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Introduction

A variety of diverse data sets are of-
fered to the industrial statistician in
order to characterize variability in
reagents and instrument systems.
Many times this data contains puta-
tive outliers, missing data, augmented
data or so-called “equivalent data.”
To generate estimates of variability
the analyst must fust deal with these
minor problems before proceeding to
the major analytic fictions. For the
examples contained herein we will
address outliers, missing data and
equivalent data. In the medical diag-
nostics industry addressing the above
may be as simple as calculating vari-
ances for complete data sets, or as
non-trivial as characterizing the vari-
ance components from a variety of
sources. The SAS system offers
a number of ways of accomplishing
this and the analyst must be aware
how the design and source characteri-
zations affect the choice of statistical
tools.

A Sample Data Set

Our sample data set (Table 1.) comes
from a single control level of a standard
clinical chemistry analyte. These data
are collected on automated clinical ana-
lyzers that can repetitively sample and
randomly access any given sample cup

in a multi-sample carousel. Any given
repetitive sample of a given cup is called
a “rep” while the sum of all reps on that
sample constitutes a run.

The analyte is aliquoted into three
separate sample cups, all of which are
repetitively sampled so there are three
runs per instrument. Alternatively, 3
separate preparations (of the same
reagent) are made and each aliquoted
into 3 cups. Two instruments are run in
this manner for a period of 5 days.
Therefore we have, 3 reps per run, 3 runs
per instrument, 2 instruments per day for
fivedaysfor atotalof3x 3x2x50r90
data points. How we treat these data
points will depend on what we would
like to define as our experimental unit.

We will first examine the data for tran-
scription errors and then examine the re-
sultant set for outliers. This can be done
graphically by:

data analy-te;
input day instru run rep concen;
time = run+ day*lO;
datalines;
(data here)
proc gplot data = analyte;
plot y*time = instru;
run;



proc sort data= analyte;
by ktrl,l;

run;

proc gplot data = analyte;
by ktll.l;

plot y*time / vaxis = 150 to 210
by 10 vminor = 1;
run;

By visualizing the data graphically we
reveal several potential outliers as well
as trends, i.e. an increase k means with
time and a decrease in variance with the
second instrument. The putative outliers
may be firther investigated for possible
removal by checking experimental logs
(justifiable cause) applying standard sta-
tistical methodologies (3 and 4 sigma
rules, Dixon’s test, Shapiro-Wilk’s W
and generalized ESD tests) or re-
running portions of the experiment,
sample permitting. In this case
we choose to retain all of the data
points.

Missing data may be handled by gener-
ating points statistically based on extant
data or using those SAS procedures
(such as Mixed) that can handle such
problems. “Equivalent” data requires
consultation with the personnel who
generated the data and calls for some
judgments on the part of the
statistician.

With a “clean” data set we proceed to
the next phase. One of the more import-
ant aspects in studies such as these are
to identify and estimate the relative con
tributions to total variability from the
various sources. This is done to identify
and isolate those candidates for variance

reductions by scientific and engineering
teams. SAS/STAT(W offers a variety of
procedures to do this including Proc
GL~ Proc Mixed, Proc Nested and
Proc Varcomp. Each method offers
unique advantages under different
circumstances.

Table 1.
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proc mixed method . REML;

class day instru m rep;

model concen . instru;

random day instru*day run(instru*day) ;

lsmeans instru/pdiff;

m;

Analysis

Proc Varcomp

The Varcomp procedure assumes that,
unless otherwise specified in the model
statement, allinput variables represent
random effects. Themodel statement
will specify both the dependent and in-
dependent (effects) variables. The ef-
fects utilized may be main effects, inter-
actions or nested effects but not continu-
ous fbnctions. The procedure offers
four computational methodologies. For
data distributions occuring in our sytems,
biochemical/electronic, we find that the
Restricted Maximum-Liklihood Method
(R.EML) most useful. This method seg-
regates the liklihood into two parts; one
containing the Fixed effects

and the other containing no fixed effects.
The procedure iterates to convergence
the log-liklihood objective function for
that liklihood fhnction not containing
the fixed effects. The method gives
both the variance component estimates
and the asymptotic covariance matrix,
both useful in characterizing variability.
In addition, we are never troubled by
the negative variance estimates that
sometimes occur with Type I and
MIVQUEO. This by itself however, is
no reason to select Varcomp and during
this procedure we have to do assumption
checking and error calculations .

The following code runs this data:

data analyte;
input day instru run rep concen;
datalines;
(data here)

proc Varcomp method = reml;
class day instru run rep;
model concen = day

instru
day*instru
run(day instru)
rep (run);
run;

The importance of determining the exact
identity of the experimental unit may be
illustrated by arranging the same data as
in Table 2. Here we see that by consid-
ering each repetition to be unique, as op-
posed to essentially similar samples, the
error is ascribed to repetition rather than
to baseline error. This is anon-trivial
distinction as the replicates are usually
treated as non-unique.
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Table 2.
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This linear model is a generalization of
the standard model used in GLM and has
the advantages of permitting data
collection and heteroscadasticity.
Variance/Covariance parameters (and
therefore variance components) can be
obtained from the output of the Covari-
ance Parameter Estimates. One of the
most useful features of Mixed is the cal-
culation of appropriate standard errors
for all estimable linear combinations of
fixed and random effects as well as for
the corresponding F and t tests. The cal-
culation of appropriate error terms for
the least squares means represents a ma-
jor advance over Varcomp, where those
needed to be hand-calculated for verifi-
cation. The ability to handle unbalanced
data is a deftite plus in clinical diagnos-
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tics where data may be lost due to a
variety of factors.

In the model that follows (Table 3.) the
REML method is again found usefi,d. It
is immediately noticed that the
covariance estimates are quite close to
those calculated by Varcomp. One dif-
ference is that here instrument) is
declared to be a fixed effect, a truer
picture or our purpose. Many times
we will either use the instruments avail-
able or choose those that we feel are
most representative of that population of
instruments in the field.

We also note that a wide choice of
methodologies are available within Proc
Mixed to test assumptions. For example,
we may test for heterogeneity of
variance across the independent
variables or request confidence limits on
the estimates. This may be implemented
for instru by the following:

proc mixed;
class statement;
model statement;
random statement / grp = instru;
lsmeans instn.ddiff cl;

This is sigrdlcant where variability itself
may vary across levels of a factor. In
any event, these are highly interesting
and important methodologies that yield
accurate estimates of process variability
sources.

data analyte;
input day instru run rep conc~,
c=ds;
(data here)
proc proc mixed method~eml;
class day instru run rep;
model concen = inst:
random day instru*day run(instrn*day)
lsmeans instrw’pti,

Parameter Estimates

Proc Mixed

!?!!klw rion-unique
Day 42.89 42.89
Day*Imtru o 0
Run (Day*Instru) 19.31 19.31
Residual 41.64 41.64

Proc VarcomP
unique non-unique

Day 43.06 43.07
Jnstru o 0
Rep(Run) 40.71 4.16
Day*Instru o 0
Run (Day*Instru) 18.30 19.81
Residual 0.92 36.84

John A. Wass
Abbott Laboratories
Ph: (847) 938-3675
Fax: (847) 937-2486
EMail: John.Wass@add.ssw.abboti. com
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