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ABSTRACT

“In.]ine” or “process” specification limits are used

in semiconductor processes to provide some level of
assurance for product conformance that is
measured at the end of wafer fabrication. However,
these limits are not always set in a rigorous
manner and may not prove to be an adequate in-
line screening method for good and bad circuits.

In this paper, an alternative way for engineers to
release equipment or product for production will be
explored. This approach uses a probability measure
to predict how likely it is that the device will be
good at functional testing based upon its in-line
measured characteristic. This probability is
obtained using the predictions from a linear
regression equation. The Gibbs sampler is then
used to construct a 100( 1–a)% credible band
around the predicted probabilities.

These techniques will be demonstrated using data
from a semiconductor wafer anneal process. Also, it
will be shown how the SAEP’ system for the
personal computer can be used to implement this
technique.

INTRODUCTION

Semiconductor or integrated circuit manufacturing
consists of hundreds of complex processing steps.
At the end of wafer fabrication, the integrated
circuits are electrically tested for functional
problems before moving onto be assembled and
packaged. It can be expensive to allow bad devices
to make it to this stage of manufacturing. It is
preferable to detect such anomalies as they are
occurring during wafer fabrication.

Tight process controls are instituted throughout all
critical steps of wafer fabrication. Critical process
parameters are selected at each step and “in-line”
or “unit process” specification limits are defined for
each parameter and used to provide some level of
assurance for product conformance measured at
functional test. These in-line specification limits

are often set heuristically, and therefore, should be
validated in a rigorous manner whenever possible.

One way to validate these limits is to establish the
empirical relationship between the unit process
parameter and a critical measurement taken at
functional testing. This information can be used to
develop an alternative strategy for releasing
equipment or product to production. This approach
is based upon the examination of a conditional
probabilistic measurement, i.e., the probability that
product will a pass fi.mctional test given its in-line
performance.

This application was motivated by the practices of
a semiconductor company to release a base anneal
furnace to production after maintenance. The
current practice is to process one lot of material
and hold the tube “down” while the “send ahead”
wafers complete subsequent processing and
testing. This can add an additional two week delay
in getting the equipment back on line. If the test
results are bad and another test run is needed the
delay can be three weeks or more. The new
procedure will be used to release base anneal
furnace(s) to production without the need to
process “send ahead” wafers and, to highlight the
need for additional “fine tuning” of the furnace;
thus avoiding the time and expense of processing
“send aheads” which may have a high probability of
failure.

The details of this new procedure are provided in
the remainder of this paper. The next section
describes the data collection used in this example.
The following section goes into the statistical
derivation of the technique, including the
application of the Gibbs sampler. The use of the
SAS system for the personal computer is presented
next. Finally, an application is shown using data
from a base anneal process.

DATA COLLECTION SCHEME

For this application, happenstance data were
collected in a semiconductor manufacturing process
that consisted of 131 paired observations of the



form (xi, Yi,), i = 1, 2, ... . 131. The xi were
measurements that were taken during in-line
processing and, after wafer fabrication was
complete, the corresponding Yiwere recorded at
functional testing. Both factors are measured on
continuous scale. The data were extracted from

a

various sources and then condensed in an ASCII
file that could be read into a SAS data set.

STATISTICAL DERIVATION

The first objective is to establish the relationship
between the unit process parameter and a critical
measurement taken at functional testing.
Therefore, the procedure begins by specifying a
model for the data. For this application, the
empirical model is:

Yi=~o+~l Xi+Si,

where &i– N(O,CT2)and are independent and
identically distributed, xi are the observed in-line
measurements, and Yi are the observed functional
test parameter. Least squares estimation is used to
obtain the parameter estimates for the model.

The prediction equation can be assessed for its
accuracy after the assumptions of the model have
been validated and corrected if needed. If it is
deemed acceptable, then the prediction equation
can be used to obtain the predicted value of the
response for a specific value of the independent
factor, i.e., for a given Xi = xo,

;=jo+~lxo.

