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Abstract

In order to manufacture the worlds fastest commercial
microprocessor chips (Alpha™ products) extreme process control
and improvement methodologies are required to obtain desired
performance and cost.  At Digital Equipment Corp. we use SAS
GUI interfaces for process experiment analysis of chip probe
data.  This paper presents how one can model the binomial chip
responses from wafers which have received special process
treatments in order to characterize and improve the process.
Often, process experimenters will repeat an experiment on
different lots (batches of wafers grouped together) and thus the
effects of lot-to-lot variability is needed in the experiment analysis
methodology.  We show in this paper how to start with a very
simple simplistic view of the data in a designed experiment and
progressively add complexities which mimic reality much closer.
We show that if one ignores these complexities, the results of an
analysis can be rather misleading  or even completely reversed.
We also show that from experience in teaching process
specialists and analysts;  the easiest way to standardize the
analysis is to minimize the amount of computer logistics; i.e. we
provided SAS/AF Frame™ entry programs which are very easy to
use for extracting data, comments on experiments, and logistic
analysis of the binomial response data.  We use %GLIMMIX
macro developed by SAS Institute [1] to accomplish the pseudo-
likelihood analysis of a mixed-effects overdispersed binomial
model.

Introduction

In today’s semiconductor market the need for fast
microprocessors with high reliability and relatively low cost is in
demand.  How process engineers user their data to uncover
differences in experiment treatments is the topic of this paper.
Also, how to deliver those results to the engineering and
management community is also the topic of this paper.  The first
problem in relating integrated circuit yields to process treatments
is how to effectively analyze chip yields.  Many yield analysts in
the past have used the Negative Binomial, Seeds, or the
Murphy’s model for yield when using mean defect density or
failure density estimates [2] - [6]. In this paper we describe the
yield data from a very simplistic view all the way to using a
binomial model [7] which will take into account  lot-to-lot variation
(when multiple lots have repeating experiments), wafer-to-wafer
variability within treatment groups, and chip-to-chip correlation’s
within a wafer which received a particular treatment combination.

We also show that when these special analysis reports are
generated, the resulting information needs to be brought to the
engineering and management community in a simple fashion
otherwise the analysis will be a waste, and the information will not

get delivered in a timely manner.  We use a combination of
SAS/AF™ and SAS/EIS™ objects to deliver a complete analysis
and reporting package to our engineering community.
Productivity gains by using these techniques has been
outstanding, typically greater than 10 to 1 improvements in time
reduction, report standardization, and improve accuracy have
resulted in the EIS’s wide spread use in manufacturing.

The Problem

The main problem in semiconductor manufacturing is that almost
everything can and usually does effect the yield of  the integrated
circuits, however, it is not always predictable as to which factors
are in  effect for a particular lot in question.  This makes it
somewhat difficult to analyze process experiments to determine if
the experiment factor settings are giving the expected yield and
other desired electrical responses.   This problem gets even
worse when multiple lots are used to increase the sample sizes;
lot-to-lot variability is now also introduced as a source of potential
variation.  The Negative Binomial model used to predict chip
yields has been very successful, however, this model is not
tractable to obtaining odds ratios from the parameter estimates
and also hypothesis testing of experimental factor settings.  The
ability of an analyst to determine if an equipment chamber, tool
setting, process recipe, etc. caused an increase or decrease in
the wafer chip yield adds great value in the experimental learning
curve.  Odds ratios from experiments with combined lots of
identical experiment factors and levels can be used to give an
extended population analyses and thus estimate the expected
production line yield improvement from such process changes.

Analysis
Section 3.1 starts with a simple analysis in which the wafer yields
are treated as continuous data using analysis of variance, and
disregarding the lot-to-lot variation component. Then we proceed
to perform a logistic regression analysis taking into account the
binary nature of yield. In section 3.2 the logistic regression
analysis is performed for each lot.  Section 3.3 includes lot in the
analysis as a fixed effect, while in section 3.4 we used
%GLIMMIX to include lot as a random effect.

3-1) Simple Analyses

a) Proportions

A very simple analysis for this data is to consider the proportion
of good die per wafer as a continuous response, and not take into
account the lot information, and the binary nature of the
response. An analysis of variance is performed to determine if
there is a statistically significant difference between the levels of
the experimental factor CMP.

