
1

How Are All of These Tables Related? - Relational Database Map - RDB_MAP.SAS

Eric Losby, HealthCare COMPARE Corp., Downers Grove, IL

Abstract

This simple, yet highly useful SAS® program generates a
"relational map" of permanent SAS datasets or
SAS/ACCESS® views within a common libname
reference. Basically, RDB_MAP.SAS produces a tabular
or matrix report showing the common variables shared
by all the datasets or views in the libname. The column
headings of the report are the SAS dataset or view names
and the row headings are all the SAS variable names.
An 'X' (or your favorite alpha-numeric character or word)
is printed under the dataset or view the variable is found.
One can then easily see which tables share a common
variable.

RDB_MAP.SAS utilizes the SASHELP.VCOLUMN
dataset , a PROC SORT, a PROC TRANSPOSE, and a
simple PROC PRINT. This is a fast and easy way to
display all relationships between multiple tables of
information.

Introduction

This utility code is designed to lessen the initial shock
one goes through when starting up a new project
involving the combination of data from multiple datasets.
Its basic design is to give the programmer an overview of
all the datasets or database views just thrown at him/her.
One of the more popular approaches maybe the proc
contents. The "proc contents data=libref._all_;" may be
the simplest approach, but will generate large amounts of
paper, not to mention the time to sort through it all.
RDB_MAP.SAS is a more elegant approach.

Figure 1 shows the code used to produce the report. Only
input required is to change the libname to fit your
platform.

Figure 1 SAS Code

**
* RDB_MAP.SAS
*
* Author: Eric Losby Data Interpretation
*
* Description:
* Generates a 'Map' which shows
* relationship between tables by common
* variables. Must supply a libname and
* optional memtype. (DATA,View,...)
*
***;

options ps=80 nodate ;

%let libref = ACCESS;

libname &libref 'drive:[directory]';

TITLE "Relational Database Map of &libref.";

* SECTION 1;
data temp1(keep=memname name x);
set SASHELP.VCOLUMN;

if libname="&libref." AND memtype='VIEW' then do;
 x = 'X';
 output;
end;
else delete;
run;

* SECTION 2;
proc sort data=temp1;
by name memname;
run;

* SECTION 3;
proc transpose data=temp1 out=list(drop=_name_);
id memname;
var X;
by name;
run;

* SECTION 4;
proc print data=list;
run;

2

Section 1 - The SASHELP.VCOLUMN
View

The sashelp views or dictionary tables hold great deal of
data about your data, or metadata, that should not go
unnoticed. The RDB_MAP.SAS code looks at one
specific sashelp view, the SASHELP.VCOLUMN. This
holds all the "column" or variable level data in the
default libnames and specified libnames. The
information available is the LIBNAME, MEMNAME
(dataset), MEMTYPE, NAME (variable name), TYPE,
LENGTH, NPOS, VARNUM, LABEL (rdb column name
if view), FORMAT, INFORMAT and IDXUSAGE.

Figure 2 shows a sample print of the information
available in the SASHELP.VCOLUMN.

Also, a PROC CONTENTS for the
SASHELP.VCOLUMN is in Figure 3.

For a simple example, just consider the variables
MEMNAME and NAME (or LABEL). For more
advance uses, one could look at TYPE, LENGTH,
FORMAT and/or INFORMAT.

At this point, we define our common variable identifier,
'X' to add to the SASHELP.VCOLUMN information.
This will be the symbol displayed on the table identifying
the existence of a variable in a dataset.

