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Abstract

This paper considers estimation in a bivariate random-effects model allowing for arbitrary measurement
times and variation in the number of observations for different individuals in the context of longitudinal
studies. Two different structures for the covariance matrix of measurement error are considered, uncorrelat ed
error between responses and correlation of error terms at the same measurement times. The estimation of

parameters for this model is via the EM-Algorithm. We derive the set of equations for both ML and REML

estimation when the observed data consists of complete pairs. These equations are encoded in a SAS Macro

utilizing SAS/IML for implementation of the methodology. This is illustrated with an example from AIDS

clinical trials.

KEY WORDS: EM-algorithm, longitudinal data, multiple response, random-effects, REML
estimates, SAS Macro.

1 Introduction

Longitudinal studies in which the response is measured at the same time for all units has been considered

by many authors, including Potthoff & Roy (1964), Rao (1965), and Grizzle & Allen (1969). In the case of

arbitrary measurement times and variation in the number of observations for different individuals, Laird & Ware

(1982) propose a random effects approach. The SAS PROC MIXED procedure can be used to fit the single

characteristic model for longitudinal studies. Reinsel (1984) has extended the random effects model to handle

a repeated multivariate response. He deals with a complete and balanced design, i.e., there is no allowance for

missing data, and presents closed form solutions for the parameter estimates. In clinical trials, measurement times

may be arbitrary and dropouts will result in different number of repeated responses for patients or experimental

units. In this case, it is no longer possible to obtain closed form solutions and iterative techniques such as the

E-M and N-R algorithm have to be employed to obtain maximum likelihood estimates.

In this paper, we consider an extension of the EM-algorithm presented in Laird & Ware (1982) for parameter

estimation in a bivariate response random-effects model. We present the algorithm for two possible types of

‘missing’ data structures. In the first case both characteristics are observed at each occasion, though the number

and timing of observations may differ from individual to individual, i.e., the data are complete but unbalanced in

number of observations per experimental unit. This case is addressed in detail with the estimating equations being

derived for both ML and REML estimation. The more difficult case occurs when both characteristics may not be

observed at all occasions, i.e., the data are incomplete and possibly unbalanced. For this situation we describe

the data structure vis-a-vis the design matrices and briefly sketch the estimation procedure. Two possible areas

of application are: AIDS clinical trials where a number of characteristics, e.g. CD4 and CD8 cell counts, are
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measured repeatedly over time for each patient, and systolic and diastolic blood pressure measurements. These

bivariate repeated measures can be easily modeled with this approach allowing us to estimate the correlation

between the slopes andintercepts of the bivariate data aswillbe illustrated in the example.

2 Theory and Background

2.1 Model and Assumptions

Let Yi = [yil, yi2], where each yk is a column vector of dimension ni, be the response matrix for unit i and

Ei = [Eil, Ei2] be the ni x 2 matrix of error terms. Introducing the vec operator, which strings out the columns

of a matrix vertically, we obtain yi = vec(Yi ) = (y~l, yj2)’ which is now a 2ni x 1 column vector, and ei =

wec(Ei ). The model for each individual unit i is of form

Yi = X;P + z~7i +ei i=l,2 ,. ... N (1)

where X; is a 2ni x q* known fixed design matrix, ~ is a q* x 1 matrix of fixed parameters, Z: is a 2ni x r*

random design matrix which is usually some subset of X:, and vi is an T* x 1 matrix of individual random effects.

The assumptions are: vi ~ MVN(O, Dr. ~r. ) and ei is distributed as N(O, Ri) where Ri has dimensions

2ni x 2ni, and, for units i and j, where i # j, Cov(ei, ej) = O, Cov(Ti, ~j) = O, and Cov(ei, vi) = O. In

most cases it may be reasonable and convenient to assume a structured Ri for ease in estimation. One possible

structure is that the row vectors of Ei, representing the results at different measurement times, are independent

and have distribution N(O, 222~z), where X is an unstructured covariance matrix. In this case Var(ei) has

structure 27 @ Ii, where, Ii is an identity matrix of dimension ni x ni. The independence of rows implies that

each column of Ei is distributed normally with mean O and covariance matrix a~k Ii, for k = 1, 2. A less likely

structure is to assume ~ is diagonal. For a linear model specified by (1), @ could be a vector of population

intercepts and slopes for the 2 responses while the vi’s are vectors of the individual intercepts and slopes.

