Automated Generation of a SAS® Macro Cross-Reference Table

Connie Bryant, Computer Task Group, Inc., Indianapolis, IN

Abstract

Many sites with SAS-based processing systems utilize
one or more libraries of SAS macros, either ad-hoc utility
macros or the components of structured production
systems. One of the challenges facing programmers is the
documentation of the relationships between macros; that
is, the mapping of which macros are called within each
SAS program or macro (including any nested calls). This
documentation can be very useful for maintaining and for
learning a SAS-based system. However, it can be very
tedious and labor-intensive to trace these macro calls and
to represent them graphically, especially if there are
frequent changes.

This poster presents an approach to the automated
generation of a SAS macro cross-reference table that will
document the complete set of direct and nested macro
calls, in order, for each macro in a set of libraries. It
provides a step-by-step explanation of the issues faced in
the extraction, processing, and display of the information,
with a description of the coding techniques used at each
stage.

This application was written using Base SAS and the SAS
Macro Language in an MVS Batch environment. Some of
the processing assumes Partitioned Data Set (PDS)
storage of macros but could be adapted for other
platforms.

Introduction

This poster describes a set of SAS macros that were
written to generate documentation of all the SAS macro
calls within a set of production macro libraries. The work

was performed under contract at Eli Lilly & Company. The
application was inspired by the need for several analysts
to learn and to document the flow of processing for a
large, complex, existing system that included multiple
MVS PDS libraries of macros. This application was built to
be run and utilized by systems staff and was not
formalized with any front-end interfaces. The code has
been generalized to remove any site-specific processing
and is described as though it were in one job, although in
practice it would be run as at least two separate jobs.

Presentation of the Problem

In a modular, structured, environment where tested,
verified code is used as much as possible, there may be a
large number of macro calls within a program or macro.
Documenting these calls, even when they remain simple
and at one level, is tedious at best. If these macros
themselves call several macros, then producing accurate,
readable documentation can become very difficult. The
code described in this presentation documents the macro
relationships in a compact report.

There are three major obstacles to overcome when
generating this automated documentation:

1)

Finding the macro calls in each macro

2) Processing the macro calls found to build the
expanded network of nested calls
3) Presenting the nested calls in a readable report

Figure 1 shows an example of the information to be
determined and displayed for the example macros. Figure
2 shows the type of formatted listing that will be created.

ORIGINAL MACRO

MACROS CALLED WITHIN THAT MACRO

MACRO1 MACRO3
MACRO4
MACRO2

MACRO2 MACRO4
MACRO3
MACRO5

MACRO3

MACRO4 MACRO3
MACRO5

MACRO5 MACRO3
MACRO3

Figure 1
ORIGINAL MACRO CALLED MACROS: LEVELL LEVEL2 LEVEL3 LEVEL4

MACRO1 MACRO3
MACRO4 MACRO3
———————— MACRO5 MACRO3
———————————————— MACRO3
MACRO2 MACRO4 MACRO3
———————————————— MACRO5 MACRO3
———————————————————————— MACRO3
———————— MACRO3
———————— MACRO5 MACRO3
———————————————— MACRO3

Figure 2

Finding the Macro Calls - Overview

Writing the code to find the macro calls within a set of
SAS code is easier than one would think. When coding
macros, most programmers follow a convention of:

e having only one macro call in a line of code, and
e having the macro call be the leftmost non-blank code
in aline

There are three aspects involved in parsing a module:

1) Getting the names of the macros in each library
of interest

2) Parsing each macro to find potential macro calls

3) Verifying which potential calls are actual calls to
macros

Initial Setup

It is necessary to process all PDS libraries that have the
macros to be documented as well as the macros they may
call. The filenames are set up with the convention of the
name LIB + x, where x is a single letter. Macro variables
are assigned to the letters and to the PDS names to
facilitate dynamic generation of footnotes for the final
report. The NUMLIBS variable is also assigned to allow
dynamic processing later.

$LET LETTER1=A; %LET PDS1=USERID.SUGI22.TLIBA;
$LET LETTER2=B; S%LET PDS2=USERID.SUGI22.TLIBB;
$LET NUMLIBS=2;

FILENAME LIB&LETTER1 “&PDS1” DISP=SHR;
FILENAME LIB&LETTERZ “&PDS2” DISP=SHR;

FILENAME MEMLIST '&&LIST' DISP=(NEW, DELETE)
UNIT=SYSDA SPACE=(TRK, (5,5),RLSE)
LRECL=80 RECFM=FB;

Get the List of Macros in each PDS

The %GETMACS macro generates the directory records
for each PDS to be processed. The resulting list of
member names from each library is used to build a SAS
format and SAS data set for that library.

