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ABSTRACT

Response Surface Methodology (RSM) is
sequential form of experimentation used to help
predict or optimize response (dependent, outcome)
variables made up of a mathematical-statistical model
of several input (independent, predictor) factors.

This paper will review the RSM strategy, demonstrate
the use of JMP® Software to construct the
experimental design matrix (or layout of treatment
combinations), and analyze results to two
applications. One application involves optimizing a
single response to a bag-sealing problem. The other
application involves the simultaneous optimization of
dual responses that have “larger-the-better” and
“target-the-best” objectives. The combined
experimental design, analysis, and data visualization
features of JMP® assist the process engineer, quality
analyst, or statistician’'s selection of the most
appropriate levels of input factors that will optimize
responses.

INTRODUCTION

Response Surface Methodology (RSM), introduced
by Box and Wilson (1951), is a collection of
techniques that were developed as a means to find
optimal settings of input (predictor, independent)
factors or design variables that maximize, minimize,
or target measured responses or outcome variables.

The mathematical representations of RSM Models
are the following:

first-order (linear) model without interaction/cross-
product terms:

k
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the first-order (linear) model with interaction/cross-
product terms
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the second-order (quadratic) model
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Cornell (1990, pp. 39-40) indicated that models can
be fitted with RSM to: (I) Screen for the most
important factors influencing the response (Most
screening designs stop at this point); (ii)) Find the
region of the factor space that can be approximated
reasonably well by the RSM model (This is
sometimes referred to as parsimonious empirical
model building); (iii) Obtain an initial approximation of
the surface in as simple a model as possible to hold
the time and costs of experimentation to a minimum;
(iv) Develop a sequential procedure that attempts to
locate more desirable values of the response.

Box and Draper (1975) listed 14 design properties of
RSM. Cornell (1990, pp. 39-40) cited seven of these
key properties as: (i) produce satisfactory
distributions of information throughout the region of
interest; (ii) ensure the predicted responses of the
fitted model closely approximate the “true” response
values; (iii) closely fit the model to the data; (iv)
provide the ability to perform the experiment in
blocks; (v) build RSM models in increasing order
sequentially, from first-order up to second-order (or
higher-order) models; (vi) provide internal estimates
of error variance (or standard deviation); and (vii)
ensure simple calculation of parameter coefficients.

DISADVANTAGES OF OTHER EXPERIMENTAL
DESIGNS VS. ADVANTAGES OF RSM MODELS

Screening designs have the objective of finding the
“vital few” number of factors (from a larger set of
possible candidates) believed to affect the outcome
response variables of interest. Their drawback is that
they do not tell the best values of the key factors that
will produce the desired responses.

Plackett-Burman (P-B) designs are among the
commonly used screening designs. Two
disadvantages of (P-B) designs are: First, P-B
designs are Resolution Ill, meaning that some main
effects are confounded with certain two-factor
interactions. This results in biased estimates of some
main effects, unless they are augmented by
additional runs to raise the Resolution, remove the
confounding and allow enough degrees of freedom
for experimental error. The second disadvantage of



screening designs is that they do not have enough
runs to detect important effects (see Lucas, 1994).

Orthogonal Arrays (OA) are part of Taguchi’s robust
tolerance design strategy. OAs attempt to find
optimum values for the response, but they confine the
optimum within the regions of the factor settings.
They tend to add more cost because more
experimental trials are needed to find the optimum
outside the experimental region. OAs do not easily
find the optimum whenever more than one response
variable is involved, especially when the objectives
for the responses conflict. For instance, one objective
maximizes the response while the other objective
minimizes or has target-the-best responses. OAs do
not guide what direction to take to achieve desired
response levels beyond those considered in the
regions of the input factors tested. To get this
direction, investigators must rely on subject matter or
engineering expertise. .

Schmidt and Launsby (1991) listed major
weaknesses of Taguchi and the One-Factor-At-a-
Time (OFAT) approaches as follows: (i) they use
excessive amounts of resources; (ii) the results are
confined to the factor ranges tested in the
experiment; and (iii) they offer no efficient means of
searching the direction of the optimum response
outside the localized experimental region of the factor
ranges.

