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Abstract

This short course presents methods for constructing control charts that use the SHEWHART
procedure in the SAS System. The course highlights techniques for improving the visual clarity
of control charts and for implementing statistical modifications that are broadly applicable, such
as analysis of means and control charts for short runs. The course also demonstrates the use
of the SHEWHART procedure in tandem with SAS procedures for statistical modeling as a
flexible approach to special problems such as autocorrelation in process data. The audience should
understand the principles of statistical process control (SPC) and have basic familiarity with SAS
programming.

Objectives

The objectives of this course are to demonstrate the use of SAS procedures for constructing control
charts that are broadly used in industry, and to present SAS solutions for graphical and statistical
issues that often arise in practice.

These objectives are met by presenting examples based on data from a variety of industries (ranging
from semiconductor manufacturing to health care); by providing simple SAS programs that are
readily extended to large-scale applications; and by presenting online demonstrations.

Outline

The course is organized as follows:

� Introduction to the SHEWHART procedure

� Brief review of the Shewhart chart
� Basic syntax of the SHEWHART procedure
� Structure of input data sets
� Selection of appropriate rational subgroups
� and the use of subgroup variables

� Control Limits

� Computing, saving, and reusing standard control limits
� Modifying control limits
� Application to analysis of means

� Tests for Special Causes

� Nelson’s version of the Western Electric tests
� Working with varying sample sizes
� Special modifications of the tests
� Computing average run lengths
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� Graphical Enhancements of Control Charts

� Multiple sets of control limits
� Displays for stratified data
� Boxplot and “multivari” displays
� Axis scaling issues
� Switch variables

� Break

� Statistical Modeling for Control Chart Applications

Using the SHEWHART procedure in conjunction with SAS statistical modeling procedures.
Applications to

� charts for individual measurements using non-normal data
� charts for means involving multiple components of variation
� charts for short runs
� charts adjusted for seasonality and autocorrelation

Note: One or two of these topics will be covered depending on the interests of the audience.

� Creating a Customized Control Chart

This section demonstrates the open-ended use of the SHEWHART procedure when both the
chart statistic and the control limits are non-standard. A multivariate control chart technique
drawn from the recent literature is implemented to illustrate the approach.

� Questions and Answers

An appendix in the course notes provides a road map to SAS resources for SPC applications
including other procedures for statistical quality improvement, the SQC Menu System,
and recent additions to the SAS System for real-time SPC and development of front-end
applications.

Target Population

This presentation is intended for statisticians, process engineers, and manufacturing engineers
who apply control charts in a quality improvement or process control setting, and for SAS
programmers who provide support for process control systems. The applications illustrated range
from semiconductor manufacturing to health care quality improvement.

Participants should be familiar with the principles and methods of statistical process control,
but these concepts will be reviewed briefly if necessary. Only a minimal knowledge of SAS
programming is assumed (how to create and modify a SAS data set, and how to run a SAS
procedure).
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Learning Outcomes

After attending this presentation, participants should be able to use SAS software to

� construct standard control charts
� improve the interpretability of control charts through graphical enhancements
� implement control chart modifications for specialized applications of statistical process

control

Instructors

Robert Rodriguez, Ph.D. (contact)
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Tel: 919-677-8000, ext. 7650
FAX: 919-677-4444

Robert Rodriguez is manager of the Statistical Quality Improvement and Linear Models R&D
groups at SAS Institute. He serves on the Editorial Review Board of the Journal of Quality
Technology and is an adjunct professor in the Department of Statistics at the University of North
Carolina.

Sharad Prabhu, Ph.D.
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Tel: 919-677-8000, ext. 6663
FAX: 919-677-4444

Sharad Prabhu is a Technical Applications Developer in the Statistical Quality Improvement
R&D group at SAS Institute. His areas of expertise are statistical process control and design
of experiments. Sharad holds a PhD and MSE in Industrial Engineering from the Arizona State
University. He has been a SAS developer for over two years.
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Chapter 1

Review of Control Chart Concepts

This chapter is optional and reviews the principles of
statistical process control and control chart terminology.
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Motivation

� developed in 1924 by Walter A. Shewhart

� emphased in 1980s by W. Edwards Deming

� every process is subject to variability

� the natural variability can be quantified with a set of
control limits

� variation exceeding these limits signals a change in the
process

Applications

� manufacturing

� service industries (1990s)

Uses of Shewhart Charts

� distinguishing variation due to special causes from
variation due to common causes

� monitoring an in-control process

� reducing variation by improving the system
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Anatomy of a Shewhart Chart

Limit (UCL)

Central Line

Lower Control

Limit (LCL)

Subgroup

Summary

Statistic

Upper Control

Point Signaling Special Cause of Variation

Subgroup Index

Figure 1.1. Prototype Shewhart Chart

� Each point represents a summary statistic computed
from a sample of measurements

� The summary statistic is plotted along the vertical axis

� The samples are referred to as rational subgroups or
subgroup samples. The organization of the data into
subgroups is critical to the interpretation of the chart.
Shewhart advocated selecting rational subgroups so that
variation within subgroups is minimized and variation
among subgroups is maximized; this makes the chart
more sensitive to shifts in the process level. See Wheeler
and Chambers (1986) or Montgomery (1991).
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� The horizontal axis of a Shewhart chart identifies the
subgroup samples.

� The central line on a Shewhart chart indicates the
average (expected value) of the summary statistic when
the process is in control.

� The upper and lower control limits (UCL and LCL)
indicate the expected range of variation in the summary
statistic when the process is in control.

� The control limits are also determined by the subgroup
sample size because the standard error of the summary
statistic is a function of sample size.

� Control limits can be estimated from the data being
analyzed, or they can be based on “standard” (previously
determined) values.

� A point outside the control limits signals the presence
of a special cause of variation.

� Additionally, tests for special causes (Western Electric
rules, runs tests) can signal an out-of-control condition.

� When the chart (correctly) signals the presence of a
special cause, additional action is needed to diagnose
and eliminate the problem.
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Classification of Shewhart Charts

1. Charts for variables are used when the quality char-
acteristic of a process is measured on a continuous
scale.

� �X and R charts display subgroup means and ranges.

� �X and s charts display subgroup means and standard
deviations.

� Median and range charts display subgroup medians
and ranges.

� Charts for individual measurements and moving
ranges display individual measurements and mov-
ing ranges of two or more successive measurements.

2. Charts for attributes are used when the quality charac-
teristic of a process is measured by counting defects.

� A p chart displays the proportion of defective items
in a subgroup sample.

� An np chart displays the number of defective items
in a subgroup sample.

� A u chart displays the number of defects per unit in
a subgroup sample consisting of an arbitrary number
of units.

� A c chart displays the number of defects in a unit.
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Chapter 2

Basic Syntax of SHEWHART Procedure

This chapter introduces syntax and input data set structures
which will be referred to throughout the course.

For additional examples and details, see “Part 8. The
Shewhart Procedure” in SAS/QC Software: Usage and
Reference, which is abbreviated as QCUR in these notes.
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Basic �X and R Charts

In the manufacture of silicon wafers, batches of five wafers
are sampled, and their diameters are measured in mil-
limeters. The following statements create a SAS data set
named WAFERS, which contains the measurements for 25
batches:

data wafers;
input batch @;
do i=1 to 5;

input diamtr @;
output;
end;

drop i;
cards;
1 35.00 34.99 34.99 34.98 35.00
2 35.01 34.99 34.99 34.98 35.00
3 34.99 35.00 35.00 35.00 35.00

...

24 35.00 35.00 34.99 35.01 34.98
25 34.99 34.99 34.99 35.00 35.00
;

title ’The Data Set WAFERS’;
proc print data=wafers noobs;
run;

WAFERS is partially listed in Figure 2.1.
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The Data Set WAFERS

BATCH DIAMTR

1 35.00
1 34.99
1 34.99
1 34.98
1 35.00
2 35.01
2 34.99
2 34.99
2 34.98
2 35.00
3 34.99
3 35.00
3 35.00
3 35.00
3 35.00
. .
. .
. .

Figure 2.1. Raw Measurements in Data Set WAFERS

Note that

� the observations are arranged in “strung-out form”

� BATCH is the subgroup-variable

� DIAMTR is the process-variable

The following statements create �X and R charts for the
diameter measurements.
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title ’Mean and Range Charts for Diameters’;

symbol v=dot;

proc shewhart data=wafers graphics;
xrchart diamtr*batch;

run;

Figure 2.2. Basic �X and R Charts

The control limits are 3� limits by default.
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Working with Summary Data

Data set WAFERSUM provides the wafer measurements
in summarized form:

data wafersum;
input batch diamtrx diamtrr;
diamtrn = 5;

cards;
1 34.992 0.02
2 34.994 0.03
3 34.998 0.01

...

24 34.996 0.03
25 34.994 0.01
;

proc print data=wafers noobs;
run;

BATCH DIAMTRX DIAMTRR DIAMTRN

1 34.992 0.02 5
2 34.994 0.03 5
3 34.998 0.01 5
4 34.998 0.02 5
5 34.992 0.02 5
. . . .
. . . .
. . . .

Figure 2.3. Summary Measures in Data Set WAFERSUM
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The following statements create �X and R charts for the
diameter measurements that are identical to the charts in
Figure 2.2.

title ’Mean and Range Charts for Diameters’;

symbol v=dot;

proc shewhart history=wafersum graphics;
xrchart diamtr*batch;

run;

Note that

� DIAMTR is the common prefix for the names of three
summary variables in WAFERSUM

� WAFERSUM is specified as a HISTORY= data set
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Basic u Chart

� In manufacturing, a u chart is typically used to analyze
the number of defects per inspection unit in samples
that contain arbitrary numbers of units.

� In general, the events counted need not be “defects.”

� A u chart is applicable when the counts are scaled by a
measure of opportunity for the event to occur, and when
the counts can be modeled by the Poisson distribution.

A health care provider uses a u chart to analyze the rate of
cat scans performed each month by each of its clinics. Data
for Clinic B are saved in a data set named CLINICB.

MONTH NSCANB MMSB DAYS NYRSB

JAN94 50 26838 31 2.31
FEB94 44 26903 28 2.09
MAR94 71 26895 31 2.32
APR94 53 26289 30 2.19
MAY94 53 26149 31 2.25
JUN94 40 26185 30 2.18
JUL94 41 26142 31 2.25
AUG94 57 26092 31 2.25
SEP94 49 25958 30 2.16
OCT94 63 25957 31 2.24
NOV94 64 25920 30 2.16
DEC94 62 25907 31 2.23
JAN95 67 26754 31 2.30
FEB95 58 26696 28 2.08
MAR95 89 26565 31 2.29

Figure 2.4. Data Set CLINICB

NSCANB is the number of cat scans performed each month,
and MMSB is the number of members enrolled each month
c 1996 SAS Institute Inc. 17



(in units of “member months”). DAYS is the number of
days in each month.

NYRSB was computed to convert MMSB to units of
“thousand members per year.”

data clinicb;
set clinicb;
nyrsb = mmsb * ( days / 30 ) / 12000;
nyrsb = round( nyrsb, 0.01 );

run;

NYRSB provides the “measure of opportunity.”

The following statements create the u chart in Figure 2.5.

title ’U Chart for Cat Scans per 1,000 Members:’
’ Clinic B’;

proc shewhart data=clinicb graphics;
uchart nscanb * month /

subgroupn = nyrsb;

label nscanb = ’Rate per 1,000 Member-Years’
month = ’Month’;

run;
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Figure 2.5. Basic u Chart

By default, the control limits are adjusted for the measure
of opportunity.

c 1996 SAS Institute Inc. 19



Summary

You can create a basic Shewhart chart with as few as two
SAS statements:

� the PROC SHEWHART statement, which starts the
procedure and specifies the input SAS data set

� a chart statement, which requests the chart type with a
keyword and the process and subgroup variables

Keyword Chart(s) Displayed “Getting Started”
Page in QCUR

BOXCHART box chart with optional trend chart 874
CCHART c chart 924
IRCHART individual and moving range charts 960
MCHART median chart with optional trend chart 998
MRCHART median and R charts 1032
NPCHART np chart 1074
PCHART p chart 1112
RCHART R chart 1154
SCHART s chart 1188
UCHART u chart 1222
XCHART �X chart with optional trend chart 1258
XRCHART �X and R charts 1300
XSCHART �X and s charts 1346
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Chapter 3

Control Limits

This chapter introduces methods for determining and man-
aging control limits that are useful in standard applications
involving many process variables that are changing over
time. These methods are also useful for constructing non-
standard charts, as illustrated in later chapters.
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Saving Control Limits

You can save control limits in a SAS data set; this enables
you to apply the control limits to future data or modify the
limits with a DATA step program.

title ’Control Limits for Wafer Diameters’;
proc shewhart data=wafers;

xrchart diamtr*batch / outlimits = waferlim
nochart;

run;

Control Limits for Wafer Diameters

_VAR_ _SUBGRP_ _TYPE_ _LIMITN_ _ALPHA_ _SIGMAS_ _LCLX_

DIAMTR BATCH ESTIMATE 5 .0026998 3 34.9823

_MEAN_ _UCLX_ _LCLR_ _R_ _UCLR_ _STDDEV_

34.9950 35.0077 0 0.022 0.046519 .0094586

Figure 3.1. SAS Data Set WAFERLIM

What do the variables represent?
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Reading Pre-Established Control Limits

The following statements apply the control limits in Fig-
ure 3.1 to new process data in WAFERS2:

data wafers2;
input batch @;
do i=1 to 5;

input diamtr @;
output;
end;

drop i;
cards;

26 34.99 34.99 35.00 34.99 35.00
27 34.99 35.01 34.98 34.98 34.97
28 35.00 34.99 34.99 34.99 35.01
...

