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Abstract

This paper begins by describing an implementation
of Kruskal's relative importance analysis using SAS
STAT and SAS IML. While Kruskal's weights lend
insight into the relative importance of each
regressor, they are non-additive in nature and
therefore limit potential interpretation. In order to
overcome the non-additivity drawback, an
information theoretic measure (as suggested by Theil
and Chung in \Information-theoretic measures of �t
for univariate and multivariate linear regressions",
The American Statistician 1988) is implemented. In
addition, the impact of regressor variable collinearity
is examined using simulated data.

This paper is targeted toward experienced SAS users
familiar with PROC REG in SAS STAT. Additional
background knowledge of statistical concepts,
particularly with respect to partial correlations and
regression analysis is also recommended.

1 Measuring Importance

Numerous methods for measuring importance in

multiattribute value models have been

presented in the literature (see, e.g., (Soo� and

Retzer, 1992)). A review of those which pertain

speci�cally to applications in statistical models

may be found in (Soo� and Retzer, 1995). A

common method is to rely on the p-values of

t-scores attached to the partial regression

coe�cients. Kruskal notes that this is not

unlike the old confusion of substantive with

statistical signi�cance. \In fact no necessary

connection between importance (a property of

the population) and statistical signi�cance (a

property of the sample and population) exists."
1 This represents a confusion between statistical

vs. real signi�cance. While methods other than

the use of p-values are employed, each in turn

has its drawbacks. Boring also provides insight

into potential problems when relying on

p-values alone. He notes that \Science begins

with description but it ends in generalization."

(Boring, 1919) This highlights the fact that

while statisticians strive for insight regarding

the population, they do so while being able to

observe only the sample. Insofar as the sample

is an accurate representation of the population,

our inferences will be justi�ed. We must keep in

mind however, that our statistics are

1See Kruskal 1978, International Encyclopedia of Statistics.
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descriptions of the sample and no more than

that. For that reason we may strive to examine

the data in more than one way in our attempt

to gain insight into the population.

Kruskal suggests an alternative method of

measuring importance in which we average

partial correlations over all model orderings. We

implement his suggestions by taking advantage

of a number of uniquely powerful components of

the SAS system.

A limiting aspect of Kruskal's weights is that

they are non-additive. That is to say the sum of

the weights is not intrinsically meaningful.

Theil and Chung suggest examining information

theoretic importance measurements which in

fact are additive. Computationally, the

measurement of information content can be

viewed as an extension of Kruskal's analysis.

This suggests that once the relative importance

measures have been estimated, construction of

the information measures is straightforward.

This paper proceeds by examining the

computation of Kruskal's weights and the

subsequent creation of information measures

corresponding to linear model regressor

variables. It will also consider the impact of

collinearity in the design matrix by utilizing

simulated data. This lends insight into the

appropriateness of competing measures of

importance under conditions of model

instability.

2 Kruskal's Relative

Importance Weights, An

Illustration

The idea underlying relative importance

weighting is to consider the strength of

relationship between the regressor and the

response variable under varying orderings of

inclusion vis �a vis the remaining variables. If we

were to consider all possible orderings of the

variables into the model, and the associated

squared partial correlations of a particular

variable with that of the response, an average of

these partials squared would be considered its

relative importance.

Consider the case of a four regressor model in

which we are attempting to estimate the

relative importance of variable x1. The

orderings (permutations) and the associated

relevant squared partial correlations are given in

Table 1 below.

x1 x2 x3 x4

x1 x2 x4 x3

x1 x3 x2 x4

x1 x3 x4 x2

x1 x4 x2 x3

x1 x4 x3 x2

9>>>>>>>=
>>>>>>>;

6 � r2y;x1

x2 x1 x3 x4

x2 x1 x4 x3

x3 x1 x2 x4

x3 x1 x4 x2

x4 x1 x2 x3

x4 x1 x3 x2

9>>>>>>>=
>>>>>>>;

2 � (r2y;x1�x2 + r2y;x1�x3
+r2y;x1�x4)

x2 x3 x1 x4

x2 x4 x1 x3

x3 x2 x1 x4

x3 x4 x1 x2

x4 x2 x1 x3

x4 x3 x1 x2

9>>>>>>>=
>>>>>>>;

2 � (r2
y;x1�(x2;x3)

+ r2
y;x1�(x3;x4)

+r2
y;x1�(x2;x4))

x4 x2 x3 x1

x3 x2 x4 x1

x4 x3 x2 x1

x2 x3 x4 x1

x3 x4 x2 x1

x2 x4 x3 x1

9>>>>>>>=
>>>>>>>;