Table 1-a below shows the results of PROC GLM. They indicate



2

a statistically significant difference between the three levels of the
factor CMP. These results, however, should be interpreted
carefully because two of the basic assumptions are not met; i.e.,
the errors are not normally distributed because the response is
binary, and the variance is not constant. The violation of these
assumptions could invalidate the results of the analysis.

Table 1a Two Lots Combined - Proportions
General Linear Models Procedure

Dependent Variable: P_ZZ   % Pass - ZZ

Source DF Sum of
Squares

Mean
Square

F
Value

Pr > F

Model
(CMP)

  2 0.09511073 0.04755536 6.32 0.0041

Error 40 0.30100257 0.00752506

CT 42 0.39611330

b) Logistic Regression

A more appropriate analysis accounts for the binary nature of the
response, and uses logistic regression. The two assumptions that
were not met in 3.1 are now taken care of by assuming a
binomial distribution for the data, and by using maximum
likelihood to estimate the parameters of the model.

The results of PROC GENMOD are shown in Table 1-b. As
before we find that there is a statistically significant difference
between the levels of the factor CMP. Note however, that the
CMP behavior can change from lot to lot.

Table 1b Two Lots Combined - Logistic
The GENMOD Procedure

LR Statistics For Type 3 Analysis

Source NDF DDF F Pr>F χ2 Pr>Chi
CMP 2 40 6.27 0.0043 12.54 0.0019

3-2) Analysis by Lot

One way to consider the lot effect, although not the best one, is
to do a separate analysis per lot, and see if the results differ. This
would be an indication that the behavior of CMP varies with lot.

Table 2 below shows the results of a logistic regression analysis
perform on each of the lots. We now clearly see that the
difference between the levels of factor CMP is present in lot
B52497 and not in lot B52495. This is an indication of an
interaction effect between the lots and the experimental factor
CMP.

The major drawback of this analysis is that the factor CMP is
tested independently of lot; i.e., the test is performed separately
for each lot. We would like to be able to test CMP across the
different lots. In this analysis the LOT component is not
estimated, nor tested for significance.

Table 2
The GENMOD Procedure

LOT=B52495
LR Statistics For Type 3 Analysis

Source NDF DDF F Pr>F χ2 Pr>Chi
CMP 2 17 1.39 0.2771 2.77 0.2503

LOT=B52497
LR Statistics For Type 3 Analysis

Source NDF DDF F Pr>F χ2 Pr>Chi
CMP 2 20 8.10 0.0026 16.20 0.0003

3-3) Analysis Including Lot as a Fixed Effect

Rather than performing an analysis by lot, we use all the data by
including Lot in the model. The first thing we can do is to consider
Lot as another experimental factor, and test for differences
between the two lots as well as an interaction effect between Lot
and CMP.

As before we perform a logistic regression analysis using PROC
GENMOD. The results indicate that there is a statistically
significant difference between the levels of CMP after adjusting
for LOT, and that the interaction between LOT and CMP is not
statistically significant.

Table 3 Lot as a Fixed Effect
The GENMOD Procedure

LR Statistics For Type 3 Analysis

Source NDF DDF F Pr>F χ2 Pr>Chi

LOT 1 37 3.54 0.0677 3.54 0.0598
CMP 2 37 6.01 0.0055 12.02 0.0025
LOT*CMP 2 37 2.39 0.1060 4.77 0.0920

3-4) Analysis Including Lot as a Random Effect

The final and more appropriate analysis is to consider LOT not as
an experimental factor, but as a source of variability that needs to
be estimated an accounted for in the analysis. [8]  Here we run
into a problem because in order to estimate variance components
we need a procedure like PROC MIXED, and this procedure
assumes that the data is normally distributed or a least
continuous. In our case however, we are dealing with a binary
response.

We can use the macro %GLIMMIX to perform this type of
analysis. This macro works like a combination of PROC
GENMOD and PROC MIXED, allowing the user to fit mixed
models to discrete data.

In our situation %GLIMMIX allows to estimate the variance
components due to LOT and the interaction between LOT and
CMP, and to test the effect of the experimental factor CMP.

