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ABSTRACT

 

UnifyPow is a freeware SAS

 

®

 

 macro that performs statistical
power analysis and other matters related to sample-size choice.
Its functionality covers an extensive set of methods. One-group
tests include the t and Wilcoxon for H
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. Two-group tests include t and Wilcoxon-Mann-
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. J-group tests include ANOVA via the cell-means
model with general linear contrasts; 

 

χ
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 and LR tests for
proportions (2 
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 J tables) with general linear contrasts on J logits.
Also covered are the test of H
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 in a multiple regression
model predicting Y from q Xs (“Y | q Xs”) in which X
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 has
tolerance Tol(X
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 Xs) from nested linear
models; and G
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 or –2lnL from full vs. reduced logistic, log-
linear, or Cox survival models. All methods handle unequal n
designs. Any set of alpha-levels may be specified and results for
directional (one-tailed) tests are given when potentially
appropriate. Both tabular and graphical output are available. A
simple syntax unifies concepts and specifications across
methods. For the current status of this ongoing project and
information on downloading, see

http://www.bio.ri.ccf.org/power.html

 

INTRODUCTION

 

Collaborating statisticians should provide sound technical
planning long before data are collected. Essential to this is
choosing appropriate sample sizes and assessing statistical
power. Nevertheless, sample-size planning has for too long
been given short shrift by authors of texts on statistical
methods, by statistics teachers, and by software
developers, all of whom focus almost exclusively on
methods related to analyzing data already collected. When
attention 

 

is

 

 given to determining sample size and power, it
is too often limited to providing crude approximation
formulas or tables to handle a few elementary situations.
As a result, a large proportion of research protocols still
have inadequate or erroneous sample-size considerations.
Nothing will address this problem better than the
availability of good, affordable, comprehensive software,
especially if this is functionally part of general statistical
packages, such as the SAS System.

I have been addressing this matter sporadically for over
a number of years. In a series of SUGI presentations (Lohr
and O’Brien, 1984; O’Brien, 1984, 1986a, 1986b; O’Brien
and Lohr, 1984; Wright and O’Brien, 1988), my
colleagues and I discussed this idea and proposed
implementations. Indeed, JMP

 

®

 

 contains such tools for
linear models. In a book chapter (O’Brien and Muller,
1993), I described a set of SAS %include modules

centered around one called OneWyPow, which handled
power analysis for many types of problems. These
modules were distributed as freeware via anonymous ftp.
OneWyPow continued to expand in functionality and was
later renamed UnifyPow. The O’Brien-Muller chapter
appeared in a fairly obscure book. Until now, I have not
promoted the freeware via other outlets.

UnifyPow is now a macro that has functionality far
beyond that of OneWyPow, and it continues to undergo
active development. It is still offered as freeware. Herein, I
summarize what UnifyPow can do, give some examples,
and outline how to download the latest release.

 

WHAT CAN UnifyPow DO?

 

This project is a dynamic one. This section describes what
is being released by 10 March 1997 in time for SUGI 22
(San Diego), what I hope to release by 1 August 1997, as
well as some things that will appear later.

 

Key

 

* In March 1997 release.

 

o

 

Planned for August 1997 release.

– May not make August 1997 release.

P Finds power for specified total sample size.

N Find total sample size for specified power.

CI Finds N to assure sufficiently narrow confidence 
interval. 

 

CI functionality will not begin to appear 
until August 1997.

 

General Functionality

 

* Automatic tabling of results using PROC 
TABULATE.

 

o

 

Options for automatic graphing using 
SAS/GRAPH

 

®

 

.

* Results are collected in a SAS dataset, so user can 
customize their report, if needed.

* All methods handle unbalanced sample sizes.

* Both one-tailed and two-tailed tests are 
considered, unless impossible.

 

o

 

Both one-tailed and two-tailed confidence 
intervals are considered.