Lucas (1994) pointed out ways that RSM could
produce Taguchi analyses. Yet he showed how
certain classes of RSM designs were more efficient
and economical than Taguchi's Inner and Outer
Arrays. Furthermore, Taguchi’'s methods lack
provisions for examining goodness-of-fit. Also, no
settlement has been reached over the controversy of
how to handle interactions that were argued by the
statistical community and Taguchi advocates.

Lawson and Madrigal (1994) aiso pointed out that
RSM models were as efficient in optimizing the
relationship between input design factors and
outcome preformance characteristics as other
optimizing techniques such as nonlinear optimization,
dynamic programming, and Monte Carlo simulation.

RSM provides an additional advantage because the
investigator has the ability to select input values that
move closer to the direction of the desirable outcome
response values.

KINDS OF RSM MODELS (FIRST-ORDER LINEAR
AND SECOND-ORDER BOX-BEHNKEN &
CENTRAL COMPOSITE)

The most common RSM models are the Central
Composite Design (CCD) and Box-Behnken (B-B)
designs. CCD, Box-Wilson (1951), combine two-level

fractional factorials (vertex corners of cubes) with
Center and Axial points. Center points are set to the
zero (mid-range) for all factor values. Axial points are
determined such that all but one factor value is set to
zero (mid-range) and one factor is set at the outer
values (cube-face centers).

B-B designs envelope a factor space with three-leveis
for each factor, avoiding the corners of the face, and
filing the combinations of the center and extreme
levels. B-B designs combine fractional factorials with
incomplete block designs such that the extreme
vertices of cubes (or hypercubes) are avoided to
produce rotatable designs with three levels for each
factor.

IMPORTANT RSM PROPERTIES AND FEATURES
(ORTHOGONALITY, ROTATABILITY,
UNIFORMITY)

Orthogonality: The property that allows individual
effects of the k-factors to be estimated independently
without (or with minimal) confounding. Also
orthogonality provides minimum variance estimates of
the model coefficients so that they are uncorrelated.

For first-order models, equation [1] gives the basic
mode! representation. :

For second-order models, orthogonality is somewhat
more complex because the individual effects are
redefined as orthogonal polynomial terms. This is
beyond the scope of this paper but is discussed by
Khuri and Cornell (1987). Orthogonal CCDs can be
run as blocked experiments, see Cornell (1990, pp.
54-55) for more information.

Rotatability: The property of rotating points of the
design about the center of the factor space. The
moments of the distribution of the design points are
constant. The variance (or standard deviation) of the
predicted response Y(x) is equidistant at all points
from the center of the design. Therefore, the variance
contours of Y(x) are concentric circles (for k = 2
dimensions), concentric spheres (for k = 3
dimensions) or concentric hyperspheres (for k > 4
dimensions).

Uniformity: A third property of CCD designs used to
control the number of center points is uniform
precision (or uniformity). Uniformity means that the
estimated response Y(x) at the origin is approximately
equal to the estimated response variances at the
design vertices, one unit distance in any direction
from the origin (analogous to the radius of a sphere).
Uniformity helps protect against biased regression
coefficients that orthogonal designs lack, especially
when there are third or higher-order terms in the
“true” surface, see Montgomery (1991, p. 546) for
more information.



HOW TO CONSTRUCT AND ANALYZE RSM
MODELS WITH JMP

The general steps in performing RSM are as follows:

1.

Select a model for the data, either first-order or
second-order. Start with a first-order model if the
form of the model is known from past experience
orif it is to be determined.

Estimate parameters of the model from the data
after the responses have been collected. One
can create response values using random
number generators until all the data for the factor
levels and replicates have been collected. This
usually is a good preliminary step to get practice
in the analysis. The random numbers can be
generated in JMP by using the “?normal” or
“?shuffle” calculator functions.

Check the fitness of the model to the data. If a
first-order model does not fit, try adding cross-
product (interaction) terms. If the fit does not
improve, then add the second-order (quadratic)
terms. [f fitness is stil not achieved, the
alternatives are to (i) pool the estimates of
variance; (ii) apply transformations to either the
responses or the factors; or (iii) consider a
different model form. For more information, see
Box, Hunter, and Hunter (1978).