44 35.00 35.00 34.98 35.00 34.99
45 34.99 34.99 35.00 34.99 34.99
;

title ’Mean and Range Charts for Diameters’;
proc shewhart data=wafers2 limits=waferlim graphics;

xrchart diamtr*batch;
run;

Note that you must specify the option READLIMITS in
Release 6.09 and prior releases. See page 1417 of QCUR.
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Figure 3.2. �X and R Charts for Additional Wafer Data

Note the difference between

� the nominal sample size associated with the control
limits

� the subgroup sample size(s)
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Saving Varying Control Limits

What does an OUTLIMITS= data set look like when the
control limits vary with subgroup sample size?

proc shewhart data=clinicb graphics;
uchart nscanb * month /

subgroupn = nyrsb
outlimits = scanlim
outtable = scantab
nochart;

run;

_ _ _
S L _ S
U _ I A I _ _

_ B T M L G L U
V G Y I P M C C
A R P T H A L _ L
R P E N A S U U U
_ _ _ _ _ _ _ _ _

NSCANB MONTH ESTIMATE V V 3 V 25.8559 V

Figure 3.3. SAS Data Set SCANLIM

Why is this information sufficient?

An OUTTABLE= data set saves both the control limits and
the chart statistics for each subgroup.
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_ _
S L _
I I _ _ _ _ E

_ M G M S L S U X
V O M I U C U C L
A N A T B L B _ L I
R T S N N U U U U M
_ H _ _ _ _ _ _ _ _

NSCANB JAN94 3 2.31 2.31 15.8191 21.6450 25.8559 35.8926
NSCANB FEB94 3 2.09 2.09 15.3040 21.0526 25.8559 36.4077
NSCANB MAR94 3 2.32 2.32 15.8407 30.6034 25.8559 35.8710
NSCANB APR94 3 2.19 2.19 15.5478 24.2009 25.8559 36.1640
NSCANB MAY94 3 2.25 2.25 15.6861 23.5556 25.8559 36.0256
NSCANB JUN94 3 2.18 2.18 15.5241 18.3486 25.8559 36.1876
NSCANB JUL94 3 2.25 2.25 15.6861 18.2222 25.8559 36.0256
NSCANB AUG94 3 2.25 2.25 15.6861 25.3333 25.8559 36.0256
NSCANB SEP94 3 2.16 2.16 15.4764 22.6852 25.8559 36.2353
NSCANB OCT94 3 2.24 2.24 15.6635 28.1250 25.8559 36.0483
NSCANB NOV94 3 2.16 2.16 15.4764 29.6296 25.8559 36.2353
NSCANB DEC94 3 2.23 2.23 15.6406 27.8027 25.8559 36.0711
NSCANB JAN95 3 2.30 2.30 15.7973 29.1304 25.8559 35.9144
NSCANB FEB95 3 2.08 2.08 15.2787 27.8846 25.8559 36.4330
NSCANB MAR95 3 2.29 2.29 15.7753 38.8646 25.8559 35.9364 UPPER

Figure 3.4. SAS Data Set SCANTAB

How do SCANLIM and SCANTAB compare?

In later sections we will exploit the use of OUTLIMITS=
and OUTTABLE= data sets as input data sets.
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How Control Limits Are Computed

Table 3.1. Limits for �X and R Charts

Control Limits

�X Chart LCL = lower limit = X � k�̂=
p
ni

UCL = upper limit = X + k�̂=
p
ni

R Chart LCL = lower limit = max(d2(ni)�̂ � kd3(ni)�̂; 0)
UCL = upper limit = d2(ni)�̂ + kd3(ni)�̂

Probability Limits

�X Chart LCL = lower limit = X � z�=2(�̂=
p
ni)

UCL = upper limit = X + z�=2(�̂=
p
ni)

R Chart LCL = lower limit = D�=2�̂

UCL = upper limit = D1��=2�̂

You can provide parameters for the limits as follows:

� Specify k with the SIGMAS= option or with the variable
SIGMAS in a LIMITS= data set

� Specify �with the ALPHA= option or with the variable ALPHA

� Specify a constant nominal sample sizeni � nwith the LIMITN=
option or with the variable LIMITN

� Specify �0 with the MU0= option or with the variable MEAN

� Specify �0 with the SIGMA0= option or with the variable
STDDEV

c 1996 SAS Institute Inc. 27



Application to Analysis of Means

Analysis of means is a graphical and statistical method for
simultaneously comparing a group of k treatment means
with their grand mean at a specified significance level �.
Analysis of means is an extension to the Shewhart chart
because it considers a group of sample means instead of
one mean at a time in order to determine whether any of
the sample means differ too much from the overall mean.

A health care system uses ANOM to compare medi-
cal/surgical admissions rates for a group of clinics. The
data are saved in a SAS data set named MSADMITS.

ID COUNT95 MYRS95

1A 1882 58.1003
1K 600 18.7263
1B 438 12.8933
1D 318 6.8545
3M 183 6.3708
... ... ...

1F 7 0.2020
1P 2 0.1692

Figure 3.5. Data Set MSADMITS

ID identifies the clinics, COUNT95 provides the number of
admissions during 1995, and MYRS95 provides the number
of 1,000 member-years, which serves as the “measure of
opportunity” for admissions.
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%anomsig( 0.01 /*alpha*/, 29 /*no. of groups*/ );

title ’Analysis of Medical/Surgical Admissions’;

proc shewhart data=msadmits graphics;
uchart count95*id /

subgroupn = myrs95
sigmas = &sigmult
cneedles = yellow
cinfill = green
lcllabel = ’LDL’
ucllabel = ’UDL’
turnhlabels
nolegend;

label count95 = ’Admits per 1000 Member Years’;
run;

See Rodriguez (1996, 1996b) for the ANOMSIG macro.

Figure 3.6. ANOM for Medical/Surgical Admissions Rates
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The chart answers the question, “Do any of the clinics
differ significantly from the system average in their rates
of admission?”

Note that

� Analysis of means assumes that the system is statis-
tically predictable, whereas a major reason for using
a control chart is to bring the system into a state of
statistical control; see Wheeler (1995).

� The decision limits UDL and LDL are not the same as
the 3� limits that the SHEWHART procedure would
compute by default for a u chart. The reason is that
control limits are applied to the rates taken one at a
time, whereas the decision limits are applied to the rates
taken as a group.

� Tests for special causes (next chapter) are not applicable
in ANOM.
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Summary

Control limits can be

� computed directly (standard formulas)

� saved in an OUTLIMITS= or OUTTABLE= data set

� read from a LIMITS= or TABLE= data set

PROC SHEWHART

DATA= HISTORY=TABLE=or or

LIMITS=

OUTTABLE=

OUTLIMITS=OUTHISTORY=

(catalog)

LIM
ITS=

T
A

B
LE

=

HIS
TO

RY=

ANNOTATE=
ANNOTATE2=

GOUT=

Figure 3.7. Input and Output Data Sets
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Chapter 4

Tests for Special Causes

This chapter describes the tests for special causes that are
supported by the SHEWHART procedure.

For further details, see Chapter 41 of QCUR beginning on
page 1497.
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Standard Tests

The SHEWHART procedure provides eight standard tests
for special causes, also referred to as supplementary rules,
runs tests, and Western Electric rules. These tests improve
the sensitivity of the Shewhart chart to small changes
in the process (as do cusum charts and moving average
charts, which you can construct with the CUSUM and
MACONTROL procedures).

The patterns detected by the eight standard tests are defined
in Table 4.1 and Table 4.2, and they are illustrated in
Figure 4.1 and Figure 4.2. All eight tests were developed
for use with fixed 3� limits. The tests are indexed according
to the numbering sequence used by Nelson (1984, 1985).

You can request any combination of the eight tests by
specifying the test indexes with the TESTS= option in the
chart statement. For example:

proc shewhart data=wafers2 limits=waferlim graphics;
xrchart diamtr*batch /

tests = 1 to 4;
run;
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Table 4.1. Definitions of Tests 1 to 4
Test Index Pattern Description

1 One point beyond Zone A (outside the control limits)

2 Nine points in a row in Zone C or beyond on one
side of the central line

3 Six points in a row steadily increasing or steadily
decreasing

4 Fourteen points in a row alternating up and down

Figure 4.1. Examples of Tests 1 to 4
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Table 4.2. Definitions of Tests 5 to 8
Test Index Pattern Description

5 Two out of three points in a row in Zone A or beyond

6 Four out of five points in a row in Zone B or beyond

7 Fifteen points in a row in Zone C on either or both
sides of the central line

8 Eight points in a row on either or both sides of the
central line with no points in Zone C

Figure 4.2. Examples of Tests 5 to 8
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Interpreting Standard Tests for Special Causes

According to Nelson (1984, 1985):

� When a process is in statistical control, the chance of a
false signal for each test is less than five in one thousand.

� Test 1 is positive if there is a shift in the process mean,
if there is an increase in the process standard deviation,
or if there is a “single aberration in the process such as
a mistake in calculation, an error in measurement, bad
raw material, a breakdown of equipment, and so on”
(Nelson 1985).

� Test 2 signals a shift in the process mean.

� Test 3 signals a drift in the process mean. Nelson
(1985) states that causes can include “tool wear, de-
pletion of chemical baths, deteriorating maintenance,
improvement in skill, and so on.”

� Test 4 signals “a systematic effect such as produced
by two machines, spindles, operators or vendors used
alternately” (Nelson 1985).

� Tests 1, 2, 3, and 4 should be applied routinely; the
combined chance of a false signal from one or more of
these tests is less than one in a hundred. Nelson (1985)
describes these tests as “a good set that will react to
many commonly occurring special causes.”
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� In the case of charts for variables, the first four tests
should be augmented by Tests 5 and 6 when earlier
warning is desired. The chance of a false signal increases
to two in a hundred.

� Tests 7 and 8 indicate stratification (observations in a
subgroup have multiple sources with different means).
Test 7 is positive when the observations in the subgroup
always have multiple sources. Test 8 is positive when
the subgroups are taken from one source at a time.

Nelson (1985) also comments that “the probabilities quoted
for getting false signals should not be considered to be very
accurate” since the probabilities are based on assumptions
of normality and independence that may not be satisfied.
Consequently, he recommends that the tests “should be
viewed as simply practical rules for action rather than tests
having specific probabilities associated with them.” Nelson
cautions that “it is possible, though unlikely, for a process
to be out of control yet not show any signals from these
eight tests.”
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Tests With Varying Sample Sizes

Nelson (1989, 1994) describes the use of standardization to
apply the tests for special causes to data involving varying
subgroup samples. This approach applies the tests to the
standardized subgroup statistics, setting the control limits
at �3 and the zone boundaries at �1 and �2. You can
request this method with the TESTNMETHOD= option

title ’U Chart for Cat Scans per 1,000 Members: Clinic B’;
proc shewhart data=clinicb graphics;

uchart nscanb * month /
subgroupn = nyrsb
tests = 1 to 4
testlabel = space
testnmethod = standardize
nohlabel
nolegend
;

label nscanb = ’Rate per 1,000 Member-Years’;
run;
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Figure 4.3. u Chart with Tests 1 to 4
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Labeling Signaled Points with a Variable

You can use the TESTLABEL= option to display oper-
ator comments or other information that can aid in the
identification of special causes.

SAMPLE OFFSETX OFFSETR OFFSETN COMMENT

1 19.80 3.8 5
2 17.16 8.3 5
3 20.11 6.7 5
4 20.89 5.5 5
5 20.83 2.3 5
6 18.87 2.6 5
7 20.84 2.3 5
8 23.33 5.7 5 New Tool
9 19.21 3.5 5

10 20.48 3.2 5
11 22.05 4.7 5
12 20.02 6.7 5
13 17.58 2.0 5
14 19.11 5.7 5
15 20.03 4.1 5
16 20.56 3.7 5 Recalibration
17 20.86 3.3 5
18 21.10 5.6 5 Reset Tool

... ... ... ... ...

Figure 4.4. Data Set ASSEMBLY

title ’Analysis of Assembly Data’;
proc shewhart history=assembly graphics;

xrchart offset * sample / mu0 = 20
sigma0 = 2.24
limitn = 5
alln
tests = 1 to 4
testlabel = ( comment )
ltests = 2
split = ’/’ ;

label offsetx = ’Avg Offset (cm)/Range’;
run;

40 c 1996 SAS Institute Inc.



Figure 4.5. Labeling Points with a TESTLABEL= Variable

For details, see page 1506 of QCUR.
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Generalized Tests for Special Causes

� You can apply Tests 1 to 8 to range charts (unusual
applications in the semiconductor industry). See page
1512 of QCUR.

� You can request a search for k out of m points in a row
in the interval (a; b). This generalizes Tests 1, 2, 5, and
6. See page 1513 of QCUR.

� A program (SHWARL2) for average run length compu-
tations is provided in the SAS/QC Sample Library. See
Champ and Woodall (1987) and Wetherill and Brown
(1991).

� Applications include the rules given by Westgard et al.
(1981) for clinical chemistry.

� You can request a search for k points in a row increasing
or decreasing. This generalizes Test 3. See page 1513
of QCUR.

� You can construct arbitrary pattern searches with a
DATA step program and assign the results to the vari-
able TESTS in a TABLE= data set. See page 1516 of
QCUR.
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Chapter 5

Graphical Enhancements

This chapter illustrates techniques for making graphical
modifications of control charts and for improving their
visual clarity.