Table 4 below shows some output from %GLIMMIX. The
covariance parameter estimates table shows the variance
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components for LOT and the interaction LOT*CMP. Note that the
LOT*CMP component is about 2.75 times larger than the LOT
component. The test for fixed effects table shows that there is not
a statistically significant difference between the levels of the
experimental factor CMP. This conclusion is opposite to the one
obtained in the analyses of sections 1, 2, and 3. In those
analyses CMP was tested using the within LOT variability rather
than the appropriate LOT-to-LOT variability.

Table 4 GLIMMIX Analysis
Covariance Parameter Estimates

Cov  Parm Estimate

LOT 0.01932940
LOT*CMP 0.05316643

GLIMMIX Model Statistics

Description Value

Deviance 58.7022
Scaled Deviance 43.7936
Pearson  χ2 51.0257
Scaled Pearson χ2 38.0667
Extra-Dispersion Scale 1.3404

Tests of Fixed Effects

Source NDF DDF Type III   F Pr>F
CMP 2 2 2.69 0.2709

GUI Interface
In order to increase our time productivity of analyses we
developed a SAS/AF and SAS/EIS environment to perform the
analyses and also deliver the final reports and graphs to
manufacturing.  An experiment analysis EIS page which is
pointed to from a more general EIS is shown in Figure (1). 

Figure 1
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The EIS page in Figure (1) allows the analyst to choose from the
Probe analysis, which we have been presenting, to using
SAS/Insight™ for ad hoc analyses and investigations, to Lot-
Wafer-Box tool which is a custom AF Frame interface to pull
electrical test data about the transistor and special test structure
data , to extracting remarks from remarks Rdb database.  The
Probe Analysis menu is the one we will center on and the reports
delivered from the analyst in the reports menu.

The analyst will typically pull any pertinent information recorded

about the experimental lot by using the Yield Remarks application
from the Experiment Analysis Menu.  This application pulls all
notes, comments, remarks, tool settings, etc. which were noted
during manufacturing and formats these in a detailed 132 column
report or an 80 column reduced report.  Next, the analyst will
select the Probe Analysis icon to start gathering the probe data
along with the experimental factors which are recorded in another
relational database.  The Probe Analysis page is given in Figure
(2).

Figure 2

From the menu  in Figure (2) the analyst can gather data
combined with the experiment factor setting for each wafer using
the ‘Get Probe Data’ icon.  Then the data is prepared so that an
automated Logistic regression analysis with a report of p-values,
experiment factor settings, and percentages  for each response
for the treatment combinations and selected model is

automatically generated for each available failure mode response
including the chip yield.  Use of SAS/Insight™ allows the analyst
to produce ad hoc boxplots and how good the data fit against the
requested model.   The Frames which allows the analyst to get
the data and analyze the data are shown in Figure (3).
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Figure 3

Figure 4
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Use of these easy-to-use SAS/AF Frame™ entries allows users
of somewhat limited computer skills to still extract the experiment
settings for each wafer treatments, yield and failure codes for
each wafer, remarks and notes of  the experimental lot during
manufacturing and the logistic analysis of factor combinations.

After the user selects the dataset, the user is asked to select the
factor and model to use for the analysis.  Custom boxplots of
various proportions and treatment combinations are useful tools
along with the logistic analysis and odds ratios reports.

Conclusions

In summary,  we show how to analyze the semiconductor wafer
yields with respect to experimental process settings and going
from a very simple view of the analysis all the way to
incorporating multiple experimental lots and treating lot as a
random mixed-effect using an overdispersed binomial model.  An
easy-to-use GUI interface allows analysts and process
experimenters to evaluate the effectiveness of process recipe
treatments on the semiconductor wafer yields.  The use of  SCL
programming language behind the SAS/AF™ frames allows
custom reports of the process factors and tabulation of the yields
and p-values from the resulting fitted logistic models.  Boxplots of
treatment combinations aid the analyst in determining the effect
of the treatment on wafer yields and failure modes when yields
are not as expected.  Productivity is greatly enhanced when
using these tools whereas a completely ad hoc approach used to
take greater than 48 hours to complete the analysis and report.
Now the complete report can be done within 2 hours and the
actual logistic analysis takes typically less than 1 to 2 minutes.
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