsgroup posts is akin to browsing a Web document.
You know where to look. You initiate some browsing.
Perhaps something of interest catches your eye. You
respond, amplify, or (ahem) correct what you have just
read.

As a provider of content, Jane has the best of
both worlds. She is pushing her message out to all those
e-mail addresses as well as posting her message in a well-
known place for others to browse and perhaps even read.

In addition to LISTSERV, there are two other
programs in wide distribution which maintain mailing lists:
LISTPROC and MAJORDOMO. Each of these programs
have their own set of commands, but each allows list
owners to establish and maintain lists and allows
individuals to subscribe and unsubscribe to these lists -
that is have their e-mail addresses added to the
distribution lists. In each case, the maintenance,
subscription, and use of the list is done by way of e-mail.

SAS-L is an unmoderated, open list which means
that anyone can post anything to the list (unmoderated)
and anyone can join (open) without approval of the list
owner. Not all lists are that wide-open. Consider the
Technical Services list operated by SAS Institute.
Following the ‘-L’ naming convention of lists maintained by

1

the LISTSERV software, the Technical Services mailing list
is called TSNEWS-L. You can subscribe to this list by
sending e-mail to listserv@vm.sas. com which is the
address of the SAS Institute list server. In the body of the
message place the text subscribe TSNEWS-L Your
Name. The Technical Services department posts
information like weather closings and problem alerts on
TSNEWS-L, so if you are a subscriber, you’ll receive
periodic messages from SAS Institute about weather
closings and problem alerts. SAS Institute allows anyone
to subscribe to this service, so the list is open. Posting to
the list is another matler. Only approved Technical
Services announcements are allowed on TSNEWS-L, so
the list is moderated. Which means, in effect that you or I
can not simply post a message to TSNEWS-L.

Consider the benefit of TSNEWS-L as a
subscriber. The problem alerts are also available on the
SAS FTP server and the SAS Web Server. So you could
locate the URL of these alerts and periodically check for
new alerts. Why waste the time? If you know that you
would like to hear about a problem alert as soon as
possible, a subscription to TSNEWS-L will guarantee that
a new alert will show up in your mailbox as soon as it is
released. SAS Institute places the problem alerts out on
its servers so that you can pull the information at your
convenience; however, SAS Institute also provides a
mechanism to push these alerts to you should you wish.
SAS Institute also has a list called NEWDOCS-L which
sends out notices about new books and documentation.
This is another example of information which may be
pulled from the appropriate SAS server, or pushed to you
by way of a LISTSERV mailing list.

Problem alerts aren’t the only type of information
that you, as a company, would like to push out to your
customers. New product offerings, announcements, and
general marketing material make excellent sources of
content for company-based mailing lists. The problem is
getting people to subscribe. New product offerings,
announcements, and general marketing material also
make excellent sources of content for Web documents. In
fact, cynics have remarked that this is all the World Wide
Web is: nothing more than a fancy, expensive, and slow
version of the Yellow Pages provided by your local
telephone operating company. True enough, up to a point.
The scope of the World Wide Web is, well, world-wide.
Furthermore, well-designed Web sites are rich in useful
content, not just full of doo-dads and other clutter.

Because e-mail has existed since the birth of the
Internet - well almost since the birth - there are plenty of
mailing lists available for subscription. But where do you
find them? Not all mailing lists use the LISTSERV
software, so you can’t rely on ‘listserv@’ working all the
time. In contrast, the World Wide Web has been in
existence for a scant five years (tops!), yet finding a home
page is normally a snap because the convention is to
establish a host called ‘w’ which handles incoming Web
requests. In other words, if you’d like to find out something
about the company DotDot , using the URL

http://w.dotdot.com will probably work if DotDot has
established a Web site. No such convention exists for the
e-mail addresses of mail robots like the LISTSERV
program. But it should.

At a minimum, DotDot should establish valid e-
mail addresses for ‘info’ and ‘help’. One address may be
the alias of the other. That is, unless there is a desire to
handle requests to ‘info’ differently than ‘help’, there is no
need to establish two separate responders. You’d like to
have both addresses available externally so that as many
people as possible can contact you. In any event, ‘info’, or
‘help’ can respond with an automatic response that points
the requester in the right direction. To the DotDot list
server, for example. Other useful addressees include
’411’, ’611’, ’911’, and ‘sales’. Would that every company
that suppork e-mail have at least an ‘info’ and ‘help’ e-mail
address. ’61 1‘ - repair, and ’911‘ - emergency are best
suited for internal requests. That is, they are wonderful
complements for a Web-based intranet.

