
A Macro Tool for Quickly Producing a Handy

Documented Listing of SAS” Data Sets for Use as a

Reference While Writing Programs to Analyze the Same

Hugh Geary, Neoprobe Corporation, Dublin, Ohio

Abstract

Whenbeginning anewprojectI often havea
number of SAS data sets with a total of, perhaps,

2000rmore variablesto analyze. Appreciable time
can be saved when developing programs for
processingthis data if listings canbe made which
enable meto scan through the data quickly.

This paper describes amacro Iwroteto make
listings both informative and compact. The title line
has the name of the file in large print followed by

the number of records, the number of patients (or
values of themajor sort key), thedateand time the
file was last modified and page number.

The listings are done by PROC PRINT and are
made compact by using small print and printing

only as many variables as can be displayed on a
page without creating a split page. When a character
variable is so long that it will not fit in one page
width, my macro automatically breaks it into two
variables.

Control parameters for PROC PRINT features and

other features are passed through macro variables.
A PROC CONTENTS listing may also be produced.

Introduction

Why Make Listings?
When I move to a new database I need to both get
the ‘feel’ of the data, i.e. its range, number of digits
in the numbers and how much is missing, and have a

source for looking up data values, such as for
checking on outliers or missing data. Creating
listings helps in getting familiar with the data and
provides a valuable reference for my own use in the
weeks ahead. The listing is also a good place to
make notes about data peculiarities as they are

discovered because from them sometimes a trend
may be identified over time. If the data set name can

be printed very close to the top edge of the paper,
several listings can be bundled together by a large
clip in stair step fashion so that the titles of each of
the listings can all be seen at once increasing your
ability to find a listing quickly.

Listings Are Best Made by Macros.
Because making listings is somewhat of a repetitive
process, a macro, once it is written, saves
duplicating the code and modi~ing it repeatedly.
Also when a new feature is thought of, changing the

macro is easier than going back through many
separate codes.; in fact using a macro encourages
new features because they can be more easily
incorporated into the previously written macro calls
than in separate programs.

Title Lines

The Title Line Tells about the SAS Data Set.
On the title line I try to put all of the information
needed about the file itself - a project identifier, file
name, number of records, number of patients,
number of records actually listed if it is not a
complete listing, the date the SAS data set was last
modified and a page number. Printing the file name

in large bold print may require embodying special
control characters in the title for the printer to read
such as I have done while using a VAX computer
and certain printers. Counting the records, nobs,
can be done without reading the data set. While
counting the patients requires sorting and reading

the data set, it is very usefid to be able to see at a
glance how many patients are actually in the data

set, or, in effect, how many don ‘thave any data.
The date the data set was last modified is found in

the output SAS data set of PROC CONTENTS.
This date can be put into a macro variable with a
symget statement and then put in the title statement.
If an options statement:

options number nodate;

1

is used the page number will be printed
automatically and the date and time of printing
suppressed (suppressed when the date last modified
is desired here.)

A second title line can be made by assigning
whatever text is desired in it to a macro parameter

called ‘subt’; For example,

subt=%str(Part 1- the Lung Related Variables);

O/Ostr() is needed only if the string contains certain
characters.

The Listing

Prevent Wrap-around Data Listings.
PROC PRINT is used by my macro, PRNT, to do

the printing. The main concern in making the
printout easy to read is in preventing the procedure
from having to wrap long records around in order to
get the whole record on the page. Usually this is
accomplished by using two or more PROC PRINT
calls giving each one only as many (but preferably
the maximum number of) variables as it can fit on a

page without wrapping. Sometimes a character
variable may be so long that it will not fit across the
page. I use 20 characters to the inch when printing
listings and with paper 8.5 inches wide it gives me
about 160 columns to use and occasionally this is
not enough. In this case I break the long variable
into two (or more) substrings with another macro,

called SHORTEN, which is used for only this
purpose.