Figure 2 Sample print of information found in SASHELP.VCOLUMN

OBS LIBNAME MEMNAME MEMTYPE NAME TYPE LENGTH NPOS VARNUM LABEL FORMAT INFORMAT IDXUSAGE

 1 ACCESS ADDRESS VIEW ADDR_ID num 8 0 1 addr_id 11. 11.
 2 ACCESS ADDRESS VIEW ZIP_CD char 5 8 2 zip_cd $5. $5.
 3 ACCESS ADDRESS VIEW CNTRY_CD char 5 13 3 cntry_cd $5. $5.
 .
 .
 23 ACCESS ADD_PRSN VIEW ADDR_TYP char 4 40 6 addr_typ_cd $4. $4.
 24 ACCESS ADD_PRSN VIEW GEN_STAT char 1 44 7 gen_status_cd $1. $1.
 25 ACCESS ADD_PRSN VIEW CREAT_DT num 8 45 8 gen_status_cd_dt DATETIME21. DATETIME21.
 .
 .
101 ACCESS PERSON VIEW PRSN_ID num 8 0 1 prsn_id 11. 11.
102 ACCESS PERSON VIEW LAST_NM char 25 8 2 last_nm $25. $25.
103 ACCESS PERSON VIEW FIRST_NM char 25 33 3 first_nm $25. $25.
 .
 .

Figure 3 PROC CONTENTS output of SASHELP.VCOLUMN

 Data Set Name: SASHELP.VCOLUMN Observations: .
 Member Type: VIEW Variables: 12
 Engine: SASESQL Indexes: 0
 Created: 22:06 Thursday, February 4, 1993 Observation Length: 145
 Last Modified: 22:06 Thursday, February 4, 1993 Deleted Observations: 0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label
 --
 10 FORMAT Char 16 104 Column Format
 12 IDXUSAGE Char 9 136 Column Index Type
 11 INFORMAT Char 16 120 Column Informat
 9 LABEL Char 40 64 Column Label
 6 LENGTH Num 8 40 Column Length
 1 LIBNAME Char 8 0 Library Name
 2 MEMNAME Char 8 8 Member Name
 3 MEMTYPE Char 8 16 Member Type
 4 NAME Char 8 24 Column Name
 7 NPOS Num 8 48 Column Position
 5 TYPE Char 4 32 Column Type
 8 VARNUM Num 8 56 Column Number in Table

3

Section 2 - The PROC SORT

To use the PROC TRANSPOSE we need to sort the data
by "name memname". This puts the information in the
correct order. Remember, name is the variable names in
all the datasets or views and memname are the names of
the datasets or views.

Section 3 - The PROC TRANSPOSE

This whole utility relies on the ability to transpose
information from datasets and create new datasets. The
PROC TRANSPOSE basically turns a variable values
into variables (or columns, if you prefer). One then
needs to decide how the output will look. If one wants
the dataset names as the column headings, then the ID in
the PROC TRANSPOSE should be MEMNAME. These
are transposed by NAME, using X as the VAR or values
to use for the ID columns. It is not necessary to keep the
variable _name_ in the transposed dataset.

For additional help with PROC TRANSPOSE, please
refer to your SAS documentation.

Section 4 - The PROC PRINT

What would be complete without a PROC PRINT? One
can easily change the position of the columns by using a
VAR statement. Some options to consider might be to
specify “HEADING = HORIZONTAL” and
“UNIFORM” in the PROC PRINT.

Figure 4 shows the general form that the output will
have.

Figure 4 General form the final report will have

OBS NAME dsn1 dsn2 dsn3 dsn4 ...

1 var1 X X
2 var2 X
3 var3 X X X X
4 var4 X X
5 var5 X X
6 var6 X
. .
. .

Case Study 1

Gathering Address Information

If given a task to construct an address from a relational
database, one may have to draw on several tables for the
information. Let's say you are given the tables that you
need to get the information from (not always the case
though!) There are tables: person,
addr_prsn_addl_addr_h (add_prsn), address,
addl_addr_lin (add_line), and city_r table. One could do
a PROC CONTENTS on all of these, but here's how
RDB_MAP.SAS would display the information. This
uses views created by SAS/ACCESS.

From Figure 5, one can easily see relationships among
the datasets/views. The person and add_prsn table share
the prsn_id, while the address and add_prsn share the
addr_id. This connects the name information with the
address information. Also, the address information is
related to the add_line by the ad_ad_id and to the city_r
table by city_id.