 

Specific Methods Supported
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* One-sample t test of H
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 = 

 

µ

 

0

 

.  Default: 

 

µ

 

0

 

 = 0. 
[P, N, CI]

* One-sample Wilcoxon signed-rank test. [P, N]
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* One-sample matched-pairs t test of
H
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. Default: 

 

δ

 

0

 

 = 0. [P, N, CI]

* Two-sample t test of H
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 = 
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.
Default: 

 

δ

 

0

 

 = 0. [P, N, CI]

* Two-sample Wilcoxon-Mann-Whitney test. [P, N]

* One-way ANOVA overall F test on G 
independent means. [P, N]

* Cell-means model ANOVA: the general linear 
hypothesis on G independent means:

      H
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 = 
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,

      where 

 

C

 

 is q x G and full row rank; q 

 

≥

 

 1.  This 
handles virtually any common test on G cell 
means in a fixed effects design, including regular 
and special tests for factorial designs. [P; N; CI, 
for q = 1]

– Factorial ANOVA: tests of general main effects 
and interactions. Note: This can already be done 
by properly setting up H
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µµµµ

 

 = 
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. [P, N]

* General F test for linear models. First, outside of 
UnifyPow construct a set of 

 

exemplary

 

 data 
whose values conform to the expected values 
defined by some conjectured true model. That is, 
begin with an N

 

e

 

 

 

×

 

 q exemplary predictor (design) 
matrix, 

 

X

 

e

 

, and a conjectured vector of regression 
coefficients, 

  

ββββ

 

. Then compute the exemplary 
outcome vector, 

 

y
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 = 
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. Next, use any ordinary 
linear models routine to fit and ‘test’ the 
exemplary dataset of N

 

e

 

 cases defined by 

 

y

 

e

 

 and 

 

X

 

e

 

. (Note: the linear models routine must handle 
data with SSE = 0. PROC GLM does.) Let SSH

 

e

 

 
be the obtained sums of squares hypothesis value. 
Using theory described in O’Brien and Muller 
(1993), UnifyPow will accept N

 

e

 

 and SSH

 

e

 

 values 
to drive a sample-size analysis. This technique is 
cumbersome, but it will handle situations that fall 
outside of UnifyPow’s menu of common designs 
and tests. [P, N]
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 * One-sample binomial test of H
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 = 
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.
Default: 

 

π

 

0

 

 = .50 (sign test). [P, N, CI].

* Unconditional test of two independent 
proportions, H
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2
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δ
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. For default of

 

δ

 

0

 

 = 0, this conforms to the usual 

 

χ

 

2

 

 test and 
likelihood ratio test of association in a
2 (groups: A vs. B) 

 

×

 

 2 (outcome: yes vs. no) 
contingency table. [P; N; CI, for both the log odds 
ratio, ln(

 

ψ) = ln(π1/π2), and δ = π1 – π2.]

* Fisher's exact conditional test of two independent 
proportions.This parallels the functionality for the 
unconditional version of the test described 
immediately above.

* Test of two correlated proportions. Let πij be the 
true proportion of cases falling into cell {i,j} of a 
2 × 2 contingency table. Then
H0: π1+ – π+1 = δ0 compares the row and       
column marginal probabilities. This is identical to 
H0: π12 – π21 = δ0. Conditioning on the discordant 
frequencies, f12 and f21, gives McNemar's test.       
[P, N, CI, for both log odds ratio, ln(ψ) = 
ln(π1/π2), and δ = π1 – π2.]

* Overall likelihood ratio test on G independent 
proportions or logits, ln(ψj) = ln[πj/(1 – πj)]. [P, N]

* Wald-type tests of the general linear hypothesis 
over G independent logits:

      H0: Cψψψψ = 0,

where C is q x G and full row rank; q ≥ 1.  Used 
properly, this handles log-linear models effects 
applied to contingency tables in which one of the 
variables is a dichotomous “response” and the 
others are predictors. [P; N; CI, for q = 1]

* General likelihood ratio test. Accepts –2lnL(full) 
and –2lnL(reduced)—or G2(full) and 
G2(reduced)—the log likelihood ratio statistics 
from two nested logistic regression or log-linear 
models (or other generalized linear model) that 
were fit to an “exemplary dataset” of Ne artificial 
cases constructed to give estimates identical to the 
user's conjectured population parameters. For log-
linear models, see the theory of the strategy, the 
results of the Monte Carlo work, and the example 
in O'Brien (1986), which is reprised in Agresti 
(1990). [P, N]

o Overall likelihood ratio test for multiple logistic 
regression to predict a binary Y = 0 or 1 from q 
X's.  Let π = Prob[Y = 1] = E[Y]. An R2-type 
measure (see Agresti, 1990, p. 110) is