For further details, see Chapter 40 of QCUR beginning on
page 1445.
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Multiple Sets of Control Limits

This example illustrates the construction of a u chart for a
situation where the process rate is known to have shifted,
requiring the use of multiple sets of control limits.

A health care provider uses a u chart to report the rate of
office visits performed each month by each of its clinics.
The rate is computed by dividing the number of visits
by the membership expressed in thousand-member years.
Figure 5.1 shows data collected for Clinic E.

MONTH _PHASE_ NVISITE NYRSE DAYS MMSE

JAN94 Phase 1 1421 0.66099 31 7676
FEB94 Phase 1 1303 0.59718 28 7678
MAR94 Phase 1 1569 0.66219 31 7690
APR94 Phase 1 1576 0.64608 30 7753
MAY94 Phase 1 1567 0.66779 31 7755
JUN94 Phase 1 1450 0.65575 30 7869
JUL94 Phase 1 1532 0.68105 31 7909
AUG94 Phase 1 1694 0.68820 31 7992
SEP94 Phase 2 1721 0.66717 30 8006
OCT94 Phase 2 1762 0.69612 31 8084
NOV94 Phase 2 1853 0.68233 30 8188
DEC94 Phase 2 1770 0.70809 31 8223
JAN95 Phase 2 2024 0.78215 31 9083
FEB95 Phase 2 1975 0.70684 28 9088
MAR95 Phase 2 2097 0.78947 31 9168

Figure 5.1. Data Set CLINICE

NVISITE is the number of visits each month, and MMSE
is the number of members enrolled each month (in units
of “member months”). DAYS is the number of days in
each month. NYRSE expresses MMSE in units of thousand
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members per year. PHASE separates the data into two
time phases (the system changed in September 1994).

title ’U Chart for Office Visits per 1,000’
’ Members: Clinic E’;

proc shewhart data=clinice graphics;
uchart nvisite * month /

subgroupn = nyrse
cframe = ligr
cinfill = yellow
nohlabel
nolegend
;

label nvisite = ’Rate per 1,000 Member-Years’;
run;

Figure 5.2. u Chart with Single Set of Limits

c 1996 SAS Institute Inc. 45



What is wrong with Figure 5.2?

The following statements create distinct sets of control
limits for each time phase.

proc shewhart data=clinice graphics;
by _phase_;
uchart nvisite * month /

subgroupn = nyrse
outlimits = vislimit

(rename=(_phase_=_index_))
nochart;

run;

Control Limits for Office Visit Data
_ _ _

_ S L _ S
I U _ I A I _ _
N _ B T M L G L U
D V G Y I P M C C
E A R P T H A L _ L
X R P E N A S U U U
_ _ _ _ _ _ _ _ _ _

Phase 1 NVISITE MONTH ESTIMATE V V 3 V 2302.99 V
Phase 2 NVISITE MONTH ESTIMATE V V 3 V 2623.52 V

Figure 5.3. Data Set VISLIMIT

The following statements combine the data and control lim-
its for both phases in a single u chart, shown in Figure 5.4.
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title ’U Chart for Office Visits’
’ per 1,000 Members: Clinic E’;

proc shewhart data=clinice
limits=vislimit graphics;

uchart nvisite * month /
subgroupn = nyrse
cframe = ligr
cinfill = yellow
readindex = all
readphase = all
nohlabel
nolegend
phaselegend
nolimitslegend;

label nvisite = ’Rate per 1,000 Member-Years’;
run;

Figure 5.4. u Chart with Multiple Sets of Limits
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Note that both sets of control limits in Figure 5.4 were
estimated from the data with which they are displayed. You
can, however, apply pre-established control limits from a
LIMITS= data set to new data.

Also note that PHASE is a reserved variable name.

See page 1458 of QCUR for various methods of construct-
ing historical control charts with the READPHASE= and
READINDEX= options.

48 c 1996 SAS Institute Inc.



Displays for Stratified Data

If the data for a Shewhart chart can be classified by factors
relevant to the process (for instance, machines or operators),
displaying the classification on the chart can facilitate the
identification of causes of variation.

There are important differences between stratification and
subgrouping.

� The data must always be classified into subgroups before
a control chart can be produced.

� Subgrouping affects how control limits are computed
from the data as well as the outcome of tests for special
causes.

� The subgroup-variable is mandatory and classifies the
data into subgroups.

� Stratification is optional and involves classification vari-
ables other than the subgroup-variable.

� Displaying stratification influences how the chart is
interpreted, but it does not affect control limits or tests
for special causes.
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Stratification Based On Levels of a
Classification Variable

MACHINE SAMPLE DAY SHIFT DIAMX DIAMS DIAMN

A386 1 1 1 4.32 0.39 6
A386 2 1 2 4.49 0.35 6
...
A386 9 3 3 4.47 0.40 6
A455 10 4 1 4.42 0.37 6
A455 11 4 2 4.45 0.32 6
...
A455 15 5 3 4.17 0.25 6
C334 16 8 1 4.15 0.28 6
C334 17 8 2 4.21 0.33 6
...
C334 24 10 3 4.23 0.14 6
A386 25 11 1 4.27 0.28 6
A386 26 11 2 4.70 0.45 6
A386 27 11 3 4.51 0.45 6
...
A386 33 15 3 4.52 0.33 6

Figure 5.5. Data Set PARTS

symbol1 value=star color=black height=3 pct;
symbol2 value=circle color=black height=3 pct;
symbol3 value=triangle color=black height=3 pct;

title ’Control Chart for Diameter ’
’Stratified by Machine’;

proc shewhart history=parts graphics;
xchart diam*sample=machine /

symbollegend=legend1;

label sample = ’Sample Number’
diamx = ’Average Diameter’ ;

legend1 label=(’Machine’) frame;
run;
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Figure 5.6. Stratification Using Symbols

What can we learn from this display?

For details, see page 1449 of QCUR.

c 1996 SAS Institute Inc. 51



Stratification in Blocks of Observations
data parts2;

length cmachine $8;
set parts;
if machine=’A386’ then cmachine=’ligr’ ;
else if machine=’A455’ then cmachine=’megr’ ;
else if machine=’C334’ then cmachine=’white’;
else cmachine=’dagr’ ;

proc shewhart history=parts2 graphics;
xchart diam*sample (machine day) /

stddeviations
nolegend
blockpos = 3
cblockvar = cmachine;

label sample = ’Sample Number’
diamx = ’Average Diameter’
day = ’Date of Production in June’
machine = ’Machine in Use’;

run;
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Figure 5.7. Stratification Using Blocks

For details, see page 1450 of QCUR.
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Boxplot Displays

The data set DELAYS contains flight departure delays (in
minutes) recorded daily for eight consecutive days:

DELAY DAY FLIGHT

12 01MAR90 1
4 01MAR90 2
2 01MAR90 3
2 01MAR90 4

15 01MAR90 5
8 01MAR90 6
0 01MAR90 7

11 01MAR90 8
0 01MAR90 9
0 01MAR90 10

... ... ...

4 08MAR90 23
1 08MAR90 24
1 08MAR90 25

Figure 5.8. Data Set DELAYS

The following statements create an �X chart for the average
delays superimposed with box-and-whisker plots of all the
delays for each day.

title ’Analysis of Airline Departure Delays’;
symbol v=plus;

proc shewhart graphics data=delays;
boxchart delay * day /

stddevs
nohlabel
interval = day
boxstyle = schematic
boxwidthscale = 1 ;

run;
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Figure 5.9. Box Chart

You can also use the BOXCHART statement to create a
wide variety of box-and-whisker displays without control
limits.

Tip: Be sure to specify NOLIMITS and STDDEVS.

For details, see page 911 of QCUR.
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title ’Analysis of Airline Departure Delays’;

proc shewhart graphics data=times ;
boxchart delay * day /

boxstyle = schematicid
cboxes = black
cboxfill = ligr
interval = day
stddevs
nolimits
nohlabel
nolegend
notches;

id reason;
label delay = ’Delay in Minutes’;
run;

Figure 5.10. Box-and-Whisker Display
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The next example illustrates how you can add a table of
summary statistics to a boxplot display.

proc univariate noprint data=times;
var delay;
by day;
output out=stats n=n mean=avg skewness=skew;

data stats;
set stats;
label tabn = ’N’

tabavg = ’Mean’
tabskw = ’Skewness’;

length tabn tabavg tabrng $ 4 color $ 8;
tabn = put( n, best4. );
tabavg = put( avg, best4. );
tabskw = put( skew, 4.2 );

if ( skew > 2.0 ) then do;
color = ’yellow’;
lnstyle = 20;
end;

else do;
color = ’ligr’;
lnstyle = 1;
end;

data times;
merge times stats;
by day;

run;
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In the next statements, the formatted summary variables are
read as “block variables” by the SHEWHART procedure.
Note that the colors and line styles of the boxes are used to
indicate high skewness.

title ’Analysis of Airline Departure Delays’ ;

symbol v=plus;
proc shewhart graphics data=times;

boxchart delay * day ( tabskw tabavg tabn ) /
llimits = 1
blockrep
blocklabelpos = left
blocklabtype = 3
blockpos = 4
stddevs
nolimits
nohlabel
nolegend
boxstyle = schematic
cboxfill = ( color )
cboxes = black
lboxes = ( lnstyle );

label delay = ’Delay in Minutes’;
run;
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Figure 5.11. Adding a Table of Summary Statistics
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Multi-Vari Displays

“Multi-vari” charts are used in a variety of industries to
analyze several types of variation:

� within-sample (e.g., position within wafer)

� within-batch (e.g., wafer within batch)

� batch-to-batch

The following example (contributed by Leslie Fowler at
Motorola) illustrates the construction of “multi-vari” dis-
plays.

_PHASE_ WAFER POSITION PARM

LOTA 01 L 0.96974
LOTA 01 B 0.97660
LOTA 01 C 0.96857
LOTA 01 T 0.97984
LOTA 01 R 1.00020
LOTA 02 L 1.07275
LOTA 02 B 1.02878
LOTA 02 C 1.01871
LOTA 02 T 1.06391
LOTA 02 R 1.07683
LOTA 03 L 0.87202
LOTA 03 B 0.85437
LOTA 03 C 0.97721
LOTA 03 T 0.91621
LOTA 03 R 0.90385
LOTB 01 L 0.98629
... ... ... ...

LOTG 03 T 1.06365
LOTG 03 R 1.13751

Figure 5.12. Data Set PARM
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title ’Multi-Vari Display for Measured Parameter’;

proc shewhart data=parm graphics;
boxchart parm*wafer /

cboxes = black
cphasebox = black
cphaseboxfill = ligr
cphasemeanconnect = black
boxstyle = pointsjoin
phasemeansymbol = dot
readphase = all
phaselegend
nolegend
nohlabel
stddevs
nolimits;

run;

Figure 5.13. BOXSTYLE=POINTSJOIN Option
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title ’Multi-Vari Display for Measured Parameter’;

proc shewhart data=parm graphics;
boxchart parm*wafer /

cboxes = black
cphasebox = black
cphaseboxfill = ligr
cphasemeanconnect = black
boxstyle = pointsid
phasemeansymbol = dot
readphase = all
phaselegend
nolegend
nohlabel
stddevs
nolimits;

id position;
run;

Figure 5.14. BOXSTYLE=POINTSID Option
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Scaling Issues

Scale compression can be a problem when extreme out-of-
control points are plotted.

title ’Control Chart for New Copper Tubes’;
symbol v=plus;

proc shewhart data=newtubes graphics;
xrchart diameter*batch /

mu0 = 70
sigma0 = 0.75 ;

run;

Figure 5.15. �X and R Charts Without Clipping
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You can use the CLIPFACTOR= option as follows:

title ’Control Chart for New Copper Tubes’;
symbol v=plus;

proc shewhart data=newtubes graphics;
xrchart diameter*batch /

mu0 = 70
sigma0 = 0.75
clipfactor = 1.5;

run;

Figure 5.16. �X and R Charts With Clipping

For details, see page 1481 of QCUR.
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Selecting Subgroups for Computation and
Display

In many control chart applications, it is necessary to distin-
guish between

� the subgroups used to compute the control limits (or to
estimate the control limit parameters)

� the subgroups that are displayed on the control chart

There are a variety of methods for making this distinction:

� read the control limits from a LIMITS= data set
� use a WHERE statement

proc shewhart data=bottles graphics;
where day <= ’31JAN94’D;
pchart ncracks * day /

subgroupn = nbottles
outlimits = botlim;

run;

� use the switch variables COMP and DISP in the
input data set
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data bottles;
length _comp_ _disp_ $ 1;
set bottles;
if day = ’13JAN94’D then _comp_ = ’n’;
else if day = ’14JAN94’D then _comp_ = ’n’;
else if day <= ’31JAN94’D then _comp_ = ’y’;
else _comp_ = ’n’;
if day <= ’31JAN94’D then _disp_ = ’n’;
else _disp_ = ’y’;

run;

title ’Analysis of February Production’;
proc shewhart graphics data=bottles;

pchart ncracks * day / subgroupn = nbottles
nolegend
nohlabel;

label ncracks = ’Proportion With Cracks’;
run;

For details, see page 1489 of QCUR.
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Chapter 6

Statistical Modeling for Control Chart
Applications

While the Shewhart chart is remarkably versatile, it is not
the best solution for every SPC application. There is a
growing awareness among quality engineers that standard
control charts are inappropriate or of limited value in a
number of manufacturing situations:

� “What can I do about autocorrelation in my process
data?”