A 100(1–u)% prediction interval for a new
observation at Xi=xocan be obtained using the
conditional distribution of Yi /xi - N(Po+ ~1xi, G2).
The conditional distribution implies that each
value of xi produces a random value of Y from a
normal distribution with a mean of PO+ ~1xi and a
variance 02. If the errors are normally distributed,
then $ Ixi=xo - N(Po + ~1XO,G2V2(XO)), where V2(XO)
——n-l + S=-l(xo – =)2 and S= = E, (xi – =)2 (Meyers,

(1990)). The prediction interval is given by:

~(XO)* t,J2,n-2S(1 + V2(XO))l/2.

Obtaining the Probability p

For the application described in the Introduction of
this paper, the engineer would like to obtain the
probability that a particular value of the in-line
measurement x, = xo will produce a device that is

good at functional test. A good device at functional
test is defined as a device whose functional test
measurement is within specifications limits (LSL,
USL). Therefore, the engineer would like to
evaluate, for Xi = XO,

Prob(LSL < Y < USL) = z.

The probability z can be est~mated using the
conditional distribution for y Ixl = XO,

p = t..2((USL – ~)/(sV(XO))) – t.-2((LSL – ~)/(sV(XO)))

where tn-z(. ) is the probability that an observation
from the Student’s t distribution is less than or
equal to ( ● ). With this information, for a given in-
line value xi=xo, the engineer can assess the
probability that the functional test parameter will
be within specification limits.

Confidence Interval for the Probability

The probability p alone does not provide any
indication of how well the model fits the data.
Therefore, it is desirable to enclose the predicted
probability with some form of confidence bands
that reflect, at least partially, the fit of the model to
the data. One way to do this is to determine the
theoretical distribution for p and use this
information to construct a confidence interval.
However, this approach will not be pursued in this
paper.

A simulation approach, such as Monte Carlo
simulation, is another method that can be used to
study the distribution of p. This technique relies
upon drawing a large number of random samples
from the distribution of p and obtaining the
appropriate quantiles from the simulated data.
However, this approach also requires the density
function for p.

A Bayesian approach to this problem is facilitated
by the Gibbs sampler to obtain a confidence
interval for p without knowing its density function.
The derivation for this approach requires a
reinstatement of the model,

Yi=&l+~l Xi+Si,

where &i- N(O,c’) and are independent and
identically distributed. The conditional distribution
is Y IQ - N(Po + ~1 x, 02), where Q = (Po, ~1, 02). The
Bayesian approach to this problem implies that the
parameters in Q are random variables.
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Once again we are interested in placing a 100(1-
u)% credible point band about the probability,

A.(Q) = Pr{ (LSL e Y < USL) I Q }

= @[(US~~o-~1 x)+6 ] - @[(LSL-~o-fh x)+o],

where 0( . ) is the area to the left under the normal
density curve corresponding to the value ( .). Note
the change in terminology from prediction interval
to credible point band.

A form of simulation will be used to determine a
100( l–a)% credible band for A,(Q), i.e., a number of
random samples of A,(Q) will be generated and the
distribution will be evaluated. The joint posterior
density of (Po, ~1, c#) Iy (y = Y1,y2, .. yJ is not
required to generate this random sample. Instead,
the Gibbs sampler will be used to obtain the
empirical posterior distribution of A~(Q).

Simply stated, the Gibbs sampler is a technique for
generating random variables from a distribution
indirectly without having to calculate its density
(see Casella and George (1992)). This is
accomplished by iteratively drawing random
samples from the conditional posterior
distributions of ~ Ic’, y and o’ I~, y. If no prior
information abofit the joint dis{fibution for (Po, ~1,

CJ2)is assumed, i.e., P(~o, ~1, @ u (02)-1 has an
improper prior, then the conditional posterior
distributions are easily determined (Tanner
(1993)).

The iterative procedure begins by drawing the first
random sample of the parameters POand ~, from a
bivariate normal distribution,

~ I oZ, x, y - N(~, cPz) ,

where ~ is the least squares estimates of P, z is
taken CObe (x’x)-l, and 62 is estimated by lhe mean
square error from the least squares fit.