   D(q Xs) = [–2lnL(null) – –2lnL(q 
Xs)]/–2LL(null)

where –2lnL(null) and –2lnL(q Xs) are log-
likelihood statistics from the null model (intercept 
only) and the one with q predictors (“q Xs”). Let 
D′(q Xs) be the population counterpart to D(q Xs), 
technically, the limit of D(q Xs) as Ntotal 
increases. Power is computed by specifying π and 
D′(q Xs). [P, N]

REGRESSION AND CORRELATION

* One-sample test of the Pearson correlation,
H0: ρ = ρ0. Default is ρ0 = 0 and the t test is used. 
When ρ ≠ 0, the test based on Fisher's r-to-Z 
transform is used. [P, N, CI]

* Overall F test for an ordinary least squares 
multiple regression model with q Xs. Letting ρ2 
be the population counterpart to the common R2 

statistic, this tests H0: ρ2(q Xs) = 0. [P, N]
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o Usual t test of H0: βj = β0j based on user's 
conjectures for βj; SD(Xj), the standard deviation 
of Xj; Tol(Xj) = 1 – R2(Xj | other q – 1 Xs), the 
tolerance of Xj in the model with q Xs; and SD(ε), 
the standard deviation of the residual variation 
term. [P, N, CI]

* Multiple partial correlation of q additional 
predictors given p Xs already in OLS regression 
model, i.e., H0: ρ2(q Xs | p Xs) = 0. [P, N]

* Linear contrast hypotheses on r-to-Z transformed 
independent Pearson correlations. Let the jth 
element of z be

      Z(ρj) = .5*ln[(1 + ρj)/(1 – ρj)].

Then we can test

      H0: Cz = 0,

where C is q x G and full row rank;
q ≥ 1. By far, the most common use of this test is 
to compare two independent correlations,

      H0: ρ1 – ρ2 = 0,

using

      H0: Z(ρ1) – Z(ρ2) = 0.

[P, N]

SURVIVAL ANALYSIS

o Log-rank tests comparing two groups. [P, N]

– Will offer greater functionality, but plans are not 
complete.

AGREEMENT

– Test on κ statistic for 2 × 2 table in one sample,
H0: κ = κ0. [P, N]

– Test on Lin's (correlation) coefficient of 
concordance between new continuous assay and 
gold standard, one sample, H0: Κ = Κ0. [P, N]

EXAMPLES
Limited space prevents a detailed introduction to all of
UnifyPow’s syntax and methods. I thought it would be
most helpful if I just presented some examples. By doing
so, I hope to show its ease-of-use and some of its depth.
These examples illustrate only a fraction of UnifyPow’s
complete functionality.

Example 1: Comparing Two Independent Proportions

BeeBop Athletic Equipment is testing an experimental
prototype of a running shoe being designed to be the
successor to its popular XDM model. Does the XDM-X
shoe reduce injuries? High-mileage runners will be
randomly assigned to run either in the XDM-X or the
XDM-S, which is just a standard XDM altered
cosmetically to make it also look experimental. To get
ample durability data on the XDM-X’s, 2/3 of the runners
will get the XDM-X. They will run at least 5 times/week,

50 miles/week for 26 weeks. One basic outcome measures
will be: Did a serious running-related injury occur?
(yes/no)

Let π = Pr[serious injury]. Ample experience with the
XDM shoe suggests that about 6% of these runners would
experience such an injury in this time period. BeeBop
believes that the XDM-X is a breakthrough in
biomechanical engineering that could cut this rate in half,
to 3%. Thus, the scenario is πS = .06 vs. πX = .03. BeeBop
plans to study about 200 runners, but could recruit as
many as 270. What is the statistical power if α = .05 and α
= .01?

The core UnifyPow statements are
PI .06 .03 . (Input 1)
WEIGHT .333 .667 .
NTOTAL 201 270 .
ALPHA .05 .01 .

The problem statement (here, PI) must come first. This
one sets the design (two independent proportions) and the
scenario (.06 vs. .03). If the design was one testing three
proportions, then the problem statement would have been
something like

PI .06 .03 .02 .
Note that statements terminate with a lone period (.) and
each statement must begin on new line. (I may improve
this syntax at some point.) The remaining lines may come
in any order. The WEIGHT statement specifies that 1/3 of
the cases will be in the first group. NTOTAL calls for power
to computed on 201 and 270 total cases (67+134 and
90+180). The ALPHA statement calls for the standard .05
and .01 test sizes. Any α-level may be used, thus allowing
for easy analysis of Bonferroni tests, such as α = .05/3 =
.0167 if a family of 3 tests was being co-protected.