The e-mail administrator at your site can establish
accounts for ‘info’ and ‘help’ as described above.
Depending on your mail server software, you may be able
to set up these accounts to respond unconditionally with a
pre-defined message. Alternatively, these addresses may
be forwarded to an individual, or individuals, responsible
for responding to the content of the messages. For a small
site, this might be fine. As the volumes of these messages
increase, you will certainly want to explore automated
means for responding to requests which come in by way of
the ‘info’, or ‘help’ accounts.

You can also use e-mail to distribute data and
documents. Some material is not suited for e-mail
delivery: a picture of Saturn or some other heavenly body,
or a point-and-click map of your state with links to county-
based information. When all the pointing and clicking is
done; however, many Web-based requests terminate with
information displayed as a chunk of text or table of
numbers. These type of data can use e-mail as the
information delivery channel as well.

Consider the SAS Notes server maintained by
SAS Institute. You can get to the Notes server using your
favorie browser, or you can use e-mail to interrogate the
server directly - first for a list of potential notes; then for the
actual notes themselves. With either method your final
objective is the SAS note - a message from SAS Institute
describing a perceived or actual problem with a
recommendation for action and sometimes a promise to fix
the problem in the near future with a future release of the
SAS system.

in the previous example, you are using e-mail to
pull information from the SAS Notes server. Whether you
use e-mail or Web-browsing as the delivery channel is a
matter of personal preference and technical infrastructure.
If you have no browser, or if you must browse over a
connection which is something less than one megabit,
then you will thank SAS Institute for providing an e-mail

entrance into this information. If you have a browser at
your desktop with a high-grade, fast connection, you may
choose to click, click, click. Just be sure to ‘bookmark’ the
actual page where you can fill out the form which is sent to
the server to satisfy your request.

The e-mail version of the SAS Notes server works
because there is a program attached to the other end of
the e-mail request which parses the message body and
carries out the specified actions. This requires something
a bit more sophisticated than the auto-responder
suggested for ‘info’ and ‘help’. Many mail readers have
functions with names like ‘Rules’ or ‘Filters’ which allow
you to provide e-mail file servers with little effort.

For example, suppose you have a small number
of files which you wish to distribute on demand called filel
- file5. If your mail reader supports rules, or filters, you
may be able to set up a rule which goes something like
this:

if the Subject field contains GET FILEI
then Send FILEI to the From: address

The actual syntax of the rules varies from one piece of
software to the next. Also, if you are using a Windows-
based mail reader you will probably have to set these rules
up in a series of dialog boxes instead of simply typing
some rules into a configuration file. Another drawback to
this approach is that you need a separate rule for each file.
For five files, this is manageable; for one hundred it is not.

You can create a more flexible solution if your
mail reader has a rules syntax that allows some sort of
substitution. For example, we could generalize our
example above if the we could test for the existence of the
word ‘GET’ at the beginning of the Subject field, then use
the second word as the name of the file to send. Under
UNIX, you can use a program like ProcMail to achieve this
flexibility. Briefly stated, you would forward mail to the
ProcMail program which then uses a ProcMail script that
you have written. The ProcMail scripting language allows
you to examine any, or all, of the header fields, and the
message body. You can use regular expressions to match
any character pattern you wish. And, based on the results
of these matches, ProcMail can either hand over the text to
another process (piping), send back a response, or do
both. For all practical purposes you can make e-mail do
anything you want when used in conjunction with a mail
filter like ProcMail.

Another benefti of this approach is that you can
use any e-mail account, including your own, to act as a
mail robot. This is particularly useful if you can’t persuade
your e-mail administrator to establish and maintain some
mail robots for you. The disadvantage is that ProcMail
runs under UNIX and therefore can not help you if you
don’t have UNIX platforms at your site handling mail
distribution. Fortunately, as a SAS user you have another
way out.

With release 6.11 of the SAS system, you can
now use the SOCKET access method in conjunction with
the FILENAME statement to read and write directly to
TCP/lP ports. (Note: The new 6.11 access methods
CATALOG, FTP, and SOCKET are documented on pages
3-14 of SAS document 55300, “SAS Software: Changes
and Enhancements, Release 6.1 l“.) This access method
allows you to create, in effect, an e-mail reader using SAS
because e-mail normally arrives by way of a TCP/lP
service known as a ‘POP3 server and is sent out by way
of an ‘SMTP’ receiver which is also a TCP/lP service.