2.2 Estimation via EM-Algorithm

We use the EM-algorithm for obtaining maximum likelihood or restricted maximum likelihood(REML)

estimates for the parameters. It should be noted that in the case of known 22 and D, the estimate of ~ is easily

obtained via a closed form solution by Generalized Least Squares (GLS).

Let r index the iterations for r = O, 1,2, . . . . m, where r = O denotes the starting values. The sufficient

statistics for .27 and D are ~(Ei’Ei ) and ~(~i~i’) respectively. Since Ti and ei = vec(E; ) are unobservable, the

algorithm computes the expectations of the sufficient statistics and then solves for maximum likelihood. It uses

the joint density of yi, vi, ei to obtain the conditional expectations of the sufficient statistics.

E-Step: Let @ be the vector of unknown parameters in E and D and O(r) denote their values at the end of the

~th iteration. The estimate for ,B given values 8(7) is

(2)
i=l i=l



(’j = yi – xt~t’) and B@2 = BB’,where P~’) = Vi(’)’1 and Vi = Var(yi) = [Z$DZ~’ + Y @ Ii]. Letting ri

the expectations of the Jh term of the sufficient statistics are given by:

q(%)(%’ylyi, @),@TJ = {E[-yi[yi,e(7),p(T)]}@’2+ v[-/ily;, d’), p(T)]

.E[(Eij)’(Ei~)lyi, d7), fI(T)] = EIE~jly~,6(7), @T)] ’EIEiklyi, /3@),@T)]

(~), p(0)], j,k = 1,2.+ tr[Cov(Eij , EM lYi, ~

These expectations are easily obtained using the conditional mean and covariance matrix of the multivariate

normal distribution.

M-Step: In the M-step, X(’+l) and D(’+l) are found by equating them to the expected value of their sufficient

statistics. For ML estimates the iterative equations are:

N

D(7+1) = [Hq(-f;)(~i)’lyi, 0
1]/

(~),p(~)] ~,

i=l

(T+l) _rjk — [~ni]-l[~[E[(Eij),(Ei~)Iyi,~(T),P(T)I]],j,k=l,2.
‘i=l i=l

To obtain REML estimates, at the E-step we condition only on y; given D and E, since ~ is integrated out

of the likelihood using a flat prior (Laird & Ware 1982). Using the posterior distribution of ,B and simplifying

we obtain the conditional expectations of the sufficient statistics to be:

+ tTIUjkIi– (~ljIilujzIi)@i (61kIi[6kzIi)’]j j] k = lj 2.

(3)

For obtaining starting values for D and ~ one may even use identity matrices for D(o) and 22(0). Another

approach (Laird, Lange & Strain 1987) is to do OLS for each unit, or for those having the requisite minimum

number of repeat measurements. The model used to fit by OLS is equivalent to the random design, Yi = ZJ~i +ei.

This will yield vi(o) and ei(o) = vec[Ei(0)]. From these one can obtain ~(o) using (2), and D(o) and E(o) can be

obtained using the following equations

N

D(o) = [Z(Vi(o) – ~ vi(o) @2N ) 1/N, and Y(o) =
i=l

[f(Ei(0))’(Ei(O))] / ~ni
i=l i=l

2.3 Modeling with Incomplete Pairs

We define the missing situation to be one in which the rows of Yi are not complete, i.e., both characteristics are

not observed at all measurement times. Let Xik be the design matrix for the responses of ith unit on the kth

characteristic and Zik, which is generally a subset of %~k, be the corresponding random design matrix. If we let
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n~k be the number of repeated measures on characteristic k for unit i, then the dimensions of Xik are n~k x q“

and Zik is n~k x r*, for i = 1, ..., N. Also define Yij to be the response vector on the jth characteristic and

ii = [y~l, y~z]’. Then, the model for unit i may be represented as

Generally we will have

be block diagonal design matrices where xik has dimensions nik x qk, and zik has dimensions nik x rk. This is

not a requirement and arbitrary structures for Xi and Zi are feasible, provided the data permits estimation. The

dimensions of Xi are mi x q* and Zi has size mi x r* where mi = ~~=1 n~k. For the block diagonal structure,

9* = X:=l qk and r* = Xj=l rk.