Running UnifyPow with these simple statements
generates the results tabulated as Output 1 (next page).
Although comparing two independent proportions seems
like a simple problem, gifted statisticians have been
debating the fine points for years and now almost 25
different methods have been suggested just to get good p
values. Obtaining power probabilities for these tests is an
even tougher research problem. UnifyPow gives
approximate powers corresponding to four tests. The first
method given (“Pooled Approximated Unconditional”)
corresponds to the ordinary Pearson χ2 test, which can be
approximated well by doing an ordinary t test (i.e., using a
pooled variance) on Y = 0 (no) or 1 (yes) data; see
D’Agostino, Chase, and Belanger (1988). The second set
of values is also based on the t, but uses the unpooled
variance term and approximates the unconditional exact
test (Suissa and Shuster, 1985). Purists should favor this,
because it carries the “exact” moniker but does not rely on
the questionable conditioning restriction of Fisher’s exact
test, which UnifyPow also handles. Pragmatists should
understand that Fisher’s exact test generally has lower
power than the others, as demonstrated here by UnifyPow.
Finally, the last approximation corresponds to testing this
hypothesis via a standard logit analysis. 
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Output 1. Power for testing two independent proportions.

Scenario: pi .06 .03
------------------------------------------------
|                          |       ALPHA       |
|                          |-------------------|
|                          |  0.05   |  0.01   |
|                          |---------+---------|
|                          | Total N | Total N |
|                          |---------+---------|
|                          |201 |270 |201 |270 |
|                          |----+----+----+----|
|                          |Pow-|Pow-|Pow-|Pow-|
|                          | er | er | er | er |
|--------------------------+----+----+----+----|
|Pooled      |2-tail t     |.175|.220|.060|.082|
|Approx.     |-------------+----+----+----+----|
|Uncondit’l* |1-tail t     |.267|.323|.096|.126|
|------------+-------------+----+----+----+----|
|Unpooled    |2-tail t     |.151|.186|.049|.065|
|Approx.     |-------------+----+----+----+----|
|Uncondit'l**|1-tail t     |.234|.281|.079|.103|
|------------+-------------+----+----+----+----|
|Fisher's    |2-tld apprx  |.090|.129|.025|.040|
|exact       |-------------+----+----+----+----|
|conditional |1-tld apprx  |.153|.207|.044|.067|
|------------+-------------+----+----+----+----|
|Log Odds    |2-tail z     |.169|.211|.057|.077|
|Ratio Likhd |-------------+----+----+----+----|
|Ratio       |1-tail z     |.258|.311|.091|.120|
------------------------------------------------
*The Pooled Approximate Unconditional is
just a regular t test using Y = 0 (no) or 1 
(yes). It is very similar to the ordinary Pearson 
chi-square (unconditional) test for a 2 x 2 
table, but the t form seems to offer some 
improvement.
**The Unpooled Approximate Unconditional t test 
corresponds the Suissa-Shuster unconditional 
exact test.
See references in UnifyPow.guide.

Students and clients understand such tables.  They can
see directly how increasing α, increasing Ntotal, and using
a one-tailed test can increase power. In this case, BeeBop
sees power values that are much too small.

Example 2: Testing Two Means (Locations)

In their study of the XDM-X running shoe, BeeBop will
analyze a second outcome measure: the proportion of days
a runner is injured, including days when he/she runs with
the injury. Their data on the current XDM model suggests
that this will have a median of about 9% and that 95% of
these runners will have rates between 1% and 23%.
BeeBop expects the XDM-X to improve on this, perhaps
reducing the median injury-day rate to 7%, a 22%
reduction. What is the statistical power for this outcome
measure?

When the outcome measure itself is a proportion, it is
common to transform it using an arcsin function before
analysis by Normal-theory methods. We shall use
Yi = arcsin(Pi

1/2), where Pi is the injury-day rate for the ith

runner. In the Y scale, the 9% median for P becomes a
mean of µS = 0.30 and the 95% limits on P (1% – 23%)
become 0.10 and 0.50. Taking Y as Normal, this range
covers about 4σ units, so we conjecture that σ = 0.10. A
median of 7% for P transforms to µX = 0.27.