� “Is there a way to adjust control charts for multiple
sources of variation?”

� “How can I do short run process control?”

� “Are the standard control limits appropriate for nonnor-
mal data?”
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These questions are subjects of current research and debate.
Here, the goal is to mention some of the approaches
that have been proposed and illustrate how they can be
implemented with short SAS programs.

The examples in this chapter use SAS procedures for
statistical modeling in conjunction with the SHEWHART
procedure. This combination is highly effective in a variety
of nonstandard SPC applications.

Note: The examples are readily extended to SAS programs
that can handle large numbers of processes. Likewise,
they can be incorporated in customized point-and-click
interfaces developed with SAS/AF software.
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Autocorrelation in Process Data

� recognized as a natural phenomenon in process indus-
tries

� as automated data collection becomes prevalent in parts
industries, it is possible to recognize autocorrelation
that was previously undetected

� the distinction between parts and process industries
is becoming blurred in areas such as computer chip
manufacturing

� see Box and Kramer (1992), Schneider and Pruett (1994)
and Woodall (1993)

The standard Shewhart "model" is

xt = �+ �t

where �t is a random displacement or error from the
process mean �. The errors are typically assumed to
be statistically independent in control chart derivations.
When measurements are autocorrelated, the result can be
too many false signals, and users sometimes comment that
“the control limits are too tight.”

The following data are from Montgomery and Mastrangelo
(1991).
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Chemical Data

T XT

1 96
2 90
3 89
4 89
. .
. .
. .

96 81
97 83
98 83
99 86

100 88

Figure 6.1. SAS Data Set CHEMICAL

The following code produces Figure 6.2:

title ’Individual Measurements Chart’;

proc shewhart graphics data=chemical;
irchart xt*t / npanel = 100

needles
split = ’/’;

label xt = ’Observed/Mvg Rng’;
run;
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Figure 6.2. Conventional Shewhart Chart

You can use the ARIMA procedure for diagnosis and
modeling of autocorrelation.

proc arima data=chemical;
identify var = xt;

run;

See SAS/ETS User’s Guide, Version 6, Second Edition.
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Autocorrelations

Lag Corr -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
0 1.00000 | |********************|
1 0.83026 | . |***************** |
2 0.71837 | . |************** |
3 0.61948 | . |************ |
4 0.51169 | . |********** |
5 0.42596 | . |********* |
6 0.38114 | . |********. |
7 0.35989 | . |******* . |
8 0.36446 | . |******* . |
9 0.37982 | . |******** . |
10 0.34653 | . |******* . |
11 0.34841 | . |******* . |
12 0.35445 | . |******* . |
13 0.34922 | . |******* . |
14 0.37081 | . |******* . |
15 0.34752 | . |******* . |

"." marks two standard errors

Figure 6.3. Autocorrelation Plot for Chemical Data

Figure 6.3 indicates that the data are highly autocorrelated
with a lag one autocorrelation of 0.83.

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.83026 | . |***************** |
2 0.09346 | . |** . |
3 0.00385 | . | . |
4 -0.07340 | . *| . |
5 -0.00278 | . | . |
6 0.09013 | . |** . |
7 0.08781 | . |** . |
8 0.10327 | . |** . |
9 0.07240 | . |* . |

10 -0.11637 | . **| . |
11 0.08210 | . |** . |
12 0.07580 | . |** . |
13 0.04429 | . |* . |
14 0.11661 | . |** . |
15 -0.10446 | . **| . |

Figure 6.4. Partial Autocorrelation Plot
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Figure 6.4 suggests a first-order autoregressive model,
commonly referred to as an AR(1) model:

~xt � xt � � = �0 + �1~xt�1 + �t

You can fit this model with the ARIMA procedure:

proc arima data=chemical;
identify var = xt;
estimate p = 1 method = ml;

run;

The equation of the fitted model is

~xt = 13:05 + 0:847~xt�1

Maximum Likelihood Estimation

Approx.
Parameter Estimate Std Error T Ratio Lag
MU 85.28375 2.32973 36.61 0
AR1,1 0.84694 0.05221 16.22 1

Constant Estimate = 13.0532881

Variance Estimate = 14.2767606
Std Error Estimate = 3.77846008
AIC = 552.894156
SBC = 558.104497
Number of Residuals= 100

Figure 6.5. Fitted AR(1) Model
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There are differing views on dealing with autocorrelation:

1. Wheeler (1991b) argues that the usual control limits
are contaminated “only when the autocorrelation be-
comes excessive (say 0.80 or larger)” and that, in these
situations, the “running record [is] very coherent and
therefore very easy to understand.”

2. others suggest removing autocorrelation from the data
and constructing a chart for the residuals; see Alwan
and Roberts (1988).

3. The “automatic process control” or “engineering process
control” approach views dependence as a phenomenon
to be exploited rather than removed. See MacGregor
(1987,1990), MacGregor, Hunter, and Harris (1988),
Montgomery et al. (1994), and Box and Kramer (1992).

The following example illustrates the second viewpoint
and is based on Montgomery and Mastrangelo (1991). In
the chemical data example, the residuals can be computed
as forecast errors and saved in a SAS data set named
RESULTS.

proc arima data=chemical;
identify var=xt;
estimate p=1 method=ml;
forecast out=results id=t;

run;
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RESULTS saves the one-step-ahead forecasts as the vari-
able FORECAST, and it also contains the original variables
XT and T. You can create a Shewhart chart for the resid-
uals by using RESULTS as input to the SHEWHART
procedure:

title ’Residual Analysis Using AR(1) Model’;
proc shewhart data=results graphics;

xchart xt*t / trendvar = forecast
xsymbol = xbar
npanel = 100
ypct1 = 40
split = ’/’
nolegend;

label xt=’Residual/Forecast’;
run;

The lower chart in Figure 6.6 plots FORECAST, and the
upper chart plots the residuals (XT - FORECAST) together
with their 3� limits.

Note that the TRENDVAR= option requests this display
(otherwise, a standard individual measurements chart for
XT would be produced by default).
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Figure 6.6. Residuals from AR(1) Model

The upper chart in Figure 6.6 resembles Figure 2 of Mont-
gomery and Mastrangelo (1991), who conclude that the
process is in control. In addition, they suggest fitting an
exponentially weighted moving average (EWMA) model
to the data and using this model as the basis for an “EWMA
center line control chart.”
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Recall that the EWMA statistic plotted on a conventional
EWMA control chart is defined as

zt = �xt + (1 � �)zt�1

The EWMA chart (which you can construct with the MA-
CONTROL procedure) assumes the xt are independent.
However, in the context of autocorrelated process data, the
EWMA statistic zt plays a different role; it is the optimal
one-step-ahead forecast for a process that can be modeled
by an ARIMA(0,1,1) model

xt = xt�1 + �t � ��t�1

provided that � = 1� �. See Hunter (1986). This statistic
is also a good predictor when the process can be described
by a subset of ARIMA models for which the process is
“positively autocorrelated and the process mean does not
drift too quickly.”

You can fit an ARIMA(0,1,1) model to the chemical data
with the following statements:

proc arima data=chemical;
identify var=xt(1);
estimate q=1 method=ml noint;
forecast out=ewma id=t;

run;
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The forecast values and their standard errors, together with
the original measurements, are saved in a data set named
EWMA. The following statements create a Shewhart chart
for the residuals from the fitted ARIMA(0,1,1) model.

data ewma; set ewma(firstobs=2 obs=100);

title ’Residual Analysis Using ARIMA(0,1,1) ’
’Model’;

symbol v=dot;

proc shewhart data=ewma graphics;
xchart xt*t / trendvar = forecast

xsymbol = xbar
npanel = 100
ypct1 = 40
split = ’/’
nolegend;

label xt = ’Residual/Forecast’;
run;

78 c 1996 SAS Institute Inc.



Figure 6.7. Residuals from ARIMA(0,1,1) Model

Note the similarity between Figure 6.7, and Figure 6.6.

The following statements construct the EWMA center line
control chart by plotting the forecasts from the ARIMA(0,1,1)
model as the center “line” and using the standard errors of
prediction to compute upper and lower control limits.
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data ewmatab;
length _var_ $ 8 ;
set ewma

(rename=(forecast=_mean_ xt=_subx_));
_var_ = ’xt’;
_sigmas_ = 3;
_limitn_ = 1;
_lclx_ = _mean_ - 3 * std;
_uclx_ = _mean_ + 3 * std;
_subn_ = 1;

run;

title ’EWMA Center Line Control Chart’;
symbol v=dot;

proc shewhart table=ewmatab graphics;
xchart xt*t / npanel = 100

llimits = 1
xsymbol = ’Center’
nolegend;

label _subx_ = ’Observed’;
run;

FORECAST and STD are the forecasts and standard errors
in the data set EWMA created earlier by the ARIMA
procedure.

EWMATAB is read by the SHEWHART procedure as a
TABLE= input data set. Why?

Recall that variables in a TABLE= data set have reserved
names, and for this reason FORECAST and XT are tem-
porarily renamed as MEAN and SUBX .
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Figure 6.8. EWMA Moving Center Line Chart

Again, the conclusion is that the process is in control.
Although Figure 6.6 and Figure 6.8 are not the only displays
that might be constructed, they illustrate the tandem of
the ARIMA and SHEWHART procedures in applications
involving autocorrelated data.
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Multiple Components of Variation

This section considers another form of departure from
the Shewhart model. Here, measurements are independent
from one subgroup sample to the next, but there are multiple
components of variation for each measurement.

A company that manufactures polyethylene film monitors
statistical control of an extrusion process that produces a
continuous sheet of film. At periodic intervals of time,
samples are taken at four locations (referred to as lanes)
along a cross section of the sheet, and a test measurement
is made of each sample. The test values are saved in a SAS
data set named FILM.

SAMPLE LANE TESTVAL

1 A 93
1 B 87
1 C 92
1 D 78
2 A 87
2 B 83
2 C 79
2 D 77
. . .
. . .
. . .

Figure 6.9. Data Set FILM

After removal of outliers, the following statements create
box plots for the data:
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proc sort data=film; by lane;

title ’Variation Within Lane’;
proc shewhart data=film graphics;

boxchart testval*lane /
boxstyle = schematicid
hoffset = 5
idsymbol = dot
cboxfill = red
stddevs
nolimits
nolegend;

id sample;
run;

Figure 6.10. Boxchart of Test Values in FILM
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It is tempting to create conventional �X and R charts for the
test values grouped by the variable SAMPLE.

proc sort data=film; by sample;

title ’Shewhart Chart for Means and Ranges’;
proc shewhart data=film graphics;

xrchart testval*sample /
split = ’/’
npanel = 60
limitn = 4
nolegend
alln;

label testval = ’Avg Test Value/Range’;
run;

Figure 6.11. Conventional �X and R Charts
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The number of out-of-control points in Figure 6.11 suggests
that the process is not in control. However, since the process
is known to be stable and the data have been screened for
outliers, it is suspected that the basic Shewhart model is not
adequate.

This model assumes that sampling variation, also referred
to as within-group variation, is the only source of variation.
Writingxij for the jth measurement within the ith subgroup,
the usual model for the �X and R charts is

xij = �+ �W �ij

for i = 1; 2; : : : k and j = 1; 2; : : : n. Here, there are
n = 4 measurements in a “subgroup” and there are k = 56
subgroup samples. The �ij are assumed to be independent
with zero mean and unit variance, and �2

W is the within-
subgroup variance.

For the film manufacturing process, this model is not ade-
quate because there is additional variation due to changes
in temperature, pressure, raw material, and other factors. A
more useful model is

xij = �+ �B!i + �W �ij

where �2
B is the between-subgroup variance, the !i are

independent with zero mean and unit variance, and the !i
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are independent of the �ij. See Chapter 3 of Wetherill and
Brown (1991).

To plot the averages

xi: �
nX

j=1
xij=n

on a control chart, we need estimates of

E(xi:) = �

Var(xi:) = �2
B + (�2

W=n)

The center line should be located at �̂, and 3� limits should
be located at

�̂� 3
s d
�2
B +

d
�2
W=n

where
d
�2
B and

d
�2
W estimate the variance components.

You can estimate the variance components with the MIXED
procedure (among other procedures). See SAS/STAT

Software: Changes and Enhancements through Release
6.12 for details on the MIXED procedure.

proc mixed data=film;
class sample;
model testval = / s;
random sample;
make ’solutionf’ out=sf;
make ’covparms’ out=cp;

run;
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The results are shown in Figure 6.12. The estimates ared
�2
B = 19:25,

d
�2
W = 39:68, and �̂ = 88:90.

