
Setting Dates in a Production Job
Deb Cassidy, Cardinal Health, Inc.

ABSTRACT

A set of production jobs produced several
reports. The original code required a
programmer to edit several jobs each month to
speci~ the correct fiscal years and month for the
report. Editing this monthly job required
considerable time and was very prone to errors.

There were numerous occurrences where the
value of a variable or the variable name had to
represent a specific fiscal year or a month. For

example, some reports needed values for a
variable to be ‘FY96’ or FY95’. Others needed
variables named Ju195 and Ju196. Titles were

required that read “FY 96 vs. 95” or “Summary
for March 96”.

This paper shows how to use date functions and
macros to set all these values without editing a

single job.

OVERVIEW

Example 1 the values that were being changed
each month. Notice the fiscal year values

depending upon whether the month was in the
first half or the second half of the year since our
fiscal year is July-June.

The code is shown at the end of the paper.
Please note the line numbers are for reference

only and are not part of the code. The code
consists of two pieces. First, the setup macro

creates all the necessary values to be passed to
the jobs. Second, the ‘ZOINCLUDE statements
bring in the individual jobs. Jobs can easily be
added or deleted from the monthly run by
changing these statements. By storing each j ob

separately, changes can also easily be made to
individual jobs.

SETUP MACRO

Line I starts the macro named SETUP. Line 2
creates a dataset named SETUP which will end
up with one observation. You could also use
DATA _NULL_ which won’t actually create a

dataset. However, if you do so, eliminate the

PROC PRINT at the end. The dataset was
intentionally created for verification purposes.

These jobs are always run during end-of-month
processing for the previous month. In Line 3,
the TODAY fi.mction is used to determine the
current date from the system date. The INTNX
fimction is used to advance a date by a specified
number of time periods. In this case, the number
is negative so the date reverses 1 month. Unless

otherwise specified, the date will be the first day
of the time period. For example, if the job is run
on April 6, 1997, reversing the date one month
will set the date to March 1, 1997. This means
the data are then assumed to be for the month of
March 1997.

Line 4 puts today’s date into a variable called
today. This was included only for validation
purposes.

Line 5 use the YEAR function to extract the 4-
digit year and Line 6 uses the MONTH function
to extract the 2-digit month.

Lines 7 and 8 adjust the year to have the correct
value for the fiscal year. If the data are for

January-June then the fiscal year corresponds to
the actual calendar year. If the data are for July-
December then the following calendar year is
used as the fiscal year. Line 9 creates the
previous fiscal year by subtracting 1 from the
current fiscal year that was just created.

A 2-digit calendar year is also required in the
code. For March 1997 data, the code would
require 96/97 and 95/96 to represent the fiscal
year and the previous fiscal year, respectively.
The MOD timction returns the remainder. In
this example, 1997 divided by 100 is 19 with a

remainder of 97. Thus, yrc is assigned a value of
97 in line 10. Lines 11 and 12 subtract to get the
previous years of 96 and 95.

Lines 13-24 assign the name of the month based

on the value extracted for month earlier in the
code.

Lines 25-33 uses CALL SYMPUT to create

macro variables that can then be passed to the

1

report programs. The name of the macro
variable to be created is the fwst parameter and is
in quotes because it is a value and not a variable
itself when it is part of the CALL SYMPUT.

The second parameter is the variable that holds
the value that will become the macro variable.

By default, numeric values are right-justified.
Since macro variables are always character, your
macro variables created from numeric values
will have lead blanks. To eliminate this problem,
use the LEFT function.

Since the length of mnthname must be 9 to
accommodate the longest month, there will be
trailing blanks in the shorted months. The name
of the month will be inserted within a title so the
trailing blanks must be eliminated. This is done
with the TRIM function. The other macro
variables will also have trailing blanks but they

won’t interfere with the rest of the code.

Lines 35 & 36 are included for validation
purposes only. If you don’t use the FORMAT
statement, the dates will be printed as SAS date
values.

Line 38 ends the macro. Line 39 actually runs

the macro.

Lines 41 is also included for validation purposes

only. These options can generate hundreds of
pages of code so they should be removed once
you are sure all the code is working.

Lines 42-47 brings in each program and runs it.

SUMMARY

By using macros and a few date functions, the

entire processing for running these jobs now
takes less time than the editing process took
originally. It also everything is created correctly
because the possibility of typographical errors
have been eliminated.