Cornell (1990, pp. 25-26) described criterion
when alternative (i) was appropriate (e.g., if the
error variation was believed to be constant from
one set of experiments to another). Alternative
(if) involves deciding which fransformation to use.
Using coded values to establish new centers for
the experimental region helps to avoid multi-
collinearity effects. Using Stepwise regression in
JMP is another simple way to avoid multi-
collinearity and improve the fit without extensive
effort. Alternative (iii) involves additional
computational work when higher-order models
such as cubic forms are considered.

Determine the response surface from the fitted
model with a “map” of the surface contours.
Study the contour lines of factor pairs X4, Xz and
the response Y. Follow the directions of
movement along the paths towards the optimum
response from a reference point. This movement
starts the path of steepest ascent (descent, ridge
or saddle point).

Examine the response surface to determine if the
optimum operating conditions (values of input
factors) reaches the maximum, minimum, ridge,
or saddle point region for the response variable.
Eigenvalues and eigenvectors help identify the
shape and curvature orientation of the response
surface. If the optimum response region is not
reached, exploration continues in the direction
towards the maximum (if there are negative

eigenvalue signs associated with the stationary
point), towards the minimum (if there are positive
eigenvalue signs associated with the stationary
point), or towards the saddle point (if there are
different eigenvalue signs). Zero eigenvalues
indicate a flat fitted surface.

Typically, these values are obtained by
differentiating the fitted Response Surface model
with respect to each factor, equating the
derivatives to zero, and simultaneously solving
the equations for each factor. This result forms a
gradient vector. The next step is to move along
the gradient direction in increments by setting the
coordinates of the stationary point to the center
(origin). Gradient movement continues about the
vicinity of the stationary point until the optimum
point (maximum, minimum, or minimax/saddle
point) is found.

With JMP, the values are displayed by holding
the (left) mouse button down as the pointer
moves along the contour surfaces. Clicking on
the rotated triangles allows you to flip through
various frames, change the values of the factors
and display the surface changes.

JMP Design Menus, Steps, and Windows

The Design Experiment command in the Tables
menu is used to construct RSM models in JMP, RSM
models are built by completing the Response

Surface dialog:

1. Enter the Number of Factors (up to eight).

2. Click the Search for Designs to get a list of
design choices, then highlight and click tfo
choose.

3. When selecting a central composite design, click
an Axial Scaling option.

4. Click the Generate Selected Design box to

create a JMP data table for the specified design.
A new JMP table is created having a row for
each run, and a column Y for recording the
results. If the Make Model box is checked, JMP
opens the Fit Model dialog window listing the
effects for the model selected. The model can
also be built using terms for a complete quadratic
model, selected linear, and squared terms for
each factor and cross-products between factors.

JMP Analysis Menu and Commands

1.

To Analyze RSM models in JMP

Choose the Fit Model command in the Analyze
menu.



2. Click the variables to enter specific model effects
and error terms.

3. Select one or more columns in the column
selector list.

4. Choose Response Surface from the Effect
Macros pop-up menu. The Response Surface
effect attribute {RS} may be selected for each
main effect.

5. Choose Screening Fit from the fitting pop-up
menu, and click Run Model. You can optionally
select Standard Least Squares to solve for the
critical surface values or zero slope point. The
Contour Plot Specification lets you see the
structure of the two-factor response surface. For
more than two factors you can sequence through
Contour Plot frames by editing the From, To,
and By fields.

6. Review and interpret the output from the
Screening Fit menu. Contour profiling is a new
feature in JMP version 3.1.5 that is useful for
optimizing one or more responses graphically
and interactively. After fitting the data to the
response surface model, the Contour Profiler
panel may be called to change the factor and
contour variables by editing value fields and
moving slider controls. Contour Profile plots
allow for the interactive exploration of the factor
space. That way, the expected effects on the
responses variables can be examined. This
exploration helps to establish the tradeoffs that
may need to be made.

Dual Response Example

Montgomery and Runger (1994) described an
experiment to investigate the effect of reaction time
and temperature on two chemical process response
variables, percent conversion/yield and viscosity. A
central composite design (Table 1) provided the
experimental design layout for the analysis. The
objective was to maximize Conversion % and sustain
a target Viscosity within a tolerance range of 40 2
mPA-secs.

Table 2 showed that the fitted models accounted for
over 91 percent and 83 percent of the variation in
Conversion % and Viscosity, respectively. The
Parameter Estimates showed the coefficients and
significance of the linear, cross-product, and
quadratic terms on each response. A second-order
(quadratic) model without the cross-product term
seemed to fit Conversion %. Whereas, a first-order
(linear) model was adequate for Viscosity.