$MACRO GETMACS (INITIAL=) ;

PROC SOURCE INDD=LIB&INITIAL NOPRINT
DIRDD=MEMLIST;
RUN;

DATA LIB&INITIAL;

LENGTH START $ 8 LABEL $ 3;
RETAIN FMTNAME "SLIB&INITIAL";
INFILE MEMLIST END=EOF;
INPUT @1 START;
LABEL=" (& INITIAL)";
OUTPUT;

IF EOF THEN DO;
START="'OTHER';
LABEL="' ';
OUTPUT;

END;

RUN;

PROC FORMAT CNTLIN=LIB&INITIAL;
RUN;

$MEND GETMACS;

$GETMACS (INITIAL=&LETTERL)
$GETMACS (INITIAL=&LETTERZ2)

This macro creates a SAS format for each PDS, called
SLIBx, that contains the member names for that library on
the left side, and the initial of the library on the right side,
e.g. MACRO1 = (A). When a potential macro call is found,
it will be checked against all of these formats; if it is a
macro, the initial of the library containing the macro will be
the result of the lookup. Otherwise, the lookup will return a
blank.

Find the Macros Called Within Each Macro

The principle used in parsing for potential macros is
straightforward: If a line of code contains

FXXXX (or %$XXXX
it may be a macro call. This potential macro name will be
compared to the $LIBx format from each PDS to see if it is
a macro in one of the libraries.

The %FINDMACS macro will be called for each macro
within each PDS. It parses a single PDS member and
writes out one observation for each macro call. If there
were no macros called, it writes one observation out to
represent the ‘calling’ macro. The counter ANYMACS is
incremented each time a macro call is found; it is
renamed in the output data set to represent the called
ORDER for the macro within the calling macro. The
member-level information is then appended to the LIBx
library-level data set. Note that the appropriate library
initial is appended to all calling and called macro names.

$MACRO FINDMACS (CALLING=,LIBDD=);

DATA &CALLING (RENAME= (ANYMACS=ORDER
ISITMAC=CALLED
CALLER=CALLING)) ;
LENGTH MACLIB $ 40 ISITMAC CALLER $ 11 ;
RETAIN CALLER "&CALLING (&INITIAL)" ;
INFILE &LIBDD (&CALLING) END=LASTREC;
INPUT CODE $ 1-80;
IF CODE=:'%' THEN DO;
ISITMAC = SCAN(CODE,1,'% (');
MACLIB=LEFT (
$DO0 _J = 1 $TO &NUMLIBS-1;
PUT (ISITMAC, $LIB&&LETTERG J...) ||

%END;
PUT (ISITMAC, $SLIB&S&LETTER&NUMLIBS...)) ;
IF MACLIB NE ' ' THEN DO;
ISITMAC=TRIM(ISITMAC)||' '||MACLIB;
ANYMACS+1;
OUTPUT;
END;
END;
IF LASTREC AND NOT ANYMACS THEN DO;
ISITMAC=' ';
MACLIB=' ';
OUTPUT;
END;
RUN;

PROC APPEND BASE=LIB&INITIAL.P
DATA=&CALLING;
RUN;

$MEND FINDMACS;

The %LOOPFIND macro is executed for each PDS and
generates the calls to the %FINDMACS macro for each
member in that library. The PDS-level data produced in
each call of %LOOPFIND are appended to the data set
LEVEL1, which will contain all macros and first-level
macro calls.

$MACRO LOOPFIND(INITIAL=) ;

DATA NULL ;
SET LIB&INITIAL END=LASTREC;

IF START NE 'OTHER' THEN DO;
CT + 1;
CALL SYMPUT ("VAR" | |LEFT (PUT(CT,4.)),
'$FINDMACS (CALLING="| | START] |
", LIBDD=LIB&INITIAL)");
END;

IF LASTREC THEN
CALL SYMPUT ('NUMMACS',PUT(CT,4.)) 7
RUN;

$D0 I = 1 %TO &NUMMACS;
&&VARE I;
$END;

PROC SORT DATA=LIB&INITIAL.P

(KEEP=CALLING CALLED ORDER) ;
BY CALLING ORDER CALLED;
RUN;

PROC APPEND BASE=LEVEL1 DATA=LIB&INITIAL.P;
RUN;

$MEND LOOPFIND;

$LOOPFIND (INITIAL=&LETTER1)
$LOOPFIND (INITIAL=&LETTER2)

The LEVEL1 data set that results from the calls to
%LOOPFIND is shown in Figure 3. It contains all the first-

Finding All Nested Relationships

The LEVEL1 data set is the foundation of the processing
to expand the nested relationships. This data set will be
merged back against itself as many times as necessary to
expand all nested macro calls, as illustrated in the Figure
4 representation of the expansion for MACROA4.