Consider the following UnifyPow statements:
MU .30 .27 . (Input 2)
WILCOXON
WEIGHT .333 .667 .
SIGMA .08 .10 .125 .
ALPHA .05 .
NTOTAL 201 270 .

Here we have a MU problem, that is, we are comparing
means with ANOVA methods. If we were comparing G
means, then G values would have been given. The SIGMA
statement directs UnifyPow to examine the power over a
range of three possible standard deviations. Each  value for
σ gives a separate set of power results based on the

Output 2. Power for testing two means.
Scenario: mu .30 .27
AND Alpha: 0.05
----------------------------------------------------------
|                          |           Std Dev           |
|                          |-----------------------------|
|                          |  0.08   |   0.1   |  0.125  |
|                          |---------+---------+---------|
|                          | Total N | Total N | Total N |
|                          |---------+---------+---------|
|                          |201 |270 |201 |270 |201 |270 |
|                          |----+----+----+----+----+----|
|                          |Pow-|Pow-|Pow-|Pow-|Pow-|Pow-|
|                          | er | er | er | er | er | er |
|--------------------------+----+----+----+----+----+----|
|Wilcoxon|2-tail W|Normal  |.679|.806|.491|.615|.341|.437|
|Mann-   |        |--------+----+----+----+----+----+----|
|Whitney |        |logistic|.737|.856|.546|.675|.382|.488|
|(Lehmann|        |--------+----+----+----+----+----+----|
|power   |        |Laplace |.847|.935|.669|.796|.486|.610|
|apprx)  |--------+--------+----+----+----+----+----+----|
|        |1-tail W|Normal  |.785|.882|.617|.731|.464|.564|
|        |        |--------+----+----+----+----+----+----|
|        |        |logistic|.832|.917|.669|.781|.507|.613|
|        |        |--------+----+----+----+----+----+----|
|        |        |Laplace |.911|.967|.776|.875|.612|.725|
|--------+--------+--------+----+----+----+----+----+----|
|t test  |2-tail t|Normal  |.703|.825|.514|.639|.358|.457|
|of two  |--------+--------+----+----+----+----+----+----|
|means   |1-tail t|Normal  |.803|.895|.638|.749|.481|.583|
---------------------------------------------------------- 
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ANOVA’s assumption of a common standard deviation for
the two groups. In this case, our target conjecture of σ =
0.10 is being “roughened” ±25%, to σ = 0.08 and σ =
0.125.

The WILCOXON statement directs UnifyPow to also give
powers for a Wilcoxon-Mann-Whitney test, the standard
nonparametric alternative to the two-group t test.
Approximate powers are computed assuming that the
parent distribution for Y is either Normal (“light” tailed: γ2
= 0.0), logistic (“slightly-heavy” tailed: γ2 = 1.2), or
Laplace (“moderately-heavy” tailed: γ2 = 3.0). It is known
that as kurtosis (γ2) increases, the WMW test becomes
more powerful relative to the t test. UnifyPow is able to
compute power using three different approximations, but
only the default one—the one that proved best in some
Monte Carlo research I did—is given here.

The output for this example is given on the next page.
Students and clients are often surprised to see how just a
“minor” change in σ can substantially affect power.

There is also another way to specify the power scenario
for the WMW test. Following Lehmann (1975),
Hettsmansperger (1984), and Noether (1987), the primary
parameter for the effect size is

p1 = Prob(Y1i > Y2i′),
where Y1i and Y2i′ are simply any random pairing of
observations from groups 1 and 2, respectively. Now we
have H0: p1 = .50. While p1 can be found from µ1, µ2, σ,
and the shape of the parent distribution, in some studies it
is easier to just work with p1 directly. For example, it
might be easiest to just ask Beebop researchers, “Consider
pairing a random XDM-S runner and a random XDM-X
runner. What is the probability that the XDM-S runner will
have a greater proportion of injury days? If their
conjecture is p1 = .60 and the parent distribution of Y is
thought to be moderately-heavy tailed, then the following
UnifyPow commands would be used:

2WILCOXON .60 . (Input 3)
PARENT LAPLACE 
NTOTAL 201 270 .
ALPHA .05 .
WEIGHT .333 .667 .

Other values for PARENT are NORMAL and LOGISTIC.

Related notes. Instead of the NTOTAL statements, we could
have used statements such as

POWER .80 .90 .
This causes UnifyPow to find minimum values for Ntotal to
achieve the stated powers.