How to Split a Long Variable.
Actually the macro, SHORTEN, does this for you
automatically. This macro reads the output SAS
data set of PROC CONTENTS and fetches the
names of all of the variables declared to have a

length of greater than 8. Some may never attain or
not even come close to their declared length. and for

our listing we only care about the length actually
attained. Then it reads the data set about to be
listed, noting the actual length of each of these

variables in each record and retains the maximum
length of each variable. Then for each variable

attaining a maximum greater than, say, in my case,
150, it creates two or more new variables, an A

version, a B version and so on as needed and drops
the original. Thus if variable, called say, reason,
had actuahy attained a length of 190 then the

following would be done:

mnx=min(length(reason), 150);
reasonA = substr(reason, 1,mnx);
If mnx> 150 then

reasonB = substr(reason,151);

Reason will be dropped from the listing and
replaced by reasonA and reasonB;

How to split up a data set’s variables over more
than one print call.
The VAR statement specifies which variables will
be included in the printout. With no VAR statement
the data set would be printed wrapping around if
necessa~. One macro parameter, called var, is used
in the following way to create a var statement:

var=var V 1 V2 V3 ... Vn; as in var=var patient
date age sex race height weight;

where V 1, V2 etc would be the actual variables
names. The fi-st var is the name of the macro
variable and what follows the equal sign is the
actual var statement.
Use two or more calls to the macro, PRNT,
specifying different variables on the var statements
in each call but only as many as will fit across one
page of output. Trial and error tells you how many
can be crammed across one page although a good
guess can be made by making a ‘first look’ run by
PRNT. To do this use:

%prnt (labs, obs=zz,npag= 1);

which produces a one page listing with as many
observations as PROC PRINT can put on a page.
The observations will wrap as necessary. If a
number is assigned to obs instead of “ZZ” then

PRNT will print that many observations regardless

of how many pages it takes. If obs is assigned a null
value then all of the observations are printed but if
“ZZ” is assigned then PRNT needs to use the value

of npag to see how many pages to fill and then
compute how many observations would be required.

Writing several one page calls to PRNT enables me
to quickly see what kind of data is in the database.

2

Other Features

Explaining the Other Macro Parameters.
The macro parameters explained so far have been:
var and subt. An example of a macro call using all
of the possible macro parameters is:

O/OLister(medhist,
subt=Part One - Respiratory Data,

by=patient labdate,
id=patient,

dso=keep=patient labdate pulm lungl

lung2 lung3 resp aero 1 aero2 reason,
var=var labdate pulm lung 1 aero 1 resp,

cnts=no,
opt=uniform,- Or opt=noobs split,

and other PROC PRINT options

ps=90,
npat=);

The first parameter is the only positional parameter
and it names the SAS data set to be printed. All of
the other parameters are keyword parameters and so
may be listed in any order or omitted.

Subt is for a subtitle. By names the sort variables
for use by PROC SORT. Id names the variable(s) to

be used in the special by - id construction:

by sort-key; id sort-key;

which separates the records belonging to one sort-
key value from records belonging to other sort-key
values by a blank line, and printing the sort-key only

once.

Dso is for a data set option, such as, keep, drop,
where or whatever else might be useful. It is used in

the proc sort statement and used mainly to eliminate
variables or records that are not wanted for some
reason.

Var, as explained earlier, specifies the variables to
be printed by PROC PRINT.

If cnts is left blank then PROC CONTENTS will
print its usual output, otherwise none will be
produced. This is useful when several executions of

the macro are necessary to print all of the variables

of one data set.

Opt supplies whatever options it is desired that
PROC PRINT use. Ps specifies the page size and
appears on an options statement;

Npat would normally be left blank and thus cause
the macro to count the number of patients in the

SAS data set. However there is often at least one
data set in the database that does not contain the
variable used as the major sort key in all of the
others, in this case, set npat= to any non-blank
character, as npat=x, so it will not try to count what
is not there.

Hugh Geary
Neoprobe Corporation
630 Morning Street
Worthington, Oh 43085

(614) 793-7500 ext 168 (work)
(614) 793-7520 (fax)

(614) 885-3164 (home)
e-mail hgeary@neoprobe. com

APPENDIX

Complete Macro Listing

*PRNT. sas SUG122 2jan97,23may96++;
*************** *************** *************** *************** **************** **;

*\ Program PRNT macro
*\ Purpose To print a proc contents output followed by a complete and
*\ tailored listing of selected data sets;
*\ progmr Hugh Geary May, March 96
**************** ****************** **************** **************** ************.

options nofmterr 1s.132 1s=160 ps=90 ps=126
,

date number missing=’ ‘;
* Use Courier New 6 pt 1s=160 ps=126;