Prior to doing the iterative processing needed, the
LEVEL1 data set will be transposed to one observation
per calling macro. Since the merging will be done by
macro names, and since there may be cases where a
macro that calls multiple macros is itself called in multiple
macros, the transpose is necessary to facilitate the
iterative merging without having multiple observations with
the same BY-variable values in both data sets. The
transposed LEVEL1 data will contain the called macro
names in array variables.

PROC SORT DATA=LEVEL1;

BY CALLING ORDER CALLED;

RUN;

DATA LEVEL1 T (KEEP=CALLING NUMCALD

CALD1-CALD1O) ;

ARRAY CALDMACS{10} $ 11 CALDl - CALD1O;

RETAIN CALD1-CALD1O;

SET LEVELL;

BY CALLING ;

IF CALLED NE ' '
NUMCALD + 1;

THEN DO;

CALDMACS (NUMCALD) = CALLED;
END;
IF LAST.CALLING THEN DO;
OUTPUT;

IF NUMCALD GT 0 THEN
DO I =1 TO NUMCALD;
CALDMACS (I)=' ';

level, or direct macro calls within each macro in each PDS END;
as well as the respective order of those calls. ENDTUMCALD_O’
RUN;
LEVEL1 DATA - 1ST LEVEL RELATIONSHIPS
CALLING ORDER CALLED
MACRO1l (A) 1 MACRO3 (A)
MACRO1 (A) 2 MACRO4 (B)
MACRO1l (A) 3 MACRO2 (A)
MACRO2 (A) 1 MACRO4 (B)
MACRO2 (A) 2 MACRO3 (A)
MACRO2 (A) 3 MACRO5 (B)
MACRO3 (A) 0
MACRO4 (B) 1 MACRO3 (A)
MACRO4 (B) 2 MACRO5 (B)
MACRO5 (B) 1 MACRO3 (A)
MACRO5 (B) 2 MACRO3 (A)
Figure 3
| | | |
| | |
| CALLING CALLED ORDER |
| | | CALLING CALLED ORDER | o
|MACRO3 (A) 0 | \ \ | CALLING
IMACRO4 (B) MACRO3 (A) 1 |----| MACRO3 (&) |
IMACRO4 (B) MACRO5 (B) 2 |----| MACRO5 (B) MACRO3 (A) 1 -|----|MACRO3 (BA)
| |-———|] MACRO5 (B) MACRO3 (A) 2 -|----|MACRO3 (A)
|[MACRO5 (B) MACRO3 (A) 1 | \ \ __ _
|IMACRO5 (B) MACRO3 (A) 2
| |
Figure 4

The transposed LEVEL1 data, LEVEL1_T, is shown in
Figure 5.

The %MERGMACS macro performs the iterative merging
necessary to match all called macros against calling
macros until there are no more called macros
(&ANYLEFT=0). Starting with LEVEL1, the data set is
sorted by the called macro names, and the variables are
renamed. The original CALLING macros are renamed to
MACLV_1; the order of the called macros is renamed to
ORDLV_1; and the called macros are renamed to
CALLING. Each iteration of the %DO %WHILE has an
associated &LEVLIN and &LEVLOUT, which represent
the level of macro calls that exist in the growing expanded
calls data set that will be merged with LEVEL1_T to
capture the &LEVLOUT level of macro calls. The
determination of whether there are &ANYLEFT is made by
counting any called macros within the merge.

$MACRO MERGMACS;

$LET ANYLEFT=99;

$LET LEVLIN=1;

$LET LEVLOUT=2;

$DO SWHILE (&ANYLEFT > 0);

PROC SORT DATA=LEVEL&LEVLIN
OUT= LEVEL&LEVLOUT
(RENAME= (CALLING=MACLV_&LEVLIN
ORDER =ORDLV &LEVLIN
CALLED=CALLING)) ;
BY CALLED
RUN;

7

DATA LEVEL&LEVLOUT
(KEEP=MACLV 1-MACLV &LEVLIN
ORDLV_1-ORDLV_&LEVLIN
ORDER CALLING CALLED);
ARRAY CALDMACS{10} $ 11 CALDl - CALD1O;
RETAIN TOTCALD O;
MERGE LEVEL1 T (IN=CALD)
LEVEL&LEVLOUT (IN=LEV&LEVLOUT)
END=LASTREC;
BY CALLING ;