The maximum likelihood estimate of ~ can be obtained in a manner similar to the complete case. The

estimation of D also follows a similar approach but the major difference is in estimating 27. For the case of

unstructured X and missing data, we essentially need to estimate the missing data which is considered to be the

non-observable error terms corresponding to the missing parts of the responses. Further details can be found in

Shah, Laird & Schoenfeld (1997).

Once we have the starting values, we cycle between the E-Step and the M-Step until we attain convergence.

At convergence, we also obtain ~, ~i, A~ar(~) as well as the ‘robust’ or sandwich estimator as given by Liang

& Zeger (1986). In order to make inferences about the elements of ~ we may use either the sandwich estimator

or an estimate of its asymptotic variance based on the Fisher Information, which is, [~~1 Xi’~iXi]– 1.

3 Macro Call and Options

%mvemal( DATA

METHOD

VAR

STVAL

YVAR

XVARS

ZVARS

ID

CONV

ITER

= data,

— method,—

= var,

= st val,

= yvar,

= xvars,

= zvars,

= id,

= conv,

= iter) ;



3.1 Options

There are no default values for any of the macro parameters. All options should be in lower case and a directory

with libname ‘est’ should be created for temporary storage of starting values and estimates.

DATA: The name of the (SAS) data set to be used.

METHOD: The two choices are ml and reml for getting maximum-likelihood or restricted maximum-likelihood

estimates. As noted earlier, these differ in the calculation of Wi. For ML estimates ~i = Vi – 1 while for REML

estimation fii is as given by equation (3).

VAR: This defines the structure of S, un forces it to be unstructured (i.e. correlated error terms) while sim

constrains 3 to be a diagonal matrix (i.e. uncorrelated error terms).

STVAL: There are three choices: yes asks the program to compute the starting values as described in section

2.2, no forces the program to use the results from a previous run as the starting values. It must be noted that

this will only be possible if the random factors remain the same, and only the fixed design is varied. The third

choice is identity which begins the estimation with .X and D being identity matrices.

YVAR: This identifies the dependent or response variable and is numeric.

X VARS This is a list of independent variables which constitute the fixed design matrices. A blank space

should separate the names. Note, an intercept variable must be created and included in this list if desired.

ZVARS: A list of variables, separated by a blank space, which make up the random design matrices. Again,

an intercept variable has to be created if required.

ID: A variable which identifies the subject or experimental unit.

CONE The convergence criterion (< 1). When the change

convergence is attained.

ITER: The maximum number (integer) of iterations allowed,

4 Illustration

4.1 Model and Data

n log-likelihood is less than the given criterion

This supersedes the convergence criterion.

We apply this methodology to the combined data from two randomized, double-blind, multicenter trials of daily

prophylactic treatment with either rifabutin or placebo. From February 1990 through January 1992, 590 patients

were enrolled in study 023, and 556 patients were enrolled in study 027. All 1146 patients were symptomatic and

had CD4 cell counts ~ 200/nmn3. The patients were scheduled to have CD4 and CD8 counts taken at baseline

and every three months thereafter. The primary objective of the trial was to determine if rifabutin reduces the

frequency of Mycobacterium Avium complex (MAC) infection. We consider in this analysis a model for the joint

behavior over time of CD4 and CD8 counts. Let yi be the column vector of log(CD4) and log(CD8). We assume

both log(CD4) and log(CD8) change linearly over time and since CD4 and CD8 are obtained from same assay,

we let E be unstructured. Assuming no missing data, the model for unit i is

Yi = ‘~B+Z~~i +e~. (4)
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4.2 Macro Call and Results

Since X is a matrix, PROC MIXED cannot be used to fit the model. A SAS macro program encoded in IML

was used for the estimation. Data from patients on rifabutin were used for the analysis. Starting values were

obtained by OLS and = 65 iterations were needed for convergence which was defined to be a change less than

0.005 in the log-likelihood. The macro call statement is:

%mvemal(DATA = exdata, METHC)D = reml, VAR = un, STVAL = identity, YVAR = cd,

XVARS = cd4int cd4sl cd8int cd8sl, ZVARS = cd4int cd4sl cd8int cd8sl, ID = pid,

CONV = 0.005, ITER = 7’5) ;

The data set eulata has the variables cd cd4int cd4sl cd8int cd8sl pid sorted by subject. The variable cd

is actually log(cd4) and log(cd8) stacked together, with the cd4 vector on top. The data table for an individual

with three pairs of measurement for CD4 and CD8 would look as follows:

PID CD41NT CD4SL

1

1

i

1

1

i

The first three rows

lowing output gives the

SIGHAT

i

o

i 1

1 13

1 25

0 0

0 0

0 0

constitute the CD4

REML estimates.