%macro Shorten (dsn); * or chopAB; * Find how many LONG var there are;
* 150 is OK if it FITS on one line;

* Formats will be recomputed for lengths over 8;
* Vars >150 will be chopped in two. The A version of length.150,

the B version with the remainder;

proc contents data=&dsn noprint out=contnts (where= (length>8)) ;

data null_; if O then set contnts nobs.nn;
cali symput (’nn’, trim(left(put(nn,2 .)))); * assuming fewer than 100;
if nn>O then do; i=l);

do until (last) :
set contnts
call symput
end;

end;
stop ; run;

%put The number

end=last; i+l; not avaliable here;
(’long’ I[trim (left(put(i,2.))),naml)Yn–* get the var names;

of variables of length > 8 is: &nn &nn;

%if &nn>O %then %do; * i.e. if some LONG var were actually
data null_; set &dsn end.last; %* how many actually ever exceed
retaifi mml-mm&nn;
if n =1 then do; %do ii=l %to &nn; mm&ii.O;—= %end; end;
%do li=l %to &nn; mm&ii=max (mm&ii, length(&&long&ii)); %end;

if last then do;

found;
150 ?;

jj=o; kk=o; ‘ * Find the actual greatest length found;
%do ii=l %to &nn; * in the whole file of each variable;

if mm&ii>150 then do;
jj=jj+l;

jjchar=trim(left (put(jj, 2.)));
call symput(’j’ Iltrim(left (put(jj,2.))) ,“&ii”) ; *saving the old index;

* Next get length of var name;
if length(’’&&long&iiT!)>7

then call symput(’long7’ jjchar, substr (’’&&long&ii” ,1,7)) ;
else call symput(’long7’ jjchar,trim (“&&long&ii”)) ;

call symput(ilmmA&iill, ‘150]);
call symput(’’mmB&ii’’,trim(left (put (max(mm&ii-150, 2),3.))));
end;

else do;
kk=kk+l; * save the index of those not actually so long;
call symput(’k’ lltrim(left(put (kk,2.))), ’’&ii”);
call symput(’’mm&ii’’,trim(left (put (mm&ii. ,3.)))); * storing actual lengths;
end;

%end;
call symput(’jj ’,trim(left (put(jj,2.)))); * store last value of jj & kk;
call symput(’kk’,trim(left (put(kk,2.)))); * jj + kk = nn;
end;

run;

4

* Create the A & B variables now (A second pass of &dsn is required.) ;
* Append an A to the name & give it length 150;
* Append a B to create name for the remainder and drop the original;

%if &jj>O I &kk>O %then %do;
data &dsn (drop=%do ii=l %to &jj; &&&&long&&j&ii %end;/{

length %do ii=l %to &jj; &&long7&ii. .A $&&&&mmA&&]&ll
&&long7&ii ..B $&&&&mmB&&j&ii %end;

%do ii=l %to &kk; &&&&long&&k&ii $&&&&mm&&k&ii %end; ;
set &dsn end=last;
format %do ii=l %to &kk; &&&&long&&k&ii $&&&&mm&&k&ii. ... %end;

%do ii=l %to &jj; &&long7&ii. .A $&&&&mmA&&j&ii. ...
&&long7&ii. .B $&&&&mmB&&j&ii %end;;

%do ii=l %to &jj; * Processing the “long” vars, every record in file;
mnX . min(150, 1ength(&&&&long&&j &ii)) ;
&&long7&ii ..A=substr (&&&&long&&j&ii, l,mnX) ;
if mnx>150 then
&&long7&ii. .B=substr (&&&&long&&j &ii,151) ;

%end;
%end;

%end;

%mend Shorten;

%macro prnt (nam,subt=%str(),dt=Jby=id, id=,dso=,var=,npat=,ps=126, 1s=160,
obs=,tds=,,opt=) ; * dso is data set option;

* setting ps=92 frequently causes pages that are split into two parts to
run over 2 lines onto a second page;

%if &subtA= %then %let SS=O; %* but if more titles than 2 are used then;
%else %let ss=O; %* ss must = Number of title lines - 2;

* Space has already been reserved for 2 titles;
options ls=&ls ps.&ps; * So it was not necessary to compute &ss;

filename xxx “F:\trials\&db. &db2\&nam. .dbf”;
proc dbf db4.xxx out=&nam;

data null_; if O then set &nam nobs=nnn; * Count the records;
call–symput (’nnn’, trim(left(put(nnn, 4.)))); stop ; run;
%if &nnn=O %then %let obs=obs=O;