The first random sample for the variable OZis then
drawn using the following conditional distribution,

( Z (yi – PO– ~1Xi)2 ) /02 I PO, ~1, X, y - ~21Pl,

where POand ~1is the random sample that were
previously drawn. Therefore, by generating a
random sample of chi-square values we can obtain
Zlllestimate Of 02 = Z, (Yi – ~o – ~1Xi)2 / x2n-1.

The procedure continues by using this value of oz
to draw another random sample for ~. Then these
values for ~ are used to draw anothe~ random
sample for 62 and so forth and so on.

Finally, the credible band is obtained by generating
a large sample of size k for Po, ~1, 02. Using the last
(k - 200) iterates we calculate A,(Q) for a grid of
points x in (xl, xJ. For each value in x, we obtain
the 2.5, 50, and 97.5th percentiles for the empirical
distribution of A.(Q). It should be noted that there
are several methods to check for convergence of the
Gibbs sequence (Casella and George (1992)). For
the approach that is used here, an autocorrelation
fimction plot can be used to make sure there is no
auto correlation present in the series.

SAS CODE

The SAS System for the personal computer was
used to implement this algorithm. The code is set
up as a SAS MACRO with 5 parameters:
%Gibbs(data, resp, indep, US1,1s1)where data is the
name of the SAS data set, resp in the name of the
response variable, indep is the name of the
independent factor, US1is the value of the upper
specification limit, and 1s1is the value of the lower
specification limit. The basic structure of the SAS
code, along with some examples of actual code, are
given next.

1.

●

●

2.

Fit the model using the REG procedure in
SAS/STAT” and output the parameter
estimates, covariance matrix, and MSE. Make
these variables available for the next
procedure.

/*Fit model and output necessary parameters*/
proc reg data= &data outest=temp covout rose;

model &resp = &indep / covb;
run;

The CALL SYMPUT function can be used to set
the macro variables for the next step. For
example, the following code will set a macro
variable named MSE with the MSE from the
regression model:

data _null_;
set temp(firstobs=l obs=l);
call symput(’mse’, _mse_);

run;

Using the IML procedure in SAS/IML@, create
the design matrix, response vector, parameter



●

3.

●

4.

estimates vector, and the covariance matrix for
the parameter estimates.

/*Set up matrices in PROC IML*/
proc iml;

use &data;
read all var{&resp} into y;
read all var{&indep} into x1;
nrow=nrow(xl);
x = J(nrow,l,l) 11xl;
s = {&varbO, &COV,&cov, &varbl}#&mse**-l;
var=&mse;
seed=O;
z=J(l, 2,.);
newbeta=J(2,1,.);
finbeta=J(1500, 4, .);

Using the Cholesky decomposition, draw the
first random sample- for the parameter
estimates from the stated bivariate normal
distribution. Then compute the first estimate of
62 by drawing a random chi-square value and
computing the residual sums of squares using
the parameter estimates that you just drew
and taking the ratio of the two. This is done
iteratively k times. Save the results into a SAS
data set and exit PROC IML.

/*Continuation of PROC IML code*/
doj=l to k;

sigma= s#var;
chol=half(sigma);
z[l,l]=rannor(seed);
z[l,2]=rannor(seed);
newbeta[l,l] = &bO+chol[l,l]#z [1,1];
newbeta[2,1] = &bl + chol[l,2]#z[l,l] +

chol[2,2]#z[l,2];
yhat=x*newbeta;
resid = y - yhat;
sse = resod’*resid;
chi = 2*rangam(seed, 65);
var = sse I chi;
finbetafi, l]=newbeta[l,l];
fmbeta~,2] =newbeta[2,1];
finbeta~,3]=sse;
finbeta~,4] =var;

end;
create finbeta from finbeta[colname= {’be’ ‘bl’

‘sse’ ‘var’]];
append from finbeta;
quit;

With the outputted data set from (3), using the
last k–200 observations, check for

5.

6.

●

7.

autocorrelation in the random samples with the
ARIMA procedure in SAS/ETS”.

Through a SAS DATA step, calculate the
desired probabilities that the prediction is
within specification limits.