The statement 2WILCOXON has the counterpart
1WILCOXON to handle the  one-sample Wilcoxon test,
otherwise known as the signed-rank test.  Here, we are
testing whether the median, δ,  exceeds some value, δ0.
The effect size is

p1 = Prob(Y > δ0).
Most applications of Wilcoxon’s signed rank test assess
the difference between correlated means in a “matched
pairs” situation. Here, Y is the difference score between

pairs of related observations, so δ0 = 0. Again, we have
H0: p1 = .50. If you believed that 70% of the pairs would
show a “positive” difference score and that the data would
be a little more tail-heavy than the Normal, then you
would specify

1WILCOXON .70 .
PARENT LOGISTIC

Example 3: One-Way ANOVA with Complex Contrasts

What if BeeBop had 3 variations of their experimental
shoe, XDM-X1, XDM-X2, XDM-X3? The design would
have four groups. Expanding on Input 2, consider the
statements

MU .300 .275 .270 .265 . (Input 4)
WEIGHT .334 .222 .222 .222 .
SIGMA .08 .10 .125 .
ALPHA .05 .
NTOTAL 207 270 .
NOOVERALL
CONTRASTS
“(1) XDM-S vs. XDM-X (all versions)”
   3 -1 -1 -1  .
“(2) Variation among XDM-X shoes”
   0  1  -1   0  .
>  0  0   1  -1  .

If the NOOVERALL statement had not been used,
UnifyPow would have computed the power for the overall
F test with 3 degrees of freedom, a test of questionable
value in this situation. The CONTRASTS statement focuses
on the two main questions in this study: (1) Is the XDM-X
(averaged over the three variations) better overall? (2) Is
there any difference among the XDM-X variations? These
are separate questions and do not need to be handled as a
family of contrasts. Persons thinking more conservatively
are free to use a Bonferroni adjustment, i.e. α = 0.05/2 =
0.025.

Being able to handle cell-means contrasts with multiple
degrees of freedom gives UnifyPow exceptional flexibility.

Other Examples

Other examples can be found in the downloadable files.

GETTING THE FREEWARE
UnifyPow is freeware distributed primarily via the
anonymous ftp site at the Department of Biostatistics and
Epidemiology at the Cleveland Clinic Foundation.
Downloading new versions periodically ensures that you
are getting the latest version I feel is safe for public
distribution.

The relevant ftp address is

ftp.bio.ri.ccf.org

and the directory is

UnifyPow.all 

in the root directory (not in /pub). If you know how to
obtain documents via anonymous ftp, this is all the
information you need. Start by obtaining and reading the
file ReadMe.power.
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You can also use Netscape to get the files. I recommend
this, but... beware of “cutting-edge” glitches.  Go to

http://www.bio.ri.ccf.org/power.html

Clicking on the obvious hypertext should give you a list of
the files in the UnifyPow.all directory. Clicking on a
filename (Start with ReadMe.power.) should bring
contents directly onto the screen. Doing a “Save As...”
(specifying either “text” or “source”) should create an
ASCII file on your machine. I have been able to read these
with many different editors and word processors, but not
all.

Legal Disclaimer

UnifyPow and its related files are freeware. You may give
them to others at no charge, and you may not charge a
“service fee” for their distribution. I distribute this work
pro bono, in the spirit of collaborative science.

Use these modules at your own risk.

THIS FREEWARE COMES WITHOUT ANY WARRANTY
WHATSOEVER.  RALPH O'BRIEN AND THE CLEVELAND
CLINIC FOUNDATION DO NOT AND CANNOT WARRANT
THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY
USING THIS FREEWARE AND ITS DOCUMENTATION.  IN
NO EVENT WILL RALPH O'BRIEN AND THE CLEVELAND
CLINIC FOUNDATION BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL, INCIDENTAL, OR SPECIAL
DAMAGES, INCLUDING LOST PROFITS OR LOST
SAVINGS, EVEN IF RALPH O'BRIEN OR THE
CLEVELAND CLINIC FOUNDATION HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY THIRD PARTY.

PROBLEMS AND SUGGESTIONS
One reason this project has remained active is because I
really do appreciate knowing if you encounter problems or
have suggestions for improvements. Most of the additions
to UnifyPow come about this way. On the other hand, I
cannot promise to address everyone's queries, especially
those that are mostly related to consulting advice. I
correspond best via email.
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