Table 1. Montgomery and Runger's (1994) Central

Composite Design

Time Tempe- Con-
(mins.) rature version
(°F) X1 X2 %
50 160 -1 -1 65.3
60 160 1 -1 68.2
50 170 -1 1 66
60 170 1 1 69.8
48 165 -1.4142 O 64.5
62 165 14142 0 69
55 158 0 -1.4142 64
55 172 0 1.4142 68.5
55 165 0 0 68.9
55 165 0 0 69.7
55 165 0 0 68.5
55 165 0 0 69.4
55 165 0 0 69
Table 2. JMP's Summary of Fit and Parameter
Estimates for Conversion % and
Viscosity
(Summary of Fit ]
RSquare 0.914333
RSquare Adj 0.853142
Root Mean Square Error 0.783749
Mean of Response 67.75385
Observations (or Sum Wgts) 13
farameter Estimates ) v
Term Estimate  StdError  tRatio  Prob>lt|
Intercept 69.1 0.350503 19715 <.0001
X1 1.6329951 0.277097 5.89 0.0006
X2 1.0829951 0.277097 3.91 0.0058
X1*X1 -0.96875 0.297154 -3.26 0.0139
X2*X1 0.225 0.391875 0.57 0.5838
X2*X2 1.21875 0.297154 -4.10 0.0046
(Viscosity (mPa-sec) ]
(Summary of Fit j
RSquare 0.839648
RSquare Adj 0.725111
Root Mean Square Error 2.233106
Mean of Response 36.84615

Observations (or Sum Wgts) 13

Vis-
cosity
(mPa-



(Parameter Estimates J vl

Term Estimate Std Error
intercept 35.8 0.998675
X1 3.8498737 0.789522
X2 2.5695436 0.789522
X1*X1 0.975 0.846668
X2*X1 0.75 1.116553
X2*X2 0.725 0.846668

t Ratio
35.85
4.88
3.25
1.15
0.67
0.86

Prob>|t|
<.0001
0.0018
0.0140
0.2873
0.5233
0.4202

The Contour plots for Conversion % and Viscosity are

shown in Figures 1a and 1b.

Figure 1a. Contour plot for Conversion %
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Figure 1b. Contour plot of Viscosity
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These two plots were combined using JMP’s Contour
Profiler as shown in Figure 2.

Figure 2. Contour Profile Plot Overlaying Conversion
% and Viscosity
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The optimal values of the coded (Current X) values,
X1=0.7071068 and X2=0.3928371, produced the two
response values (Current Y) of 70.070 and 40.339 for
Conversion % and Viscosity, respectively.

These coded values were converted into the scales of
the original Time and Temperature uncoded values
using the formula below found on page 471 of the
JMP Statistics and Graphics Guide, Version 3.1:

actual = low + 0.5 x (coded + 1)x(high-low).

Thus,

Time =48 + 0.5 (X1+1) (62-48)
=48 +.0.5 (1.7071068)(14)
= 59.94974 or about 60 sec.

Temperature = 160 + 0.5 (X2+1)(172-160)
= 160 +0.5(1.3928371)(12)
= 168.35704 or about 168°F.

Both values closely agreed with the optimum time (60
sec.) and temperature (167°F) values Montgomery
and Runger found. Other time and temperature
settings satisfying the response constraints were
examined by moving the slider controls. Aligning the
slider bars with the red dots (Current Y values) allows
interactive exploration of the factor space. This can
also be accomplished by positioning the cross-hair
lines on the graphs or by editing the fields of the
Current X and Contour values. The Mesh (Surface)
plots next to the Contour graph showed the grid of
response values for the factor pairs checked in the



boxes of the Control Panel. These plots were rotated
to give different points of view.

Barrier-Bag Sealing Example

Barrier bags help protect microcircuits,
semiconductor devices, and associated higher
electronic assemblies. Materials sealed in these bags
maybe stored for long periods of time and must not
allow vacuum air to enter inside the bags after
sealing has occurred. A problem existed with bags’
seams separating, causing air and contaminants to
enter and form on the sealed materials.