Covariance Parameter Estimates (REML)

Cov Parm Ratio Estimate Std Error Z

SAMPLE 0.48516517 19.25257992 5.67829660 3.39
Residual 1.00000000 39.68252702 4.35915223 9.10

Covariance Parameter Estimates (REML)

Pr > |Z|

0.0007
0.0001

Solution for Fixed Effects

Parameter Estimate Std Error DDF T Pr > |T|

INTERCEPT 88.89629708 0.72504535 55 122.61 0.0001

Figure 6.12. Partial Output from the MIXED Procedure

The following statements merge the MIXED output data
sets into a data set named NEWLIM that has the structure of
a LIMITS= input data set for the SHEWHART procedure.
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data sf; set sf; rename _est_=est;
data cp; set cp sf; keep est;
proc transpose data=cp out=newlim;

data newlim;
set newlim;
drop _name_ _label_ col1-col3;
length _var_ _subgrp_ _type_ $8;
_var_ = ’testval’;
_subgrp_ = ’sample’;
_type_ = ’estimate’;
_limitn_ = 4;
_mean_ = col3;
_stddev_ = sqrt(4*col1 + col2);
output;

run;

LIMITN is assigned the value n, MEAN is assigned the
value �̂, and STDDEV is assigned the value

�̂adj �
s
4
d
�2
B +

d
�2
W

In the next statements the SHEWHART procedure reads
these estimates and displays the �X and R charts shown
in Figure 6.13. The control limits for the �X chart are
displayed at �̂� 3�̂adj=

p
n.

title ’Control Chart With Adjusted Limits’;
symbol v=dot;

proc shewhart data=film limits=newlim graphics;
xrchart testval*sample / npanel = 60 ;

run;
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Figure 6.13. Derived Control Limits

Figure 6.13 correctly indicates that the variation in the
process is due to common causes.

A simple alternative to Figure 6.13 is a conventional “in-
dividual measurements” chart for the subgroup means, as
follows:
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proc means noprint data=film;
by sample;
output out=filmx mean=lanemean;

title ’Individuals Chart for Means’;
symbol v=dot;

proc shewhart data=filmx graphics;
irchart lanemean*sample /

split = ’/’
npanel = 60
nochart2;

label lanemean = ’Avg Value/Mvg Rng’;
run;

Figure 6.14. Individuals Chart for Averages
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Note that

� Figure 6.14 is only roughly equivalent to Figure 6.13
because the standard error for the means in Figure 6.14
is determined by averaging the moving ranges of the
means and dividing by d2.

� If you replace this standard error with a value determined
from the sample standard deviation of the means then
the control limits will be identical.

� Assuming the process is in control, the variance compo-
nents approach is preferable because it yields separate
estimates of the components due to lane and sample,
as well as a number of hypothesis tests (these require
assumptions of normality).

� You can use the variance components approach to
extend the model to a variety of effects.

The following statements fit a mixed model in which LANE
is a fixed effect and SAMPLE is a random effect.

proc mixed data=film;
class sample lane;
model testval = lane;
random sample;
lsmeans lane;

run;
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Covariance Parameter Estimates (REML)

Cov Parm Ratio Estimate Std Error Z

SAMPLE 0.82943785 22.52245916 5.66313893 3.98
Residual 1.00000000 27.15388406 3.01371956 9.01

Covariance Parameter Estimates (REML)

Pr > |Z|

0.0001
0.0001

Tests of Fixed Effects

Source NDF DDF Type III F Pr > F

LANE 3 162 26.37 0.0001

Least Squares Means

Level LSMEAN Std Error DDF T Pr > |T|

LANE A 88.04445518 0.94862578 162 92.81 0.0001
LANE B 93.22627337 0.94862578 162 98.28 0.0001
LANE C 89.89900064 0.94862578 162 94.77 0.0001
LANE D 84.60714286 0.94184795 162 89.83 0.0001

Figure 6.15. Partial Output from the MIXED Procedure

Since the lane effect is significant, it might be wise to
maintain separate control charts for each lane.
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Short Run Process Control

Short run process control also requires special consideration
of process variability.

When conventional Shewhart charts are used to establish
statistical control, the initial control limits are typically
based on between 25 and 30 subgroup samples. However,
this amount of data is often not available in manufacturing
situations where product changeover occurs frequently.

A variety of methods have been introduced for analyzing
data from a process that alternates between short runs of
multiple products. The two most common methods are:

� difference from nominal. A product-specific nominal
value is subtracted from each measured value, and the
differences (together with appropriate control limits) are
charted. It is assumed that the nominal value represents
the central location of the process (ideally estimated
with historical data) and that the process variability is
constant across products.

� standardization. Each measured value is standardized
with a product-specific nominal and standard deviation
values. This approach is followed when the process
variability is not constant across products.

Note: Quesenberry (1991a, 1991b) introduced the Q chart
for short (or long) production runs, which standardizes
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and normalizes the data using probability integral transfor-
mations. SAS examples are provided by Rodriguez and
Bynum (1992).

Difference From Nominal

A metal extrusion process is used to make three slightly
different models of the same component. Three product
types (M1, M2, and M3) are produced in small quantities
because the process is expensive and time-consuming.

Diameter measurements and nominal values for several
short runs are saved in a data set named OLD shown in
Figure 6.16. Samples 1 to 30 are to be used to estimate the
common � for the differences from nominal.

Note: See Wheeler (1991a) for a similar example.
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SAMPLE PRODTYPE NOMINAL DIAMETER DIFF

1 M3 14.8 13.99 -0.81
2 M3 14.8 14.69 -0.11
3 M3 14.8 13.86 -0.94
4 M3 14.8 14.32 -0.48
5 M3 14.8 13.23 -1.57
6 M1 15.0 17.55 2.55
7 M1 15.0 14.26 -0.74
8 M1 15.0 14.62 -0.38
9 M1 15.0 12.97 -2.03

10 M2 15.5 16.18 0.68
11 M2 15.5 15.29 -0.21
12 M2 15.5 16.20 0.70
13 M3 14.8 13.89 -0.91
14 M3 14.8 12.71 -2.09
15 M3 14.8 14.32 -0.48
16 M3 14.8 15.35 0.55
17 M2 15.5 15.08 -0.42
18 M2 15.5 14.72 -0.78
19 M2 15.5 14.79 -0.71
20 M2 15.5 15.27 -0.23
21 M2 15.5 15.95 0.45
22 M1 15.0 14.78 -0.22
23 M1 15.0 15.19 0.19
24 M1 15.0 15.41 0.41
25 M1 15.0 16.26 1.26
26 M3 14.8 16.68 1.88
27 M3 14.8 15.60 0.80
28 M3 14.8 14.86 0.06
29 M3 14.8 16.67 1.87
30 M3 14.8 14.35 -0.45

Figure 6.16. Data Set OLD

For now, assume that the variability in the process is
constant across product types. First, compute �̂ = �R=d2

for each product type.
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proc sort data=old; by prodtype;

proc shewhart data=old;
irchart diff*sample /

nochart
outlimits=baselim;

by prodtype;
run;

Control Limits By Product Type

PRODTYPE _VAR_ _SUBGRP_ _TYPE_ _LIMITN_ _ALPHA_ _SIGMAS_

M1 DIFF SAMPLE ESTIMATE 2 .0026998 3
M2 DIFF SAMPLE ESTIMATE 2 .0026998 3
M3 DIFF SAMPLE ESTIMATE 2 .0026998 3

_LCLI_ _MEAN_ _UCLI_ _LCLR_ _R_ _UCLR_ _STDDEV_

-3.13153 0.12924 3.39001 0 1.22646 4.00628 1.08692
-1.78485 -0.06551 1.65382 0 0.64669 2.11243 0.57311
-3.22326 -0.19034 2.84258 0 1.14076 3.72633 1.01097

Figure 6.17. Data Set BASELIM

The following statements compute an overall estimate �̂,
which is saved in a LIMITS= data set named DIFFLIM.
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proc means data=baselim noprint;
var _r_;
output out=difflim (keep=_r_) mean=_r_;

data difflim;
set difflim;
drop _r_;
length _var_ _subgrp_ $ 8;
_var_ = ’diff’;
_subgrp_ = ’sample’;
_mean_ = 0.0;
_stddev_ = _r_ / d2(2);
_limitn_ = 2;
_sigmas_ = 3;

run;

Why is MEAN set to zero?

Control Limit Parameters For Differences

_VAR_ _SUBGRP_ _MEAN_ _STDDEV_ _LIMITN_ _SIGMAS_

diff sample 0 0.89034 2 3

Figure 6.18. Data Set DIFFLIM

Now, you can construct short run control charts for new
data. Suppose that diameters for an additional 30 parts
(numbered 31 to 60) are measured and saved in a SAS data
set named NEW.
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SAMPLE PRODTYPE DIFF NOMINAL DIAMETER

31 M2 -0.81 15.5 14.69
32 M2 -0.11 15.5 15.39
33 M2 -0.94 15.5 14.56
34 M2 -0.48 15.5 15.02
35 M2 -1.57 15.5 13.93
36 M1 2.55 15.0 17.55

... ... ... ... ...

56 M2 1.88 15.5 17.38
57 M3 0.80 14.8 15.60
58 M3 0.06 14.8 14.86
59 M3 1.87 14.8 16.67
60 M3 -0.45 14.8 14.35

Figure 6.19. Data Set NEW

The following statements construct a short run control chart
for the measurements in NEW:

title ’Chart for Difference from Nominal’;
symbol v=dot;

proc shewhart data=new (rename=(prodtype=_phase_))
limits=difflim graphics;
irchart diff * sample /

readphases = all
phaseref
phasebreak
phaselegend
split=’/’;

label diff = ’Difference/Mvg Rng’;
run;

Why is PRODTYPE temporarily renamed to PHASE ?
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Figure 6.20. Short Run Control Chart
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It may be useful to replace the moving range chart with a
plot of the nominal values.

data difflim;
set difflim;
_var_ = ’diameter’;
_limitn_ = 1;

run;

title ’Differences and Nominal Values’;

proc shewhart data=new limits=difflim graphics;
xchart diameter * sample ( prodtype ) /

readlimits
nolimitslegend
nolegend
split = ’/’
blockpos = 3
blocklabtype = scaled
blocklabelpos = left
xsymbol = xbar
trendvar = nominal;

label diameter = ’Difference/Nominal’
prodtype = ’Product’;

run;
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Figure 6.21. Short Run Control Chart with Nominal Values

Are the Variances Constant?

The difference-from-nominal chart should be accompanied
by a test that checks whether the variances for each product
type are statistically indistinguishable (homogeneous).
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proc glm data=old;
class prodtype;
model diameter = prodtype;
means prodtype / hovtest = levene

hovtest = obrien;
run;

General Linear Models Procedure

Levene’s Test for Equality of DIAMETER Variance
ANOVA of Squared Deviations from Group Means

Sum of Mean
Source DF Squares Square F Value Pr > F

PRODTYPE 2 7.4490 3.7245 1.4129 0.2609
Error 27 71.1738 2.6361

O’Brien’s Test for Equality of DIAMETER Variance
ANOVA of O’Brien’s Spread Variable, W = 0.5

Sum of Mean
Source DF Squares Square F Value Pr > F

PRODTYPE 2 9.4061 4.7030 1.2715 0.2967
Error 27 99.8666 3.6988

Figure 6.22. Tests for Homogeneity of Variance

The largeP -values support the hypothesis of homogeneity.

Standardization

When the variances are not constant, various authors rec-
ommend standardizing the differences from nominal and
charting them with control limits at �3.

You can use the product-specific estimates of � in BASE-
LIM to standardize the differences from nominal in NEW:
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proc sort data=baselim; by prodtype;
proc sort data=new; by prodtype;

data new;
keep sample prodtype z diameter

diff nominal _stddev_;
label sample = ’Sample Number’
format diff 5.2 ;
merge baselim new(in = a);

by prodtype; if a;
z = diff / _stddev_ ;

proc sort data=new; by sample;
run;

The following statements create a standardized chart.

title ’Standardized Chart’;
symbol v=dot;
proc shewhart data=new graphics;

irchart z*sample (prodtype) /
blocklabtype = scaled
mu0 = 0
sigma0 = 1
split = ’/’;

label prodtype = ’Product Classification’
z = ’Std Difference/Mvg Rng’;

run;

Why are MU0=0 and SIGMA0=1 specified?
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Figure 6.23. Standardized Difference Chart
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Non-Normal Process Data

It is well known that Shewhart charts for means work well
whether the measurements are normally distributed or not;
see Schilling and Nelson (1976) and Wheeler (1995). On
the other hand, the interpretation of charts for individual
measurements (X charts) can be affected by departures
from normality, which are common in SPC applications.

If subgrouping is not possible and nonnormality is evident,
alternatives include

� transforming the data to normality

� modifying the usual limits based on a suitable distribu-
tion model for the data

The time taken by staff members to answer a phone was
measured, and the delays (in minutes) were saved as values
of a variable named TIME in a SAS data set named CALLS.

RECNUM TIME

1 3.2
2 3.1
3 3.1
4 2.9
5 2.8
. .
. .
. .

49 2.6
50 2.9

Figure 6.24. Data Set CALLS
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title ’Standard Analysis of Individual ’
’Delays’;

proc shewhart data=calls graphics ;
irchart time * recnum /

rtmplot = schematic
outlimits = delaylim
cboxfill = grey
nochart2;

run;

Figure 6.25. Standard Control Limits for Delays

Is the process in control?
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_VAR_ _SUBGRP_ _TYPE_ _LIMITN_ _ALPHA_

TIME RECNUM ESTIMATE 2 .0026998

_SIGMAS_ _LCLI_ _MEAN_ _UCLI_ _STDDEV_

3 1.77001 2.91035 4.05070 0.38011

Figure 6.26. Data Set DELAYLIM

The control limits in DELAYLIM can be replaced with
percentiles from a fitted lognormal distribution.

title ’Lognormal Fit for Delay Distribution’;

proc capability data=calls graphics ;
histogram time /

lognormal( threshold = 2.3 )
cfill = ligr
outfit = lnfit
nolegend ;

inset n = ’Number of Calls’
lognormal( sigma=’Shape’ (4.2)

zeta =’Scale’ (5.2)
theta ) /

pos = ne;
run;
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Figure 6.27. Distribution of Delays

Parameters EDF Goodness-of-Fit

Threshold (Theta) 2.3 A-D (A-Square) 0.34761167
Scale (Zeta) -0.6891925 Pr > A-Square 0.4765
Shape (Sigma) 0.64121248
Est Mean 2.91655007 C-von M (W-Square) 0.05863868
Est Std Dev 0.4396814 Pr > W-Square 0.4106

Chi-Square Goodness-of-Fit Kolmogorov (D) 0.09208575
Pr > D >.15

Chi-Square 6.81723374
Df 4
Pr > Chi-Square 0.1459

Figure 6.28. Fit Summary for Lognormal Model
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The large P -values for the goodness-of-fit tests are evi-
dence that the lognormal model provides a good fit.