IF LEVSLEVLOUT THEN DO;

IF NUMCALD GT 0 THEN DO;

DO I =1 TO NUMCALD;
CALLED = CALDMACS(I
ORDER I
OUTPUT;

END;

TOTCALD + 1;

END;

ELSE DO;
CALLED=' ';
ORDER=. ;

OUTPUT;

END;

END;
IF LASTREC THEN
CALL SYMPUT
('ANYLEFT', PUT (TOTCALD, 4.)) ;

)i

’

RUN;
%$IF (&ANYLEFT > 0) $THEN %DO;

$LET LEVLIN=%EVAL(&LEVLIN + 1);
$LET LEVLOUT=%EVAL(&LEVLOUT + 1);
%END;

%END;

PROC DATASETS LIB=WORK;

MODIFY LEVEL&LEVLOUT;

RENAME CALLING=MACLV &LEVLOUT;
CHANGE LEVEL&LEVLOUT ALLCALLS;
RUN;

$MEND MERGMACS;

$MERGMACS

Formatting the Report

Once the macro relationships are determined, there is still
the problem of how to display the information. Figure 6
shows a plain listing of the final ALLCALLS data set that is
difficult to read because of the repeating values in the
nested level columns.

LEVEL1_T DATA (TRANPOSED LEVEL1l DATA)

CALLING NUMCALD CALD1 CALD2 CALD3 CALD4 CALDS CALD6 CALD7
MACRO1 (A) 3 MACRO3 (A) MACRO4 (B) MACROZ (A)
MACRO2 (A) 3 MACRO4 (B) MACRO3 (A) MACRO5 (B)
MACRO3 (A) 0
MACRO4 (B) 2 MACRO3 (A) MACRO5 (B)
MACRO5 (B) 2 MACRO3 (A) MACRO3 (A)
Figure 5
MACLV 1 MACLV 2 MACLV 3 MACLV 4 ORDLV 1 ORDLV 2 ORDLV 3
MACRO2 (A) MACRO4 (B) MACRO3 (A) 1 1 .
MACRO2 (A) MACRO4 (B) MACRO5 (B) MACRO3 (A) 1 2 1
MACRO2 (A) MACRO4 (B) MACRO5 (B) MACRO3 (A) 1 2 2
MACRO2 (A) MACRO3 (A) 2 .
MACRO2 (A) MACRO5 (B) MACRO3 (A) 3 1
MACRO2 (A) MACRO5 (B) MACRO3 (A) 3 2
MACRO3 (A) 0
MACRO4 (B) MACRO3 (A) 1 .
MACRO4 (B) MACRO5 (B) MACRO3 (A) 2 1
MACRO4 (B) MACRO5 (B) MACRO3 (A) 2 2
MACRO5 (B) MACRO3 (A) 1
MACRO5 (B) MACRO3 (A) 2
Figure 6

Using a PROC PRINT with the BY variables=ID variables MACLV_2 - MACLV_&MAXINDEX;
is also a problem because the depth to which the ARRAY ORD{*} ORDLV_l - ORDLV_&MAXLESS1;

duplicate val d to be banked out h ith ARRAY PREVORD{*} PRVORDl - PRVORD&MAXLESSI;
uplicate values need 10 be blanked out can change wi RETAIN PRVORD1 - PRVORD&MAXLESS1 NEWCALL;

each line. The formatted report for this application is done SET PRINT;
by pre-processing the fully expanded macro call data set BY MACLV_1 MACLV 2 NOTSORTED;
and manually determining where all repeated values are IF FIRST.MACLV_2 THEN DO;
that can be eliminated. To make the listing more readable Do EfIﬁ(zll) o DEXZSTL?V)E{J -
dashes are used instead of blanks for repeated data. PREVORD(I) = ORD(I);

END;
This macro determines the maximum level of nesting for OUTPUT;
each record in the data set. Then it uses the values for the END;
called macro order variables (ORDLV_1 for MACLV_2, ELSI}?IEVDVSZ,:\LL*O'
ORDLV_2 for MACLV_3, etc.) to determine if the macro Do 1 -1 TO (MAXLEVEL - 1);
name at that level represents a new call or a repeat of an IF ORD(_ I) = PREVORD(I) AND
earlier one. When a new call occurs, the macro name will NOT NEWCALIL THEN
be shown. The order variables need to be used rather PRT(_I_) = '===—=====-- i
than just the macro name variables because of the ELSE DO;

S - NEWCALL = 1;
possibility of consecutive calls to the same macro.