One of the tests of strength of barrier bags is the
heat-sealed seam test. Test strips are cut from a
sample of bags in stock. The ends of the strips are
sealed with heat-sealing equipment and spread
across a test frame. Weights suspend from the lower
ends of the strips. If the seams hold together without
separations from the suspended weights for at least
five minutes, then the barrier bag seams pass the
test. The objective was to find optimum sealing
conditions (heat sealing settings and bag age) that
ensured strong seams of barrier bag pull strengths.

The variables in this example were:

Months - The number of months between the lot
manufacturing. date (printed on the bag) and the date
bags were sampled for testing in this study. The bag
age dates ranged from 7 months to 75 months.

Temperature - Temperature setting (°F) of the sealer
(250°F, 255°F, 280°F, and 330°F)

Pressure - Pressure setting of the sealer (psi) (50,
60, and 70 psi).

Dwell - Dwell time, the number of seconds (sec.) the
jaw sealer held down on the bag (2, 3, 4 sec.)

The RSquare in the Summary of Fit below showed
that about 86.7 percent of the test time variation was
explained by the fitted model

[Summary of Fit j

RSquare 0.866963
RSquare Adj 0.829439
Root Mean Square Error 0.854926
Mean of Response 4.484902
Observations (or Sum Wgts) 51

The Prob > F =0.3789 in the Lack of Fit table below
suggested that the fitted model was adequate.
Therefore, the search for the optimum values could
continue.

Lack of Fit |

Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 5 3.966752 0.793350 1.0993
Pure Error 34 24538267 0.721714 Prob>F
Total Error 39 28.505018 0.3789
Max RSq

0.8855

All of the main effects, except dwell, were statistically
significant. The significant interactions of factors
terms were temperature * months, pressure *
temperature, dwell * month, and dwell * pressure from
the Parameter Estimates table below.

(Parameter Estimates |

Term Estimate Std Error tRatio  Prob>|t|
Intercept 100.32556 25.1816 3.98 0.0003
months 0.6750373 0.234688 2.88 0.0065
temperature -0.595184 0.149233 -3.99 0.0003
pressure -0.452846 0.192209 -2.36 0.0236
dwell 1.3922942 2.178532 0.64 0.5265
months*months -0.004395 0.00063 -6.98 <.0001
temperat*months -0.00167 0.000769 -2.17 0.0361
temperat*temperat 0.0007608 0.00025 3.04 0.0042
pressure*temperat 0.0022594 0.000602 3.75 0.0006
dweli*months ©0.0206098 0.008901 2.32 0.0259
dwell*temperat 0.0117228 0.008634 1.36 0.1823
dwell*pressure -0.082956 0.027373 -3.40 0.0016

The next four graphs, produced with JMP’s Contour
Profiler, provided further exploration of the significant
interactions.

There were two optimal temperature values for the
temperature by month interaction. Moving the cross-
hairs to the higher temperature setting of 324.4°F and
24.12963 months provided satisfactory test times as
shown by the connecting arrow below.
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The 324.4°F temperature and pressure of 60 psi also
satisfied the test time requirement.
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Next, a three second dwell time was chosen to
examine the month by dwell interaction.
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Finally, the 60 psi pressure by three second dwell
time completed the pressure by dwell interaction.
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DiEssLre:

The optimal settings for the input factors were: bag
age of approximately 24 months, a temperature
setting of 324°F, a pressure setting of 60 psi, and a
dwell time of three seconds to yield test times over
five minutes.

Eighteen confirmation runs were successful on
subsequent trials. The test times exceeded five
minutes on all combinations of factor settings (i.e., 18
out of 18 trials had 100% success). The results led to
recommended settings for the jaw sealers that the
manufacturing engineers and operators could follow.
To date, no barrier bags failed the pull test since
using the recommended settings for the sealers.

CONCLUSIONS

The combined experimental design, analysis, and
data visualization features of JMP assist process
engineers, quality analysts, and statisticians’
selection of the most appropriate levels of input
factors that will optimize the critical variables from
Response Surface models.

The interactive exploration of the factor space that
JMP offers provides valuable opportunities to learn
and to understand the complex surfaces, shapes, and
feasible regions that will satisfy the factor constraints
so that tradeoffs can be made interactively, in a
matter of minutes, no matter how complex the
problem.
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