_VAR_ _CURVE_ _LOCATN_ _SCALE_ _SHAPE1_ _MIDPTN_

TIME LNORMAL 2.3 -0.68919 0.64121 4.2

_ADASQ_ _ADP_ _CVMWSQ_ _CVMP_ _KSD_ _KSP_

0.34761 0.47648 0.058639 0.41060 0.092086 0.15

Figure 6.29. Data Set LNFIT

The �th lognormal percentile is P� = exp(���1(�) + �)

data delaylim;
merge delaylim lnfit;
drop _sigmas_ ;
_lcli_ = _locatn_ +

exp(_scale_+probit(0.5*_alpha_)*_shape1_);
_ucli_ = _locatn_ +

exp(_scale_+probit(1-0.5*_alpha_)*_shape1_);
_mean_ = _locatn_ +

exp(_scale_+0.5*_shape1_*_shape1_);
run;

title ’Lognormal Control Limits for Delays’;
proc shewhart data=calls limits=delaylim graphics;

irchart time * recnum /
rtmplot = schematic
cboxfill = ligr
nochart2;

run;
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Figure 6.30. Adjusted Control Limits for Delays

Clearly the process is in control, and the control limits
are appropriate for the data. The particular probability
level � = 0:0027 associated with these limits is somewhat
immaterial. Other values of � could be specified with the
ALPHA= option in the original IRCHART statement.
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Chapter 7

Construction of Multivariate Control
Charts

� Simultaneous measurement of p variables

� What if the variables are correlated?

� Diagnosis is more complex than for a univariate chart
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Introduction

Denote the i th measurement on the j th variable as Xij for
i = 1; 2; : : : ; n, where n is the number of measurements,
and j = 1; 2; : : : ; p.

�Xj =
1
n

Pn
i=1 Xij ; Xi =

2
66666666664

Xi1

Xi2
...

Xip

3
77777777775
; �Xn =

2
66666666664

�X1
�X2
...
�Xp

3
77777777775

Sn =
1

n� 1

nX
i=1

(Xi � �Xn)(Xi � �Xn)
0

Standard practice is to construct a chart for a statistic T 2
i of

the form

T 2
i = (Xi � �Xn)

0S�1
n (Xi � �Xn)
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Example of Multivariate Control Chart

Example from a start-up phase (See Tracy, Young, and
Mason (1992)) of a chemical process based on the three
measured quality characteristics:

Percent of impurities (IMPURE)
Temperature (TEMP)
Concentration (CONC)

Data are saved in data set STARTUP.

data startup;
input sample impure temp conc;
label sample = ’Sample Number’

impure = ’Impurities’
temp = ’Temperature’
conc = ’Concentration’ ;

cards;
1 14.92 85.77 42.26
2 16.90 83.77 43.44
3 17.38 84.46 42.74
4 16.90 86.27 43.60
5 16.92 85.23 43.18
6 16.71 83.81 43.72
7 17.07 86.08 43.33
8 16.93 85.85 43.41
9 16.71 85.73 43.28

10 16.88 86.27 42.59
11 16.73 83.46 44.00
12 17.07 85.81 42.78
13 17.60 85.92 43.11
14 16.90 84.23 43.48
;
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Compute Principal Components

Obtain Sample Size:

proc means data=startup noprint ;
var impure temp conc;
output out=means n=n;

data startup;
if _n_ = 1 then set means;
set startup;
p = 3;
_subn_ = 1;
_limitn_ = 1;
run;

Compute Principal Components:

proc princomp data=startup out=prin
outstat=scores std cov;
var impure temp conc;

run;
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Compute T2
i and its Exact Control Limits

data prin (rename=(tsquare=_subx_));
length _var_ $ 8 ;
drop prin1 prin2 prin3 _type_ _freq_;
set prin;
comp1 = prin1*prin1;
comp2 = prin2*prin2;
comp3 = prin3*prin3;
tsquare = comp1 + comp2 + comp3;
_var_ = ’tsquare’;
_alpha_ = 0.05;
_lclx_ = ((n-1)*(n-1)/n)*

betainv(_alpha_/2, p/2, (n-p-1)/2);
_mean_ = ((n-1)*(n-1)/n)*

betainv(0.5, p/2, (n-p-1)/2);
_uclx_ = ((n-1)*(n-1)/n)*

betainv(1-_alpha_/2, p/2, (n-p-1)/2);
label tsquare = ’T Squared’

comp1 = ’Comp 1’
comp2 = ’Comp 2’
comp3 = ’Comp 3’;

run;

Gnanadesikan and Kettenring (1972) use a result of Wilks
(1962) that T 2

i is exactly distributed as a multiple of a
variable with a beta distribution. Specifically,

T 2
i �

(n� 1)2

n
B

0
B@p

2
;
n� p� 1

2

1
CA

c 1996 SAS Institute Inc. 115



T2 Chart For Chemical Example

_VAR_ N SAMPLE IMPURE TEMP CONC P _SUBN_ _LIMITN_ COMP1

tsquare 14 1 14.92 85.77 42.26 3 1 1 0.79603
tsquare 14 2 16.90 83.77 43.44 3 1 1 1.84804
tsquare 14 3 17.38 84.46 42.74 3 1 1 0.33397
tsquare 14 4 16.90 86.27 43.60 3 1 1 0.77286
tsquare 14 5 16.92 85.23 43.18 3 1 1 0.00147
tsquare 14 6 16.71 83.81 43.72 3 1 1 1.91534
tsquare 14 7 17.07 86.08 43.33 3 1 1 0.58596
tsquare 14 8 16.93 85.85 43.41 3 1 1 0.29543
tsquare 14 9 16.71 85.73 43.28 3 1 1 0.23166
tsquare 14 10 16.88 86.27 42.59 3 1 1 1.30518
tsquare 14 11 16.73 83.46 44.00 3 1 1 3.15791
tsquare 14 12 17.07 85.81 42.78 3 1 1 0.43819
tsquare 14 13 17.60 85.92 43.11 3 1 1 0.41494
tsquare 14 14 16.90 84.23 43.48 3 1 1 0.90302

COMP2 COMP3 _SUBX_ _ALPHA_ _LCLX_ _MEAN_ _UCLX_

10.1137 0.01606 10.9257 0.05 0.24604 2.44144 7.13966
0.0162 0.17681 2.0410 0.05 0.24604 2.44144 7.13966
0.1538 5.09491 5.5827 0.05 0.24604 2.44144 7.13966
0.3289 2.76215 3.8640 0.05 0.24604 2.44144 7.13966
0.0165 0.01919 0.0372 0.05 0.24604 2.44144 7.13966
0.0645 0.27362 2.2534 0.05 0.24604 2.44144 7.13966
0.4079 0.44146 1.4354 0.05 0.24604 2.44144 7.13966
0.1729 0.73939 1.2077 0.05 0.24604 2.44144 7.13966
0.0001 0.44483 0.6766 0.05 0.24604 2.44144 7.13966
0.0004 0.86364 2.1692 0.05 0.24604 2.44144 7.13966
0.0274 0.98639 4.1717 0.05 0.24604 2.44144 7.13966
0.0823 0.87976 1.4003 0.05 0.24604 2.44144 7.13966
1.6153 0.30167 2.3320 0.05 0.24604 2.44144 7.13966
0.0001 0.00010 0.9032 0.05 0.24604 2.44144 7.13966

Figure 7.1. Data Set PRIN
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T2
i Chart

symbol value=dot;
title ’T’ m=(+0,+0.5) ’2’

m=(+0,-0.5) ’ Chart For Chemical Example’;
proc shewhart table=prin graphics;

xchart tsquare*sample /
xsymbol = mu
nolegend ;

run;

Figure 7.2. Multivariate Control Chart for Chemical Process
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Principal Component Contributions
symbol value=none;
proc shewhart table=prin graphics;

xchart tsquare*sample /
starvertices = (comp1 comp2 comp3)
startype = wedge
cstars = black
starlegend = none
starlabel = first
staroutradius = 4
npanelpos = 14
xsymbol = mu
nolegend ;

run;
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Diagnosing a Multivariate Chart

� T 2 chart cannot differentiate between mean and vari-
ance shift

� T 2 chart signal not immediately interpretable

� Recent papers address these problems and present alter-
native approaches:

-- Mason, Tracy, and Young (1995, 1996)
-- Wade and Woodall (1993)
-- Hawkins (1991, 1993)
-- Doganaksoy, Faltin, and Tucker (1991)

-- etc..

Here we simply illustrate the method of Hawkins (1991).
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Regression Adjustment of Variables

For shifts in some of the variables, Hawkins (1991) suggests
control charts based on the vector of scaled residuals from
the regression of each variable on all others to improve
the diagnostic power of multivariate T 2 charts following a
chart signal.

Z = A(X-�0)

where

Z is a p-component vector of residuals whose compo-
nent Zi (scalar) is a residual when Xi is regressed on all
other components of X rescaled to unit variance

X is a p-component vector such that X� N(�;�)

A is a transformation matrix = [diag(��1
0 )]�1=2��1

0

� = �0 and � = �0 when process is in-control
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Switch Drum Example

Hawkins (1991) use example from Flury and Riedwyl
(1988) for five dimensions (X1 �X5) of switch drums.

OBS X1 X2 X3 X4 X5

1 20 8 13 9 7
2 20 12 17 12 11
3 15 7 9 7 2
4 16 12 14 13 8
5 20 12 16 13 9
6 16 10 15 10 8

.. .. .. .. .. ..

49 20 11 14 12 11
50 18 11 14 12 10

Figure 7.3. In-Control Data Saved in ICONTROL

X1 X2 X3 X4 X5

17.96 10.30 13.76 11.08 8.26

Figure 7.4. Means

X1 X2 X3 X4 X5

1.8622 1.7053 1.7090 1.8718 2.2114

Figure 7.5. Standard Deviations
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Out-of Control Data For Switch Drum

Data are simulated from the same multinormal distribution
as the in-control data, but a shift of one-quarter standard
deviation is introduced into X5 after observation 35. Also,
the marginal std. dev. of X1 was increased by half at the
same instant.

OBS X1 X2 X3 X4 X5

1 17.265 11.788 15.101 13.903 10.465
2 17.384 6.996 11.552 7.253 6.641
3 16.517 10.277 11.724 13.013 9.111
4 14.997 10.682 12.087 11.457 6.320
5 17.633 9.348 12.672 10.475 5.481
6 16.041 11.320 13.957 11.474 8.176
.. ... ... ... ... ...
49 16.188 9.140 13.284 10.991 9.126
50 22.047 10.824 14.796 10.872 9.264

Figure 7.6. Out-of-Control Data Saved in OCONTROL
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Using SAS/IML to Compute Z

proc iml;

/*--- compute Mu0 from the in-control data ---*/
use icontrol;
read all var{x1 x2 x3 x4 x5};
summary var{x1 x2 x3 x4 x5}

stat{mean} opt{noprint save};
mu0 = shape(x1||x2||x3||x4||x5,50,5);

/*--- construct the transformation matrix A ---*/
read all var{x1 x2 x3 x4 x5};
x = x1||x2||x3||x4||x5;
cor = corr(x);
a = inv(sqrt(diag(inv(cor))))*inv(cor);

/*--- read the out-of-control data ---*/
use ocontrol;
read all var{x1 x2 x3 x4 x5};
x = x1||x2||x3||x4||x5;

z = (x-mu0)*a;

/*--- save the Z matrix to a output data set ---*/
create zdata from z [colname=(’z1’:’z5’)];
append from z;

close;
run;
quit;

Figure 7.7. Construct the Z matrix
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Pre-process Data Sets

data xdata;
set ocontrol;
x1 = (x1-17.96)/1.8622;
x2 = (x2-10.30)/1.7053;
x3 = (x3-13.76)/1.7090;
x4 = (x4-11.08)/1.8718;
x5 = (x5- 8.26)/2.2114;
run;

data xdata;
drop i;
do i = 1 to 5;

set xdata;
batch = 5*_n_;
output;

end;
run;

Figure 7.8. Standardize the X Raw Data and Subgroup

proc standard data=zdata mean=0 std=1 out=zdata;
run;

data zdata;
drop i;
do i = 1 to 5;

set zdata;
batch = 5*_n_;
output;

end;
run;

Figure 7.9. Standardize the Z Data and Subgroup
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Control Chart for X1

symbol v=dot;
title ’Mean and Range Charts for X1’;
proc shewhart data=xdata graphics;

xrchart x1*batch;
run;

Figure 7.10. �X and R Charts for X1
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Control Chart for Z1

symbol v=dot;
title ’Mean and Range Charts for Z1’;
proc shewhart data=zdata graphics;

xrchart z1*batch;
run;

Figure 7.11. �X and R Charts for Z1
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Control Chart for X5

Figure 7.12. �X and R Charts for X5
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Control Chart for Z5

Figure 7.13. �X and R Charts for Z5
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Chapter 8

Resources

c 1996 SAS Institute Inc. 129



General References

Al-Assaf, A. F. and Schmele, J. A. (1993), The Textbook of Total Quality in Healthcare, Delray
Beach, Florida: St. Lucie Press.