%if &nnn>O %then %do;
proc contents data=&nam noprint out=dates (where= (format=’DATE ‘));

data null_; if O then set dates nobs=dd;
call symput (’old’,trim(left(put(dd,2 .))));

if dd>O then do; i=o;
do until (last);

set dates end=last; i+l;
call symput (’dat’ Iltrim(left (put(i,2.))) ,name) ; * get the date vars;
end;

end;
stop ; run;

proc sort data=&nam out=&nam (&dso) ; by &by;
%if &dd>O %then %do;

format %do ii.1 %to ⅆ &&dat&ii %end; date7.;
%end;

%if &npatA.O %then %do; * If patient not on the data set, set npat=O;
data patients; set &nam; by &by;

if first.&by; * Make sure &by just distinguishes patients;
data _null_; if O then set patients nobs=npat; * Count the patients;

call symput (’npat ’,trim(left (put(npat, 4.)))); stop; run;
%end;

%Shorten (&nam) ;

5

%if &obs=zz %then %do; %* Have OBS computed here (if so requested);
proc contents data.&nam noprint out=cntnts;
proc sort data.cntnts; by varnum;
data _null_; set cntnts end=last;

if format=’DATE’ then CO1 xh = 1 +
else col—xh . I +

if format.lDATE’ then Col—xv = 1 +
else Col—xv = 1 +.

obslen h + CO1 xh;
obslen—v + Col—xv;— —

if

if

if

if

n=l then do; nlpobsH=l;
nlpobsv.l; end;

CO1 sumH + CO1 xH>&ls. then do;— —
else

CO1 sumV + CO1 xV>&ls. then do;— —
else

last then- do:

* to count number of lines per ohs;

max(7,1ength (name)) ; *her var names;
max(formatL, length(name));
7; * for vertical var names;
formatL;

* Number of lines per ohs;

col sumH=4+col xH; nlpobsH + 1; end;
Col—sumH + CO1—XH;
col–sumV.4+col–xV; nlpobsV + 1; end;
col—sumV + col—xV;— —

if obslen H<.&ls. then obsppagH=&ps - 5 -&ss; * # of obs per page;
else if obslen—V<.&ls. then obsppaqV=&ps - 12-&ss;—
else do; obs~~a~H=i~t((&ps.-2-kss)/nlpobsH) - 3;

obsppagV=int ((&ps.-2-&ss) /nlpobsV) - 10;
end;

numobs=&npag*max (obsppagH, obsppagV) ;
if &nnn<=numobs + 2*max(obsppagH, obsppagV) then numobs=&nnn;

* ie print all if they would fit on 2 more pages;
call symput (lobs} , lobs=! II trim(left(put (numobs,4.))));
end;

run;
%end;

*options nosymbolgen nomprint nomlogic;
%end;

%if &obs=zz %then %do;
title “&db %upcase(&nam) ((&npag pages &obs out of) &nnn records &npat patients) “;

%end;
%else %do; title “&db %upcase(&nam) (&nnn records &npat patients) “; %end;

title2 “&subt”;
%if &cont= %then %do;

proc contents data=&nam; %end;

proc print data.&nam (&obs) &opt;
%if &idA= %then %do; by &id; id &id; %end; &var;

run;

%mend prnt;
/* Gcsi. !p&csi. l;90r&csi .19m&csilm &db
%upcase(&nam) &csi.15m(&nnn records &npat patients) &csi.4w&csi.22m;

(used for the VAX) */
* Define db & db2 here instead of in each macro call;

%let DB.Study2; %let DB2=\SAS-dat;

* if obs is left null, PRNT will process all of the observations and assign
the actual number to OBS. If you assign obs a number, PRNT will process
that many observations. If you write obs=zz then you need to supply
npag= a number and it will compute how many observations are needed to fill
that many pages and assign that number to obs for you;

%prnt(medhist, obs=zz,npag.2 ,cnts=no);

%prnt(medhist,obs=obs=200,dso=where. (Tdate>’ljan97’d) ,

var=var=patient tdate Lungl-Lung3 aerol aero2,0pt=noobs uniform) ;

6

	Main TOC