CD81NT CD8SL CD

o 0 2.56495

0 0 2.39790

0 0 1.79176

1 1 6.01372

1 13 5.75574

i 25 5.77144

measures and the next three rows are the CD8 measures. The fol-

STARTING VALUES FOR EM-ALGORITHM

DHAT

o i o

i o 1

0 0

0 0

NUMBER OF INDIVIDUALS IN DATA SET =

FINAL ESTIMATES

o 0

0 0

i o

0 1

488

CONVERGENCE IN 55 ITERATIONS

LOG-LIKELIHOOD = -177.011
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RESTRICTED MAXIMUM-LIKELIHOOD ESTIMATES

ALPHAT ASYM(VAR) P(ASYM) RBST(VAR) P(RBST)

CD41NT 3.686394 0.002916 0 0.002908 0

CD4SL -0.01612 1. 82E-6 o 1.801E-6 o

CD81NT 6.233848 0.001579 0 0.001576 0

CD8SL -0.00791 9.482E-7 4.44E-16 9.428E-7 4.44E-16

DHAT=COVARIANCE MATRIX FOR RANDOM EFFECTS

correlations below the diagonal

0.959627 -0.00691 0.360783 -0.00146

-0.4817 0.000215 -0.00456 0.000102

0.498037 -0.42101 0.546848 -0.00419

-0.13244 0.619605 -0.50538 0.000126

SIGMA = COV MATRIX FOR ERROR

0.299292 0.078266

0.383722 0.139

ASYMPTOTIC VARIANCE (ALPHAT)

CD41NT CD4SL CD81NT CD8SL

CD41NT 0.002916 -0.00004 0.001018 -0.00001

CD4SL -0.00004 1.82E-6 -0.00002 6.663E-7

CD81NT 0.001018 -0.00002 0.001579 -0.00002

CD8SL -0.00001 6.663E-7 -0.00002 9.482E-7

ROBUST VARIANCE (ALPHAT)

CD41NT CD4SL CD81NT CD8SL

CD41NT 0.002908 -0.00004 0.001021 -0.00001

CD4SL -0.00004 1.801E-6 -0.00002 6.703E–7

CD81NT 0.001021 -0.00002 0.001576 -0.00002

CD8SL -0.00001 6.703E-7 -0.00002 9.428E-7

The correlation(p ~.38) between the measurement errors for CD4and CD8 probably arises because bothCD4

and CD8 count are found by multiplying the percentage CD4 and CD8 cells by the total lymphocyte count.

There was also a strong correlation between the intercept of CD4 and CD8 (p = 0.49) as well as between the

slope estimates (p = O.62). The robust and asymptotic variance estimates were very similar. We can use the
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.

asymptotic or robust standard errors of the fixed effect estimates to test for the slopes.

5 Discussion

The main advantage of the multiple response model lies in its ability to utilize the inherent covariance structure

for a truly multivariate response, thereby resulting in more efficient estimation of the parameters. In the case of

a single response, the estimation procedure as outlined reverts to the iterative equations given by Laird, Lange &

Strain (1987). An area for further development would be the computational techniques involved in the estimation

of parameters. Since the EM-algorithm does not yield the Hessian, alternate techniques for estimation may be

needed in order to do inference on the covariance parameters. It would be useful to have a SAS procedure which

would be more flexible in model fitting. It may be possible to embed equations for estimating the Hessian within

the EM-algorithm itself. It would also be worthwhile to investigate potential acceleration techniques in order to

enhance the rate of convergence of the algorithm.

Availability y: The SAS Macro mvemal can be obtained by contacting the jirst author at: amril@bio. ri. ccf. org
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