Al-Salti, M. and Statham, A. (1994), “A Review of the Literature on the Use of SPC in Batch
Production,” Quality and Reliability Engineering International, 10, 49�62.

Alwan, L. C. and Roberts, H. V. (1988), “Time Series Modeling for Statistical Process Control,”
Journal of Business and Economic Statistics, 6, 87�95.

Balestracci, D. and Barlow, J. L. (1994), Quality Improvement: Practical Applications for Medical
Group Practice, Englewood, Colorado: Center for Research in Ambulatory Health Care
Administration.

Benneyan, J. (1995), “Applications of Statistical Process Control (SPC) to Improve Health Care,”
conference presentation, Healthcare Information and Mangement Systems Society.

Benneyan, J. and Kaminsky, F. C. (1995), “Another View on How to Measure Health Care
Quality,” Quality Progress, 28(2), 120�124.

Berwick, D. M. (1989), “Continuous Improvement as an Ideal in Health Care,” New England
Journal of Medicine, 320, 53�56.

Berwick, D. M. (1991), “Controlling Variation in Healthcare: A Consultation from Walter
Shewhart,” Medical Care, 29, 1212�1225.

Berwick, D. M. (1992), “Can Quality Management Really Work in Health Care?,” Quality
Progress.

Berwick, D. M., Godfrey, A. B., and Roessner, J. (1991), Curing Health Care, San Francisco:
Jossey-Bass.

Box, G. E. P. and Jenkins, G. M. (1976), Time Series Analysis: Forecasting and Control, San
Francisco: Holden-Day.

Box, G. E. P. and Kramer, T. (1992), “Statistical Process Monitoring and Feedback Adjustment—A
Discussion,” Technometrics, 34, 51�285 (with discussion).

Champ, S. W. and Woodall, W. H. (1987), “Exact Results for Shewhart Control Charts With
Supplementary Runs Rules,” Technometrics, 29, 393�401.

Doganaksoy, N., Faltin, F. W., and Tucker, W. T. (1991), “Identification of Out-of-Control
Quality Characteristics in a Multivariate Manufacturing Environment,” Communications in
Statistics–Theory and Methods, 20, 2775�2790.

Farnum, N. R. (1992), “Control Charts for Short Runs: Nonconstant Process and Measurement
Error,” Journal of Quality Technology, 24, 138�144.

Flury, B. and Riedwyl, H. (1988), Multivariate Statistics: A Practical Approach, London:
Chapman & Hall.

Fulenwider, D. O. (1988), “Using SAS Software for the Analysis of Means,” SAS Users Group
International: Proceedings of the Thirteenth Annual Conference, 1212�1219.

130 c 1996 SAS Institute Inc.



Gnanadesikan, R. and Kettenring, J. R. (1972), “Robust Estimates, Residuals, and Outlier Detection
with Multiresponse Data,” Biometrics, 28, 81�124.

Hawkins, D. M. (1991), “Multivariate Quality Control Based on Regression-Adjusted Variables,”
Technometrics, 33, 61�75.

Hawkins, D. M. (1993), “Regression Adjustment for Variables in Multivariate Quality Control,”
Journal of Quality Technology, 25, 170�182.

Hillier, F. S. (1969), “ �X- and R-Chart Control Limits Based On a Small Number of Subgroups,”
Journal of Quality Technology, 1, 17�26.

Hunter, J. S. (1986), “The Exponentially Weighted Moving Average,” Journal of Quality
Technology, 18, 203�210.

Jackson, J. E. (1980), “Principal Components and Factor Analysis: Part I —Principal Components,”
Journal of Quality Technology, 12, 201–213.

Jackson, J. E. (1991), A User’s Guide to Principal Components, New York: John Wiley & Sons,
Inc.

Laffel, G. and Blumenthal, D. (1989), “The Case for Using Industrial Quality Mangement Science
in Health Care Organizations,” Journal of the American Medical Association, 262, 2869�2873.

Longo, D. R. and Bohr, D. (1991), Quantitative Methods in Quality Management: A Guide for
Practitioners, Chicago: American Hospital Association.

MacGregor, J. (1987), “Interfaces Between Process Control and Online Statistical Process Control,”
Computing and Systems Technology Division Communications, 10, 9�20.

MacGregor, J. (1990), “A Different View of the Funnel Experiment,” Journal of Quality
Technology, 22, 255�259.

MacGregor, J., Hunter, J. S., and Harris, T. (1988), “SPC Interfaces.” Short course notes.

Mason, R.L., Tracy N. D., and Young, J. C. (1995), “Decomposition of T 2 for Multivariate Control
Chart Techniques,” Journal of Quality Technology, 27, 99�108.

Mason, R.L., Tracy N. D., and Young, J. C. (1996), “Monitoring a Multivariate Step Process,”
Journal of Quality Technology, 28, 39�50.

Montgomery, D. C. (1991), Introduction to Statistical Quality Control, Second Edition, New York:
John Wiley & Sons, Inc.

Montgomery, D. C. and Mastrangelo, C. M. (1991), “Some Statistical Process Control Methods
for Autocorrelated Data,” Journal of Quality Technology, 23, 179�204 (with discussion).

Montgomery, D. C., Keats, J. B., Runger, G. C. and Messina, W. S. (1994), “Integrating Statistical
Process Control and Engineering Process Control,” Journal of Quality Technology, 26, 79�87.

Neave, H. R. (1990), The Deming Dimension, Knoxville, TN: SPC Press, Inc.

Nelson, L. S. (1974), “Factors for the Analysis of Means,” Journal of Quality Technology, 6,
175�181.

Nelson, L. S. (1983), “Exact Critical Values for Use with the Analysis of Means,” Journal of
Quality Technology, 15, 40�44.

c 1996 SAS Institute Inc. 131



Nelson, L. S. (1984), “The Shewhart Control Chart—Tests For Special Causes,” Journal of Quality
Technology, 15, 237�239.

Nelson, L. S. (1985), “Interpreting Shewhart �X Control Charts,” Journal of Quality Technology,
17, 114�116.

Nelson, L. S. (1989), “Standardization of Shewhart Control Charts,” Journal of Quality Technology,
21, 287�289.

Nelson, L. S. (1994), “Shewhart Control Charts With Unequal Subgroup Sizes,” Journal of Quality
Technology, 26, 64�67.

Nelson, P. R. (1982), “Exact Critical Values for Use with the Analysis of Means,” Communications
in Statistics, A11, 699�709.

Nelson, P. R. (1988), “Application of the Analysis of Means,” SAS Users Group International:
Proceedings of the Thirteenth Annual Conference, 225�230.

Ott, E. R. (1975), Process Quality Control: Troubleshooting and Interpretation of Data, New
York: McGraw-Hill.

Plsek, P. E. (1992), “Introduction to Control Charts,” Quality Management in Health Care, 1,
65�74.

Quesenberry, C. P. (1991a), “SPC Q Charts for Start-Up Processes and Short or Long Runs,”
Journal of Quality Technology, 23, 213�224.

Quesenberry, C. P. (1991b), “SPC Q Charts for a Binomial Parameter p: Short or Long Runs,”
Journal of Quality Technology, 23, 239�246.

Quesenberry, C. P. (1993), “The Effect of Sample Size on Estimated Effects,” Journal of Quality
Technology, 25, 237�247.

Ramig, P. R. (1983), “Applications of the Analysis of Means,” Journal of Quality Technology, 15,
19�25.

Rodriguez, R. N. (1994), “Recent Issues in Statistical Process Control: SAS Solutions Using Sta-
tistical Modeling Procedures,” SAS Users Group International: Proceedings of the Nineteenth
Annual Conference, 1151�1168.

Rodriguez, R. N. (1996), “Health Care Applications of Statistical Process Control: Examples
Using the SAS System,” SAS Users Group International: Proceedings of the Twenty-First
Annual Conference, 1381�1396.

Ryan, T. P. (1989), Statistical Methods for Quality Improvement, New York: John Wiley & Sons,
Inc.

Schilling, E. G. and Nelson, P. R. (1976), “The Effect of Non-Normality on the Control Limits of
�X Charts,” Journal of Quality Technology, 8, 183�187.

Schneider, H. and Pruett, J. M. (1994), “Control Charting Issues in the Process Industries,” Quality
Engineering, 6, 347�373.

Spoeri, R. K. (1991), “The Emerging Use of Measurement and Statistics in Health Care Quality
and Productivity Improvement,” presentation at the 1991 Joint Statistical Meetings, Atlanta,
Georgia.

132 c 1996 SAS Institute Inc.



Staker, L. V. (1995), “Using Statistical Process Control to Improve Clinical Outcomes in a Primary
Care Practice,” presentation at the 7th Annual National Forum on Quality Improvement in
Health Care.

Tracy, N. D., Young, J. C. and Mason, R. L. (1992), “Multivariate Control Charts for Individual
Observations,” Journal of Quality Technology, 24, 88–95.

VanderVeen, L. M. (1992), “Statistical Process Control: A Practical Application for Hospitals,”
Journal for Healthcare Quality, 14, 20�29.

Wade, W. H. and Woodall, M. M. (1993), “A Review and Analysis of Cause-Selecting Control
Charts,” Journal of Quality Technology, 25, 161�169.

Wadsworth, H. M., Stephens, K. S., and Godfrey, A. B. (1986), Modern Method for Quality
Control and Improvement, New York: John Wiley & Sons.

Westgard, J. O., Barry, P. L., Hunt, M. R., and Groth, T. (1981), “A Multi-Rule Shewhart Chart
for Quality Control in Clinical Chemistry,” Clinical Chemistry, 27, 493�501.

Wetherill, G. B. and Brown, D. B. (1991), Statistical Process Control: Theory and Practice,
London: Chapman and Hall.

Wheeler, D. J. (1991a), Short Run SPC, Knoxville, Tennessee: SPC Press, Inc.

Wheeler, D. J. (1991b), “Shewhart’s Chart: Myths, Facts, and Competitors,” 45th Annual Quality
Congress Transactions, American Society for Quality Control. 533�538.

Wheeler, D. J. (1993), Understanding Variation: The Key to Managing Chaos, Knoxville, TN:
SPC Press, Inc.

Wheeler, D. J. (1995), Advanced Topics in Statistical Process Control: The Power of Shewhart’s
Chart, Knoxville, TN: SPC Press, Inc.

Wheeler, D. J. and Chambers, D. S. (1986), Understanding Statistical Process Control, Knoxville,
Tennessee: Statistical Process Controls, Inc.

Wilks, S. S. (1962), Mathematical Statistics, New York: John Wiley & Sons, Inc.

Woodall, W. H. (1993), “Autocorrelated Data and SPC,” ASQC Statistics Division Newsletter, 13,
18�21.

SAS Institute References

Rodriguez, R. N. and Bynum, R. A. (1992), Examples of Short Run Process Control Methods With
the SHEWHART Procedure in SAS/QC Software. Unpublished manuscript available from the
authors.

SAS Institute Inc. (1990a), SAS/GRAPH Software: Reference, Version 6, First Edition, Volumes 1
and 2, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990b), SAS/STAT User’s Guide, Version 6, Fourth Edition, Volumes 1 and 2,
Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1993), SAS/ETS User’s Guide, Version 6, Second Edition, Cary, NC: SAS
Institute Inc.

c 1996 SAS Institute Inc. 133



SAS Institute Inc. (1993), SAS/QC Software: ADX Menu System for Design of Experiments, Cary,
NC: SAS Institute Inc.

SAS Institute Inc. (1995a), SAS/AF Software: FRAME Class Dictionary, Version 6, First Edition,
Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1995b), SAS/ETS Software: Time Series Forecasting System, Version 6, First
Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1995c), SAS/QC Software: SQC Menu System for Quality Improvement, Version
6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1995d), SAS/QC Software: Usage and Reference, Version 6, Volumes 1 and 2,
Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1996), SAS/STAT Software: Changes and Enhancements through Release 6.11,
Cary, NC: SAS Institute Inc.

References Available Online

Rodriguez, R. N. (1996a), “Recent Issues in Statistical Process Control: SAS Solutions Using
Statistical Modeling Procedures.”

Rodriguez, R. N. (1996b), “Health Care Applications of Statistical Process Control: Examples
Using the SAS System.”

Acknowledgement

We are grateful to Martin S. King of the Applications Division at SAS Institute Inc. for his
assistance in the preparation of the notes for this workshop.

134 c 1996 SAS Institute Inc.



Appendix 1

Overview of SAS/QC Software
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Overview of SAS/QC Software
SAS/QC software, a component of the SAS System, provides a comprehensive set of tools for
statistical quality improvement. You can use these tools to

� organize quality improvement efforts
� design industrial experiments for product and process improvement
� apply Taguchi methods for quality engineering
� establish statistical control of a process
� maintain statistical control and reduce variation
� analyze process capability
� develop and evaluate acceptance sampling plans

Functions

Sampling Plan Evaluation

SQC Menu System
SHEWHART Procedure
MACONTROL Procedure
CUSUM Procedure

GAGE Application

ISHIKAWA Procedure
PARETO Procedure

Statistical Process Control

Basic Problem Solving

Reproducibility
Gage Repeatability and 

Functions

FACTEX Procedure

ADX Menu System
OPTEX Procedure

Functions and Macros

RELIABILITY Procedure

CAPABILITY Procedure

Process Capability Analysis

Reliability Analysis

Design of Experiments

Figure 1. Components of SAS/QC Software

There are two main types of tools in SAS/QC software: menu systems and procedures.