4

Figure 5 Sample print for Case Study #1

OBS NAME ADDRESS ADD_PRSN ADD_LINE CITY_R PERSON

 1 ADDR_ID X X
 2 ADDR_TYP X
 3 AD_AD_ID X X
 4 AD_AD_OR X
 5 AS_OF_DT X X
 6 CITY_ID X X
 7 CITY_NM X
 8 CNTRY_CD X
 9 CNTY_ID X
 10 CREAT_DT X
 11 DATA_VER X X
 12 FIRST_NM X
 13 GEN_STAT X
 14 HNDCP_AC X
 15 LAST_NM X
 16 LIN_TXT X
 17 MID_NM X
 18 PRSN_ID X X
 19 PRSN_SAL X
 20 PRSN_TIT X
 21 SOUNDEX_ X
 22 SRC_CD X
 23 STATE_CD X
 24 STE_NM X
 25 STRET_DI X
 26 STRET_NM X
 27 STRET_NU X
 28 STRET_TY X
 29 SYST_TBL X
 30 ZIP_CD X
 31 ZIP_PLUS X

Case Study 2

Using the variable type and formats

As mentioned before, one can use the TYPE, LENGTH,
FORMAT variables from the SASHELP.VCOLUMN
view to get specific variable information. This adds
another dimension to the report. All that is required is to
change Section 1 of RDB_MAP.SAS. See Figure 6.

Note that the type variable will only have the value of
“char” or “num”. Also, if there exists a format for a
variable, a date format for example, it would make sense
to report that format. Informat could also be used.

Using the enhancement on the previous case study yields
the output in Figure 7.

Not only does the output show relations, but now one has
verification if two (or more) common variable share the
same length and/or format.

Figure 6 Modification to Section 1

* SECTION 1;
data temp1(keep=memname name x);
 set SASHELP.VCOLUMN;
format x $12.;

if libname="&libref." AND memtype='VIEW' then do;

 if type = "char" then x = compress("$"||length||".");
 else x = compress(length||".");

 if format ne '' then x = format;

 output;

end;
else delete;
run;

5

Figure 7

OBS NAME ADDRESS ADD_PRSN ADD_LINE CITY_R PERSON

 1 ADDR_ID 11. 11.
 2 ADDR_TYP $4.
 3 AD_AD_ID 11. 11.
 4 AD_AD_OR 11.
 5 AS_OF_DT DATETIME21. DATETIME21.
 6 CITY_ID 11. 11.
 7 CITY_NM $35.
 8 CNTRY_CD $5.
 9 CNTY_ID 11.
 10 CREAT_DT DATETIME21.
 11 DATA_VER $5. $5.
 12 FIRST_NM $25.
 13 GEN_STAT $1.
 14 HNDCP_AC $1.
 15 LAST_NM $25.
 16 LIN_TXT $35.
 17 MID_NM $25.
 18 PRSN_ID 11. 11.
 19 PRSN_SAL $4.
 20 PRSN_TIT $5.
 21 SOUNDEX_ $4.
 22 SRC_CD $5.
 23 STATE_CD $2.
 24 STE_NM $6.
 25 STRET_DI $2.
 26 STRET_NM $30.
 27 STRET_NU $6.
 28 STRET_TY $7.
 29 SYST_TBL 11.
 30 ZIP_CD $5.
 31 ZIP_PLUS $4.

Summary

RDB_MAP.SAS has many advantages.

 - It's simple
 - Saves paper
 - Highly portable from one project to the next
 - Great first step while undertaking any new project
 - Creates output that will impress your co-workers

SAS is a registered trademark or trademark of SAS
Institute, Inc. in the USA and other countries.
 indicates USA registration.

SAS/ACCESS is a registered trademark or trademark of
SAS Institute, Inc. in the USA and other countries.
 indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

Contact: Eric Losby
Programmer/Analyst
HealthCare COMPARE Corp.
3200 Highland Avenue
Downers Grove, IL 60515

e-mail: Eric_Losby@hccompare.com

	Main TOC