PRT(I) = MAC(I);
END;
$MACRO PRTMACS; PREVORD(I) = ORD(I);
END;
DATA NULL ; OUTPUT;
RETAIN MAXINDEX O; END;
SET SASHELP.VCOLUMN END=LASTREC; RUN ;
IF LIBNAME='WORK’ AND
MEMNAME='"ALLCALLS’ AND PROC PRINT U LABEL DATA=PRINT;
NAME=:"MACLV_"' BY MACLV 1;
THEN ID MACLV 1;
MAXINDEX= PAGEBY MACLV 1;
MAX (MAXINDEX, INPUT (SUBSTR (NAME, 7) ,2.)) ; VAR PRT 2 - PRT &MAXINDEX;
IF LASTREC THEN CALL SYMPUT LABEL MACLV 1 = 'CALLING MACRO'
(‘MAXINDEX'’ , LEFT (PUT (MAXINDEX,2.))); SDO I=2 %TO &MAXINDEX;
RUN; SLET ILESS1=%EVAL(&I - 1);
PRT &I =
$LET MAXLESS1 = $%EVAL (&MAXINDEX - 1); TWCALLED LEVEL &ILESS1™
$END; ;
DATA PRINT (KEEP=MACLV_1 - MACLV_&MAXINDEX TITLE1
ORDLV_1 - ORDLV_&MAXLESS1 ‘FORMATTED LISTING OF ALL MACROS’
MAXLEVEL) ; ‘' CALLED IN THE ORDER CALLED';
ARRAY NESTED (&MAXINDEX) $ 11 TITLE3 ' ';
MACLV_1 - MACLV_&MAXINDEX; FOOTNOTE1
RETAIN MAXLEVEL Q; '"THIS INCLUDES MACROS FROM THE LIBRARIES: ';
SET ALLCALLS $DO I=1 $TO &NUMLIBS;
END=LASTREC; $LET FNOTNBR=%EVAL (&I + 1);
DO I=1 TO &MAXINDEX; FOOTNOTE & FNOTNBR
IF NESTED(I) NE ' ' THEN " (&§&LETTER&I) - &&PDS&I ";
MAXLEVEL=MAX (MAXLEVEL, I) ; SEND;
END; RUN;
RUN;

$MEND PRTMACS;
PROC SORT DATA=PRINT;

BY MACLV_1 ORDLV_ 1 - ORDLV_&MAXLESS1; & PRTMACS
RUN;

DATA PRINT; Figure 7 shows the resulting output for example macro
ARRAY PRT{*} $ 11 PRT 2 - PRT_ &MAXINDEX; MACRO2.

ARRAY MAC{*} $ 11

FORMATTED LISTING OF ALL MACROS CALLED IN THE ORDER CALLED

CALLING CALLED CALLED CALLED CALLED
MACRO LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4
MACRO2 (A) MACRO4 (B) MACRO3 (A)
——————————— MACRO5 (B) MACRO3 (A)
—————————————————————— MACRO3 (&)
MACRO3 (A)
MACRO5 (B) MACRO3 (A)
——————————— MACRO3 (A)

THIS INCLUDES MACROS FROM THE LIBRARIES:

(A) - USERID.SUGI22.TLIBA
(B) - USERID.SUGI22.TLIBB
Figure 7

Conclusion

In practice, this processing is implemented as multiple
batch jobs. One job does all the processing up to the
%PRTMACS macro, and saves the resulting data set. Ad-
hoc report requests are then run against this data set for
the reports on one or more macros using the processing
in the %PRTMACS macro plus code to subset for the
requested macros and to determine the deepest level of
nesting present for the requested macros. The report
prints only as many levels of nesting as needed. Another
report run against the data finds all macros that call a
particular macro. This is extremely useful if a low-level
macro needs to be modified and the analysts need to
assess the impact.

This processing can be used on SAS programs as well as
macros. It generates documentation that is extremely
useful in analyzing, learning, and documenting existing
systems. The documentation is also good for debugging.

Acknowledgements

Access to TSO and to the SAS System for MVS for
development of the examples used in this poster was
generously provided by Eli Lilly & Company.

The author thanks Martha Thieme of Profound Consulting
for editorial review of this poster.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

Connie Bryant

Computer Task Group, Inc.

5875 Castle Creek Parkway, Suite 208
Indianapolis, Indiana 46250

(317) 578-5100

cbryant@indy.net

	Main TOC