� The menu systems are complete, full-screen oriented environments for statistical quality
improvement applications. Unlike the procedures, the menu systems require no knowledge
of SAS programming. Internally, however, the menu systems translate the user’s selections
into SAS statements that are then submitted for execution.

� The procedures in SAS/QC software offer greater flexibility and power than the menu
systems. To use a procedure, you must have a basic knowledge of the SAS language and the
syntax of the procedure. You can run the procedures in a batch program or interactively with
the SAS Display Manager System.
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ADX Menu System for Design of Experiments

The ADX Menu System provides facilities for designing and
analyzing standard experiments and is intended primarily for
quality engineers, researchers, and other non-statisticians.

FACTEX Procedure

ADX Menu System

OPTEX Procedure

Functions and Macros

Design of Experiments

D-optimal Nonstandard 
Designs

Mixture Designs 

Simplex-lattice and simplex- 
centroid regular designs 

Extreme-vertices (XVERT) 
constrained designs 

Two-level Designs

Full replications and orthogonally confounded 
fractions, up to 50 factors and 128 runs, with 
and without blocking

Plackett-Burman designs of Resolution III and IV, 
up to 47 factors and 48 runs, with and without 
blocking

Designs for Taguchi Applications

formations 

Full replications and orthogonally confounded 3 
fractions, up to 40 factors and 81 runs 

Mixed two- and three-level designs, up to 23 
factors and 36 runs 

Inner and outer arrays 

Response Surface Designs 

Central composite (Box- 
Wilson) designs 

Box-Behnken designs 

Design Construction 

Statistical Analysis 

Extensive online help for 
selecting a design 

Automatic randomization 

Coding for both numeric 
and character factors 

Data collection forms 

k

Analysis of variance 

Aliasing structure of the design 

Signal-to-noise ratios

Response surface analysis 

Optimal predicted response 

Optimal Box-Cox trans-

User-defined transformations 

Main-effects and inter-
action plots

Normal plots of effects

Bayes posterior prob-
ability plots

Contour plots

Surface plots

Cube plots

Residual plots

Graphical Analysis Design Management

Full-screen data editing 

Include data sets as designs 

Regression analysis 

Figure 2. General Design and Analysis Facilities

Note: The ADX Menu System is documented in SAS/QC Software: ADX Menu System for Design of
Experiments, Version 6, First Edition.
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SQC Menu System for Statistical Quality
Control

The SQC Menu System provides facilities for standard statis-
tical quality control applications and is intended for quality an-
alysts, quality control managers, and other non-statisticians.

Statistical Process Control

CUSUM Procedure

MACONTROL Procedure

SHEWHART Procedure

SQC Menu System

Functions

Online help for menus and
statistical methods

Online tutorial

Help Facilities

Plots produced on graphics
devices or line printers

Plot customization options

Labeling out-of-control
points

Saving graphical and printed
output

programs generated by
the menu system

Working directly with SAS

Features

Full-screen data entry and
editing

Data subsetting

Data sorting

Processing of data in groups
(BY processing)

Control limits read from or
saved to a file

Points identified with special

(for large data sets) 

causes can be removed,
control limits recomputed

Data Management

Moving Average Charts

Shewhart Charts

X and R charts  

X and s charts

Box charts

and moving range charts
u charts

c charts

np charts

p charts

Tests for special causes

Individual measurements

Process Capability Analysis

Summary statistics

Comparative histograms

Capability indices

Prediction, confidence, and
tolerance intervals

Histograms Probability plots

Q-Q plots

P-P plots

cdf plots

Statistical and Graphical Analysis Facilities

Ishikawa (Cause-and

Effect) Diagrams 

Dynamic graphics 
environment

data entry

Facilities for complex
diagrams

Popup windows for

Pareto Charts 

Standard charts 

Comparative charts 

Restricted charts  

Figure 3. Overview of the SQC Menu System

Note: The SQC Menu System is documented in SAS/QC Software: SQC Menu System, Version 6, First
Edition.
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Procedures for Design of Experiments

SAS/QC software provides two procedures for the design
of experiments. The FACTEX procedure constructs factorial
experimental designs,which are useful for studying the effects
of various factors on a response. The OPTEX procedure
searches for optimal designs in situations in which standard
designs are not available.

FACTEX Procedure

ADX Menu System

OPTEX Procedure

Functions and Macros

Design of Experiments

FACTEX Procedure

Features

No limitation on the number of
factors or factor levels

Appropriate confounding rules are
given for model constraints

Designs can be chosen to have
minimum size
maximum resolution
maximum block size

Searches for D-optimal or A-optimal designs 

minimum aberration

Overview

Constructs orthogonally confounded 
full and fractional factorial designs, 

k2  orthogonal array designs
with and without blocking, including 

kConstructs q  factorial designs, where 

complex designs, such as mixed-level 
factorial and balanced incomplete 
block designs. 

q is a prime. These can be used with  
the SAS DATA step to construct many

Features

OPTEX Procedure

Augment preexisting covariates 
Evaluate an existing design

Add points to an existing design

Improve an initial design

Various search algorithms and
selection criteria are available

Flexible GLM-type models are 
available

Overview

Intended for situations in which a standard
design is not appropriate.  For example, 

Not all combinations of factor levels
are feasible

Resources restrict the number of runs
The experimentation region is irregular
The model is nonlinear or nonstandard

linear

Figure 4. Overview of the Experimental Design Procedures
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Procedures for Control Chart Analysis

SAS/QC software provides three procedures for the
creation and analysis of control charts. The
SHEWHART procedure creates all commonly encountered
Shewhart charts for variables and attributes. The CUSUM
procedure creates cumulative sum control charts. The MA-
CONTROL procedure creates moving average charts.

Data Sets

Specify various input data sets

Create various output data sets

Nonstandard Control Charts

Trend charts for time-dependent data 

Star charts for multivariate process data

Moving Average Charts

Uniformly weighted moving average charts 

Exponentially weighted moving average charts

Cusum Charts

One-sided scheme (decision interval)
Cumulative sum control charts 

Two-sided scheme (V-mask)

Shewhart Charts

X and R charts  
X and s charts
Box charts
Individual measurements

and moving range charts
Tests for special causes

p charts
np charts
c charts
u charts

Control Limits

Computed from the data

can be specified
sample size or fixed limits  

Limits vary with subgroup

Read from an input data set

Computed as probability limits

Computed from standard values

Process Standard Deviation

Estimated by one of a variety
of methods

Specified as a known value

Highlighting and labeling out-of-control points

Labeling extreme points in box charts

Specifying number of subgroups per page

Adding titles, notes, and footnotes

Customizing axes and control limit labels

Specifying colors, fonts, and line types

Displaying multiple sets of control limits

Displaying stratification of process data

Classifying subgroups into blocks

Specifying date or time format for subgroups

Graphical Enhancement Features

Control Chart Procedures Features

Statistical Process Control

CUSUM Procedure

MACONTROL Procedure

SHEWHART Procedure

SQC Menu System

Functions

Figure 5. Overview of Control Chart Analysis Procedures
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Procedure for Process Capability Analysis

SAS/QC software provides one procedure for the analysis of
process capability. The CAPABILITY procedure compares
the distribution of output from an in-control process to the
specification limits of the process to determine the consistency
with which the specification limits can be met.

Weibull
gamma

Probability-probability (P-P) plots

Available distributions:
normal
lognormal

beta

CAPABILITY Procedure

Overview

Provides graphical and statistical 
tools for process capability 
analysis

Statistical Methods

Descriptive statistics

Capability indices: Cp, Cpk, CPL,
CPU, Cpm, k

Confidence, tolerance, and
prediction intervals

Goodness-of-fit based on ecdf

Estimation of areas outside
specification limits

Graphical Methods

Other Graphical Features

Inset boxes with summary statistics

Customized axes and legends

Histograms, superimposed with
specification limits
fitted pdf curves

exponential

kernel density estimates
summary statistics

Comparative histograms, superimposed with
specification limits
fitted pdf curves
kernel density estimates
summary statistics

cdf plots, superimposed with
specification limits
fitted theoretical distribution curves

Probability plots, superimposed with
specification limits

Quantile-quantile (Q-Q) plots, super-
imposed with specification limits

Titles, footnotes, notes

Colors, fonts, symbol markers

Process Capability Analysis

CAPABILITY Procedure

Figure 6. Overview of Process Capability Analysis
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Procedures for Basic Quality Problem Solving

SAS/QC software provides two procedures for basic quality
problem solving. The PARETO procedure creates charts that
display the relative frequency of problems in a process or
operation. The ISHIKAWA procedure creates a cause-and-
effect or fishbone diagram, which displays factors that affect
a quality characteristic or problem.

Options for Saving Diagrams

In a SAS data set for future editing

In a graphics catalog

Options for Saving Diagrams

In a SAS data set for future editing

In a graphics catalog

Overview

Creates basic and comparative
Pareto charts

Other Features

Graphical Features

Analysis based on counts, percentages, or weights

Cumulative percent curve

Comparisons across classification variables

Color and pattern highlighting options for bars

Labels for bars and sample sizes

Customized axes and legends

Titles, footnote, notes

Colors, fonts, symbol markers

Input raw or categorized data

Line printers or graphics devices

Restricted Pareto charts (for 
large data sets)

Overview

Provides a mouse-driven environment 
for creating Ishikawa diagrams 
(cause-and-effect diagrams) 

PARETO Procedure

ISHIKAWA Procedure

Features for Complex Diagrams

Zooming sections in separate windows

Merging sub-diagrams

Dynamic foliation and defoliation

Highlighting critical elements

Interactive Graphics Environment

Diagram elements dynamically 
linked to preserve tree structure

Diagram elements (branches, stems) 
added and edited with mouse

Popup notepads for diagram elements

Overview

Creates basic and comparative
Pareto charts

Other Features

Graphical Features

Analysis based on counts, percentages, or weights

Cumulative percent curve

Comparisons across classification variables

Color and pattern highlighting options for bars

Labels for bars and sample sizes

Customized axes and legends

Titles, footnote, notes

Colors, fonts, symbol markers

Input raw or categorized data

Line printers or graphics devices

Restricted Pareto charts (for 
large data sets)

Overview

Provides a mouse-driven environment 
for creating Ishikawa diagrams 
(cause-and-effect diagrams) 

PARETO Procedure

ISHIKAWA Procedure

Features for Complex Diagrams

Zooming sections in separate windows

Merging sub-diagrams

Dynamic foliation and defoliation

Highlighting critical elements

Interactive Graphics Environment

Diagram elements dynamically 
linked to preserve tree structure

Diagram elements (branches, stems) 
added and edited with mouse

Popup notepads for diagram elements

Basic Problem Solving

PARETO Procedure
ISHIKAWA Procedure

Basic Problem Solving

PARETO Procedure
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Figure 7. Overview of Quality Problem Solving Procedures
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Procedure for Reliability Analysis

SAS/QC software provides one procedure for relia-
bility analysis. The RELIABILITY procedure per-
forms graphical and statistical analysis of component
lifetime data and system repair data.

Graphical Analysis

Probability plots

Plots of data and fitted relation 
for life versus stress for
accelerated life test data

Nonparametric plots of the mean
cumulative function and
associated confidence intervals

Inset boxes with summary statistics

Binomial
Exponential
Extreme Value
Gamma
Logistic

Loglogistic
Lognormal
Normal
Poisson
Weibull

Distributions 

Other Graphical Features

Titles, footnotes, notes
Customized axes and legends

Colors, fonts, symbol markers

Asymptotic normal and likelihood

Reliability Analysis

RELIABILITY Procedure

RELIABILITY Procedure

and for repair data analysis. 
tools for lifetime data analysis 

Provides graphical and statistical 

Overview

Statistical Analysis

Regression models (including 
accelerated life test models) 
for censored data

ML estimates of distribution
parameters, percentiles, and
reliability functions

ratio CIs for distribution
parameters and percentiles; 
asymptotic normal CIs for the
reliability function

Weibayes analysis

Nonparametric estimates and CIs 
for the mean cumulative function
for cost or number of repairs

Analysis for multiple failure modes

Figure 8. Overview of Reliability Analysis
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Generating Graphics Output
The graphics examples in these notes are generated with the following macro:

%macro gout(gname);
filename GSASFILE "&gname..ps";
goptions dev=pslepsf gaccess=sasgaedt gsfname=GSASFILE

hsize = 6.5 in
vsize = 5 in
htext = 3.0 pct
htitle = 3.5 pct
vorigin = 0 in
horigin = 1 in
display gsfmode=replace
border ftext=swiss lfactor=3;

%mend;

You can include this macro in your AUTOEXEC.SAS file or at the beginning of your program.
The output is a PostScript file. You can specify other types of files with the DEV= option, and you
can change the size of the figure with the HSIZE= and VSIZE= options.

The following statements create a file called EXAMPLE1.PS that contains the charts shown in
Figure 2.2 on page 14.

%gout(example1);

title ’Mean and Range Charts for Diameters’;
symbol v=dot;

proc shewhart data=wafers graphics;
xrchart diamtr*batch;

run;

goptions reset=all dev=xcolor;

The DEV= option in the GOPTIONS statement specifies that further output is to be sent to the
monitor. The appropriate value for the DEV= option depends on your hardware. See SAS/GRAPH
Software: Reference, Version 6, First Edition, Volumes 1 and 2, for more information on the
GOPTIONS statement.
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