The POP3 server is nothing more than a program
which runs continually and polls, or listens, to a specified
TCP/lP port - usually 110. That is, port 110 is the “weil-
known” port assignment for the POP3 server. The SMTP
server, on the other hand, does it work on port 25.

The POP3 server accepts a small set of
commands defined in a document called RFC 1725.
These commands are of particular interest USER, PASS,
LIST, and RETR. The first two commands are used to log
into your mail account. The third command lists all the
messages in your mailbox. The last command retrieves a
particular message. No matter the display of your favorite
mail reader, remove the window dressing and you’ll find
that these simple commands are being sent to port 110 on
the host which is running the POP3 server.

Here’s an example of using SAS to interrogate a
POP3 server at our company called DotDot. The POP3
server is a program called IMS which runs on the host
known as ‘mailhost’. First, establish a channel to the
POP3 server using the SOCKET access method in a
FILENAME statement.

filename pop3 socket ‘ mailhost: 110’ ;

In a subsequent data step we will use pop3 as the
filename for a FILE statement to write commands and an
INFILE statement to read responses. The keyword,
SOCKET. indicates that this filename statement uses the
SOCKET access method. Inside the quotes is the name
of the host followed by a colon followed by the desired
TCP/lP port, in this case 110.

We begin our interrogation with an INFILE
statement to open the channel for subsequent INPUT
statements.

data _null_;

infile pop3 length = len;

input; file log; put _inf ile_;

The input statement is necessary to read the welcome
message from the POP3 server. The ‘file log’ and ‘put
infile’ statements are not necessary; however, they allow
you to see whaYs going on. Here’s what the SAS log looks
like:

+OK IMS POP3 Server 0.87 Ready

3

There will be some more information to the right of ‘Ready’.
I have truncated it for the purpose of clarity. Also note that
if you are not running [MS version 0.87, you won’t get
exactly the same message. In any event the POP3 server
is ready to accept some commands. First we need to log
into out mail account using the USER and PASS
commands as follows:

file pop3; put ‘ USER shoe’ ;

input; file log; put _infile_;

file pop3; put ‘ PASS mypass’ ;

input; file log; put _infile_;

Again the ‘file log’ and ‘put _infile_’ statements are
included to display the results on the SAS log. You could
re-direct these elsewhere, or eliminate them all together.
What is important is to code an ‘input’ statement after a
‘file’-’put’ pair. Also, you need to supply a valid user name
and password. In this example I have used the user name
‘shoe’ with the password ‘mypass’.
log looks like for these statements.

+OK shoe is welcome here

+OK shoe ‘ s mailbox has 4

Here is what the SAS

message(s)

These reassuring messages mean that I have an
account at ‘mailhost’ and that there are four messages in
my mailbox. If 1want to read all the messages - one-by-
one, 1need to know how many messages there are to
retrieve. We could do this by parsing the string returned
after the PASS command, but let% see what the LIST
command does.

file pop3; put ‘ LIST’ ;

The LIST command instructs the POP3 server to
list out each message in the form message-number,
message-id, where message-number is a sequential
number starting at 1 and message-id is an internal
message ID generated by the POP3 server. When the
server has exhausted the list of messages, it writes out a
single dot (’.’) which means we are at the end of the list.
This makes our input statement a bit more complex
because we need to loop through input statements until we
reach a dot. Aiso, we don’t want to wriie any more
commands to the server until we have consumed the
whole list. Consider this code fragment

dountil (a=’.’);

n=a;

input a $charl . ;

file log; put _infile_;

end;