SAS is a registered trademark of SAS Institute

Inc. in the USA and other countries. @ indicates

USA registration.

REFERENCES

SAS Institute Inc., SAS@ Guide to Macro
Processing, Version 6, Second Edition, Cary,

NC: SAS Institute Inc., 1990.319 pp.

SAS Institute Inc., SAS@ Language: Reference,
Version 6, First Edition, Cary, NC: SAS Institute
Inc., 1990.1042 pp.

CONTACT

Deb Cassidy

Senior SAS Programmer/Analyst
Cardinal Health, Inc.
5555 Glendon Court
Dublin, OH 43016

(614) 717-7136 (voice)
(614) 717-8136 (fax)
Dcassidy@cardhealth. com (e-mail)

An& precedes the macro variable name in the

code. See the sample lines of code at the end of
the paper.

EXAMPLE 1- VALUES FOR TEXT CHANGES

Month

Current Year including century
Previous Year including century
Current Fiscal Year
Previous Fiscal Year
Year for Jul-Dec of current fiscal year and Jan-Jun
of previous fiscal year
Year for Jan-Jun of current fiscal year
Year for Jul-Dec of previous fiscal year

CODE

1

2
3
4

5
6
7

8
9
10

11

12

13

14
15
16
17
18
19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Report for September 96
September
1996

1995
97
96
96

97
95

%macro setup;

data setup;

datamnth=ktnx (‘month’ ,today (),-1);

today =today ();

datayr=year (datamnth) ;

datamon.month (datamnth) ;

if 1<.datamonc=6 then yrclong=datayr;

else if 7c.datamonc=12 then yrclong.datayr+l;

yrblong=yrclong- 1;

yrc=mod(yrclong, 100) ;

yrb=yrc-l;

yra=yrc-2;

if datamon.1 then mnthname.’January ‘;

else if datamon.2 then mnthname= ’February ‘;

else if datamon.3 then mnthname.’March ‘.

else if datamon.4 then mnthname=’April I~

else if datamon.5 then mnthname.’May 1.,
else if datamon=6 then mnthname.’June I.,
else if datamon=7 then mnthname.’July I.,
else if datamon=8 then mnthname=’August ‘;

else if datamon=9 then mnthname= ’September’ ;

else i.f datamon=10 then mnthname.’October ‘;

else i.f datamon.11 then mnthname. ’November ‘;

else if datamon=12 then mnthname. ’December ‘;

call symput(’yra’,left(yra));

call symput

call symput

call symput

call symput

call symput

call symput

‘yra’,left(yra));
‘yrb’,left(yrb));

‘yrcT,left(yrC));

‘yrblong’,left (yrblong)) ;

‘yrclong’,left (yrclong));

‘runyear’,left (datayr));

call symput(’mnthname ’,left(trim(mnthname)));

call symput(’runmonth’, left(datamon));

run;

proc print data=setup;

ReportforMarch 97

March
1997
1996

97
96
96

97
95

3

36 format today

37 run;

38 %mend setup;

39 %setup;

datamnth date7.;

40 ** only use these

41 options symbolgen

options when debugging code;

reprint retrace;

42 %include ‘l:\sasprdtn\mj 103a. sas’;

43 %include 11:\sasprdtn\mj103b. sas I;

44 %include 11:\sasprdtn\mj103c .sas f;

45 %include ‘l:\sasprdtn\mj 103d.sas’;

46 %include 11:\sasprdtn\mj103e .sas I;

47 %include ‘l:\sasprdtn\mj103f .sas’ ;

SAMPLELINESOF CODEFROMAJOB

titles ,Isummary for &mnthname &runyear” ;

array old

array new

*) jul&yra aug&yra sep&yra oct&yra nov&yra dec&yra

jan&yrb feb&yrb mar&yrb apr&yrb may&yrb jun&yrb tot&yrb ytd&yrb;

*) jul&yrb aug&yrb sep&yrb oct&yrb nov&yrb dec&yrb

jan&yrc feb&yrc mar&yrc apr&yrc may&yrc jun&yrc tot&yrc ytd&yrc;

array 0 (*) jU1 aug sep Ott nov de c

jan feb mar apr may jun ytot ytdt ;

nme = “&yrclong” ;

4

	Main TOC