6 � r2
y;x1�(x2;x3;x4)

Table 1: All permutations in the four variable example
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To understand why the relevant squared partial

correlations are as given let us consider each

block individually. In \Block 1" the relative

importance of x1 is, in all cases, equal to the

square of its simple correlation with the

response y (r2y;x1). This is because x1 is

\entering" the model �rst, hence no other

variables e�ect need be considered. In \Block

2" however this is no longer the case. For

example if the ordering is x2 x1 x3 x4, the

relative importance of x1 must be considered

after accounting for the presence of x2 in the

model. This is estimated by the square of the

partial correlation of x1 with the response y

given x2 (r2y;x1�x2). A similar pattern then

emerges for all orderings in the remaining

blocks. The relative importance of x1 (RIx1) is

then simply the average of all squared

correlations (simple and partial) between x1

and y. This may be written as follows,

RIx1 = (6 � r2y;x1 + 2 � (r2y;x1�x2 + r2y;x1�x3

+r2y;x1�x4 + r2y;x1�(x2;x3)

+r2y;x1�(x3;x4)+ r2y;x1�(x2;x4))

+6 � r2y;x1�(x2;x3;x4))=24: (1)

3 Partial Correlations Using

Proc Reg

To begin, we may note the that simple

correlation squared is equivalent to R2 in simple

regression analysis. In addition, the squared

partial correlation may be calculated through

appropriate use of SSE from relevant simple and

/ or multiple regressions. For example, the

squared partial correlation of x1 with y given x2

and x3 can be calculated as follows, 2

r2y;x1�(x2;x3) =
SSEx2;x3� SSEx1;x2;x3

SSEx2;x3

: (2)

Where

� SSEx2;x3 is the regression sum of squared

errors resulting from the regression of y on

x2 and x3.

� SSEx1;x2;x3 is the regression sum of

squared errors resulting from the

regression of y on x1, x2 and x3.

A relatively simple way of arriving at all

possible subset regression SSE's as well as their

corresponding R2's is by the use of SAS'

\proc reg" with the \selection = rsquare"

and \sse" model options. It should be noted

that if the number of variables in the model

exceeds 10, SAS will default to printing only

that same number of subset regression results

for any �xed number of variables. For example,

if there are 12 variables in total, there exist C12
2

combinations or 66 unique subset regressions

with 2 regressors. SAS however will only report,

by default, the �rst 12 models results. This

problem may be overcome by including an

additional model option, \best = nnnnnn",

where nnnnnn is some number large enough to

account for the largest number of subset

regression models resulting from a �xed number

of regressors. An illustration of the appropriate

\proc reg" command could be written as:

proc reg data=regdat out=stats noprint;

model y=x1-x4 / selection=rsquare

best=99999 sse;

run;

The data necessary to calculate relative

importance would then be found in the data set

\stats."

Using the information in \stats" we may take

advantage of equation (2) to calculate all

necessary partial correlations. The indexing of

all SSE's (i.e. associating each SSE with a

particular regression model) is accomplished

using the natural positioning indices associated

with matrices via PROC IML. Speci�cally, the

2See Neter and Wasserman 1974.
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data in \stats" is read into an IML matrix

while simultaneously being assigned to rows

which indicate the independent variable set

contained in a particular model. All that

remains in order to calculate the relative

importance measurements is to correctly

compute the weighted averages of the relevant

partial correlations.

4 Measuring Regressor

Information Content

Theil suggests in his 1987 paper that an

information theoretic measure which quanti�es

the amount of information contained in a

particular set of regressor variables may be

decomposed to allow for assignment of

importance to each independent variable.

Speci�cally, Theil suggests that I(R2) 3 be used

to quantify the information in the regressors

regarding the response variable. The I(�)

function is a well know information based tool

for quantifying information. The implied

measure would be given as,

I(R2) = log2(1�R2) (3)

In addition we may note that (1�R2) may be

decomposed as,

1�R2 = (1� r2y;x1)(1� r2y;x2�x1) � � �

(1� r2y;xP �(x1;x2;x3;:::x(p�1))) (4)

The information measure associated with the

decomposition illustrated in (4) is arrived at by

taking the base 2 log of both sides to give,

I(R2) = I(r2y;x1) + I(r2y;x2�x1) + � � �

+I(r2y;xP �(x1;x2;x3;:::x(p�1))) (5)

Theil notes that if a natural ordering were

suggested to be say x1; x2; : : :xP then (5)

would give a unique additive decomposition of

the importance assigned to each variable in the

model. If no natural ordering is agreed upon

then we may follow Kruskal's method of

averaging over all orderings.