The ‘do until’ loop will execute at least once and will
continue looping until a ‘.’ is encountered as the first
character of the input buffer. The input statement reads

the first character of the input buffer into a data step
variable called ‘a’. When the first character of the input
buffer is 1.’,a will have a value of ‘.’ and the ‘do until’
condition will be true so the loop will stop executing. When
the first character is not ‘.’, it is the message number. In a
real-life example, we would account for message numbers
greater than 9; however for this exercise it will suffice to
read only the first character of the input buffer in order to
retrieve the message number. When the loop has finished
executing we would like the data step variable n to contain
the last message number. That is, we would like n to be
the last value of a before the terminating ‘.’. Placing the ‘n
= a’ assignment before the input statement accomplishes
this nicely. The first time through the loop, a has a value of
missing, so n does as well. After the ‘n = a’ assignment,
the first character of the input buffer is read into the data
step variable, a. The ‘file log’ and ‘put’ statements are
placed inside the loop for the purpose of displaying the
response from the POP3 server. The program will work
fine if they are removed. If a is not ‘.’ then the loop iterates.
The first action is the ‘n = a’ assignment. So on the
second pass through the loop, n has the value of the value
of a from the first pass. The process continues until the
terminating ‘.’ is encountered. When this happens, the
loop stops executing and n is left with value of the next-to-
Iast value of a - exactly what we wanted. Here are the log
statements from this segment

+OK 4 messages (1625 octets)

1 404

2 407

3 407

4 407

At this point the data step variable n will have a
value of 4 because there are four messages in the shoe
mailbox. To read each message, in turn, we issue a
‘RETR’ command. For example:

doi=l ton;

file pop3; put ‘RETR ‘ i 2.;

. . code to read mail contents . .

end;

The do loop will iterate from 1 to 4 and retrieve messages
1 through 4. Both the mail headers as well as the
message body come back from the POP3 server. The
chunk of code which is omitted in the above code fragment
is the stuff which actually does the work on the headers
and message body. It is the section of code which parses
the mail message and takes appropriate action. That
action can be anything that a SAS program can do.
Furthermore, you have the full power of the SAS system at
your disposal to parse the mail message. All-in-all it’s a
rather powerful cocktail of a flexible, world-wide information
delivery channel and robust data manipulation
environment.

To demonstrate how you can use SAS to
manipulate the mail message data, consider the code
fragment below. The code examines the header portion of
the mail message and writes the ‘Subject:’ and ‘From:’
records to the SAS log. Mail headers have the form field-
name, colon, field contents. So the subject field is the
record which begins with ‘Subject’. The remaining portion
of the record is the contents of the ‘Subject’ field.

dountil (a= ‘.’);

input @1 a $charl . @;

input @l record $varying200. len;

header = scan(record, 1, ‘ : ‘) ;

i.f header in (‘From’ , ‘Subject’)

then do;

file log; put _infile_;

end;

end;

Each mail message terminates with a ‘.’ in the first position
of the input buffer. So we re-use the ‘do until’ strategy
used to read the results of the ‘LIST’ command. Because
we want to examine the contents of each record, rather
than just write the contents to the SAS log, we will read the
input record into a data set variable called record. Since
the input records have varying length, we need to use the
$VARYING informat which requires that you supply a data
set variable which contains the desired length of the data
step variable, record. On our first INFILE statement, we
used the LENGTH= option to establish a data step
variable, Ien, which will contain the record length of the
current input buffer. This value is set by the INPUT
statement. So, the first INPUT statement inside the ‘do
until’ loop performs two tasks. First, it reads the first
character of the input buffer into the data step variable a.
Seconditplaces the length of the current record in the
data step variable Ien. The ‘~’ at the end of the first
INPUT statement holds the column pointer so we can re-
read column one and the entire record using the data step
variable Ien to set the length of record.

Next we use the SCAN() function to examine the
first colon-delimited word in each record. If the first word is
either ‘From’, or ‘Subject’, we write the entire contents of
the input buffer to the SAS log. Of course this is only an
example. For a real-life mail robot you would do much,
much more with this information. In any event, here is the
SAS log for this code fragment.

From: Jack N Shoemaker <shoe@std. corn>

Subject: Test message 1

From: Jack N Shoemaker <shoe@std. corn>

Subject: Test message 2

From: Jack N Shoemaker eshoe@std. corn>

Subject: Test message 3

From: Jack N Shoemaker cshoe@std. corn>

Subject: Test message 4

Finally, to terminate the POP3 session, issue the
‘QUIT’ command and stop the data step from executing
again.

file pop3; put ‘ QUIT ‘ ;

stop ;

run;

The null_ data step executes just once because all
read~ng and writing to the POP3 server is handled inside
the data step. Here’s the NOTE: statement corresponding
to the INFILE and FILE statements:

NOTE: The file/infile POP3 is:

Local Host Name=WNT40,

Local Host 1P addr=205. 206.99.100,

Peer Hostname Name=

mailhost .dotdot. corn,

Peer 1P addr=205 .206 .99.97,

Peer Name=N/A,

Peer Portno=l 10,

Lrecl=256, Reef m=Variable

The ‘Local Host Name’ and ‘Local Host IP’ refer to the
machine running this SAS program. The ‘Peer’ references
are to the machine which is running the POP3 server. In
this case the POP3 server is running on a host called
‘mailhost.dotdot. corn’ on port 110. Stripped of the ‘file log’
statements, here is the bare-bones SAS code:

filename pop3 socket ‘ mailhost: I 10’ ;

data _null_;

inf ile pop3 length = len;

input;

file pop3; put ‘ USER shoe’ ; input;

file pop3; put ‘PASS mypass’ ; input;

file pop3; put ‘ LIST ‘ ;

dountil (a=’.’);

n=a;

input a $charl . ;

end;

doi=l ton;

file pop3; put ‘RETR ‘ i 2.;

dountil (a=’.’);

input @1 a $charl. @;

input @l record $varying200. len;

header = scan(record, 1, ‘:’);

if header in (‘From’ , ‘Subject’)

then do;

file log; put _infile_;

end;

end;

end;

file pop3; put ‘QUIT’ ;

stop ;

run;

Say you wanted to send out a file called
c:\SUGl\Example. File. Using a similar technique, you can
use SAS to communicate with the SMTP receiver on port
25. Like the POP3 server, the SMTP server understands a
small set of commands described in RFC 821 and RFC
1123. Of particular interest are HELO, MAIL, RCPT, and
DATA. First we need to establish FILENAME references
for the SMTP receiver and the file which we wish to send.

filename smtp socket ‘mailhost :25’ ;

filename response

‘ c: \SUGI\Example. File’ ;

We star&our conversation with the SMTP receiver
by identifyMg where we are, who we are, and to whom we
would like to send the mail. The HELO, MAIL, and RCPT
commands, respectively, do this.

data _null_;

infile smtp;

input;

file log; put ‘ INIT>’ _infile_;

file smtp;

put ‘ HELO dotdot. corn’ ;

input;

file log; put ‘ HELO>’ _inf ile_;

file smtp;

put ‘ MAIL FROM: <you@dotdot. com~’ ;

input;

file log; put ‘ FROM>’ _infile_;

file smtp;

put ‘ RCPT TO: <shoe@std. corn>’ ;

input;

file log; put ‘ RCPT> ‘ _infile_;

The ‘file log’ and ‘put’ statements are not necessary;
however, this is what was wriien to the SAS log:

INIT>220

HELO>250

FROM>250

RCPT>250

mailhost .dotdot. com

OK

shoe@dotdot. com OK

shoe@std. com OK

At this point you are ready to send the body of the
mail message. In this case the body of the mail message
will be the file called c\SUGl\Example. File. The ‘DATA
command tells the SMTP receiver to start receiving the
message body.

file smtp; put ‘ DATA’ ; input;

file log; put ‘ DATA> ‘_infile_;

The SMTP receiver responds:

DATA> 354 Ready for data

The following code segment writes the contents of the file
to the SMTP channel and therefore into the message body
of the mail. When the input file is exhausted, a ‘.’ is sent to
SMTP to indicate the end of the message body.

file smtp;

do until (lastrec) ;

infile response end = lastrec;

input; put _ infile_;

end;

put ‘ . ‘ ; input;

Finally, the SMTP session is completed with the
‘QUIT’ command and the mail message is sent along for
delivery.

put ‘QUIT’ ; input;

The SOCKET access method available with
release 6.11 allows a SAS program to communicate
directly with the TCP/lP ports by way of the FILENAME
statement. Data may be read and written to and from
these ports directly using the SOCKET access method and
a simple data _null_ step. Since TCP/lP is the default
protocol for most inter-network information exchange, the
SOCKET access places the entire power of the SAS
system at the disposal of any TCP/l P-based inter-network
information exchange application. And that includes the
old work horse of the Internet e-mail.

The author welcomes comments and criticisms.

Jack N Shoemaker
United Risk Assessment & Management
Box 74, 288 Highland Avenue
Cheshire, CT 06410

2032508618 shoe~world.std.com

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. Other brand
and product names are registered trademarks or
trademarks of their respective companies.

6

	Main TOC