Obtain the stated quantiles for the credible
band using the CAPABILITY procedure in
SAS/QC”.

proc capability data=pred noprint;
var prob;
by X;
output out=predci mean=pmean pctlpts=2.5

97.5 pctlpre=pct;
run;

Generate the final graph using the GPLOT
procedure in SAS/GRAPH”.

APPLICATION TO WAFER ANNEAL DATA

The major output from this procedure is shown in
the graph below. There are two y-axes shown on
this graph. The y-axis shown on the right hand side
depicts the values for the response which are
measured post fabrication. The x-axis shows the
values for the independent variable which are
observed during fabrication. The actual readings
are shown by the dots on the graph. The dashed
line represents the pre~icted equation for Y. The
prediction equation is Y = -3117.585 + 27.245x.

95% Clfor Prob (1s1< yhat < USI)

Pcrs 7-,
1.04 t

W+el

USL

LSLC2

x

The y-axis on the left hand side of the graph
represents the area under the normal density
function that is bounded by the specification values
of LSL and USL for Y. In other words, it is the
probability for a given value of X producing a value



of Y that is within specification. This probability
curve is surrounded by a 95% credible band that
was obtained from the Gibbs sampler.

In theory, the information in this graph could be
used to determine if product associated with given
values for x should be allowed to continue on in the
wafer fabrication process or if it should be
scrapped/held/etc. For example, for x, = Cl, the
predicted value for Y is Cz which translates to a
0.228 probability that this value will be within
specification limits of [LSL, USL]. Therefore, a
decision may be made to scrap/hold this product in
wafer fabrication and not allow it to continue on to
probe. The actual value for this particular
observation was 7 units below the lower
specification limit.

Based upon this graph, there appears to be a linear
relationship between Y and x. However, there is a
fair amount of noise in the data that can not be
modeled adequately with the regressor variable
alone. This prediction equation is explaining 49% of
the variation in Y while 51% of the variation is
unexplained. This may lead to unreliable
predictions. The procedure can be evaluated by
selecting p < c, where p = Pr{LSL < Y < USL} and,
for example, c=O.50 and holding any product for
fimther investigation that meets this criteria. The
following table provides an example for evaluating
the procedure with historical data:

Test Scraps Test Accepts

Product Y Good 3 116
Product Y Bad 2 10

The areas that are bolded are the combinations for
making an error. Specifically, there were 3
instances where this test would have scrapped
product with acceptable Y values; 2 instances
where this test would have scrapped product with
unacceptable Y values; 116 instances where this
test would have accepted product with acceptable Y
values; and 10 instances where this test would
have accepted product with bad Y values. Once
again, it should be noted that all of these 131
observations would have passed for x based upon
its “in-line” specification limits.

CONCLUSIONS

In this paper, it has been shown how to replace in-
line specification limits with an alternative
approach that relies on the relationship between
the in-line value and a final product parameter.

This was accomplished with a combination of linear
regression and the Gibbs sampler. The 100( l–-a)%
credible bands for the probability that a devote is
within specification limits clearly provides some
insight to the engineer regarding the fit of the
model to the data.

This technique can be effective under the right
conditions. This data set possessed a considerable
amount of noise in the response. There are large
dispersions in the Y values for the same values of
x. This may be indicative of a measurement
capability problem. This is also reflected by large
credible intervals and a prediction equation which
predicts nonsense values of Y for values of x that
are close to its lower “in-line” specification limit.

However, this analysis did lead to an alternative
approach to releasing product and setting
appropriate specification values that are based
upon process knowledge. The Gibbs sampler was
easily supported by the SAS system and proved to
be a valuable addition to the engineer’s arsenal of
process analysis tools.

This application was straightforward because it
only involved one in-line parameter and one
functional test parameter. There are several ways
that this problem can be expanded or further
studied:

+ observe appropriate range of in-line
parameters using design of experiments;

+ account for measurement error in x and y;

+ model in-line parameters as random variables;

+ adjust model for missing factors or terms;

+ watch out for correlation not causation;

+ consider a multivariate approach using
multiple functional test parameters;

+ add cost/ risk criteria to model to determine
when to scrap and when to move product.
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