Computationally, once Kruskal's weights are

estimated, the extension to Theil's weights is

straightforward. Note that the components on

the RHS of (5) are the estimated partial

correlations squared which then are transformed

to yield the information measure. This

transformation is then all that is required in

addition to the previous routine.

5 The Impact of Collinearity

The absence of multicollinearity would lead to a

situation in which the importance/information

content of independent variables is more easily

determined. However, the presence of

multicollinearity is more of the rule than the

exception. Such conditions may exasperate the

decision maker's e�orts to construct an

appropriate model. Although the decision

maker may try to circumvent the problem by

running a series of full and reduced regression

models, choosing amongst those models could

prove to be problematic. Likewise, if all possible

regression models from a set of independent

variables are not considered, the decision maker

may make unwarranted interpretations from the

regression output.

To examine di�erences in interpretation

between Theil's information measures and

regression analysis, 1000 observations of 5

variables were randomly generated. The

independent variables, x1� x3 were drawn from

normal distributions with � = 10 and � = 2.

Multicollinearity was induced into the sample

by setting the correlation, �, between x3 and x4

to 0.70. This correlation was achieved using the

following transformation,

x4 = (� � x3) + (z �
p
1� �2), where z � N(0; 1).

The correlation matrix for the dependent and

independent variables is given in Table 2.

3
R
2 being the multiple correlation coe�cient between the response and regressor variables.

4



CORR x1 x2 x3 x4 y

x1 1.00 0.03 0.02 0.03 0.67

x2 0.03 1.00 0.02 0.07 0.04

x3 0.02 0.02 1.00 0.72 0.68

x4 0.03 0.07 0.72 1.00 0.51

y 0.67 0.04 0.68 0.51 1.00

Table 2: Pairwise Correlations

The parameter estimates as well as p-values

resulting from a regression employing all

independent variables is given in Table 3.

Parameter

Variable Estimate Prob > j T j

INTERCEP -0.307257 0.2491

x1 0.999880 0.0001

x2 0.020599 0.1789

x3 1.008582 0.0001

x4 0.002871 0.8979

Table 3: Regression I, Entire Independent

Variable Set

The Condition Index for this model was

approximately 21.9. A Condition Index in the

neighborhood of 15-30 seems to represent a

borderline situation in which collinearity may

become a problem (Belsley et al., 1980). A

ranking of the variable's importance based upon

p values, would be x1, x3, x2, and x4

respectively. Note that variables x2 and x4 are

not statistically signi�cant. It appears that the

multicollinearity between x3 and x4 is e�ecting

the contribution credited to the latter variable.

Indeed, it appears x4 is less valuable than x2 in

explaining y. Similar results for a reduced

model in which x2 and x3 are eliminated are

given in Table 4. 4

Parameter

Variable Estimate Prob > jTj

INTERCEP 2.740916 0.0001

x1 0.993133 0.0001

x4 0.741698 0.0001

Table 4: Regression II, Reduced Independent

Variable Set

In this model the true contribution of x4 is

more readily apparent.

The information levels contained in the

regressor set, as measured by Theil's technique,

are given in Table 5.

x1 x2 x3 x4

1.67258 .0021914 1.33968 0.27348

Table 5: Theil's Information Measures.

(Information in Regressors on Dependent

Variable y)

Using Theil's information measures the ranking

of the variables' information content is x1, x3,

x4 and x2 respectively. The percent of total

information for these variables are x1 (50.83%),

x3 (40.72%), x4 (8.31%) and x2 (0%). Note

that Theil's measures correctly assign higher

information content to x4 as opposed to x2.

6 Conclusion

Looking at simple p-values for assessing relative

importance may be misleading and/or

incomplete. The p-values indicate only the

signi�cance of the regression coe�cient with

respect to the sample and do not supply

information concerning interrelationships among

variables. A reasonable method for examining

\relative" importance is o�ered by Kruskal.

Calculation of Kruskal's measure can be tedious

and computationally intense. This article

presents an approach which employs certain

aspects of the SAS programming language to

derive an e�ective algorithm which handles the

calculation of these weights in models with

various sized sets of regressors. In addition, the

non-additivity limitation of Kruskal's weights

can be overcome by a straightforward

transformation suggested by Theil and Chung.

This new measure, which has a solid foundation

in information theory, provides additional

insight into the data.

4The Condition Index for this model was approximately 14.8
*SAS, SAS STAT, Proc Reg and SAS IML are registered trademarks of SAS Institute Inc., Cary NC, USA.
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