
THE TOBIT MODEL: AN EXAMPLE OF MAXIMUM LIKELIHOOD ESTIMATION
SAS/IML@

Charlie Hallahan

USDA/Economic Research Service

WITH

Introduction

The censored normal regression model is also known as
the tobit model. Tobit models can be estimated with
maximum likelihood estimation, a general method for
obtaining parameter estimates and performing statistical
inference on the estimates. Although the Tobit model can
be estimated with Proc Lifereg, this paper will illustrate
how the extensive library of optimization routines
callable from the matrix programming language
SASAML are available to solve nonstandard estimation
problems. A summary of MLE and the optimization
algorithms will be followed by a Tobit example.

Maximum Likelihood Estimation

Let Y be a random variable with probability density
fimction (pdf) f(y;Q)- or probability mass fimction @f) if
Y is discrete - where Q is a p-element vector of
parameters and let X = [Yl, YJ’ be a random vector
where each Yi is distributed as Y. Given a random sample
Y=[YI, ..., yN]’ drawn from Y, the likelihood Ilmction is

defined as L(QY) = fifii;Q) md l@,Y) = log(L(B;9)
i.1

is the log-likelihood. The maximum likelihood estimate
(MLE) of Q is that value of Q, say & that maximizes
l(f&J. Under fairly general conditions the MLE has the
desirable properties of being consistent, asymptotically
efficient, asymptotically normal, invariant and
computable. By invariance is meant that if Q = Q(Q)
then & = G(Q). References for maximum likelihood
estimation include Eliason, Davidson and MacKirmon
(Chapter 8), and Cramer.

When the MLEfi lies in the interior of the parameter
space, then~ satisfies the likelihood equations or fmst-
order conditions:

g(&JJ = 0

where@;y) is the gradient vector or score vector,

az(~;~
gj((3;y) = —

aej
j=l,...,p

For inference on~ , an estimate of F@) , the covariance

rYl(Q;y)
of~ , is needed. Let H(6 ;y) = be the Hessian

a~ a@

matrix of l(&,y) evaluated at ~ . Then

i(o) = [-I@3;y)]” is

a consistent estimator of I@). An alternative estimator of
F@) involving only first derivatives is given by using a

matrix C, called the contributions to the wadient matrix
by Davidson and MacKinnon. For N observations and p
parameters, C is a pxN matrix with

al.
Cij(@ = --& where lj = Z(&yj)is the log-likelihood

function eva~uated at the jti observation of y. Letting ~ be

the j* column of C, then ~(~) = [~ Cj(fJ cj(~’]’1.
j.~

The procedure then to carry out maximum likelihood
estimation is to specifj a likelihood function, use
nonlinear optimization to maximize the likelihood
fimction and, finally, calculate the standard errors of the
estimates. The above discussion shows that a matrix
language is a natural tool for this last step. The inclusion
of many optimization routines in SAS/IML provides IML
with all the pieces necessary to carry out the complete
MLE procedure.

Nonlinear Optimization

IML offers a number of nonlinear optimization routines
that can be applied to obtain a MLE. The available
routines are:

NLPCG
NLPDD
NLPNMS
NLPNRA
NLPNRR
NLPQN
NLPQUA
NLPTR

- Congugate Gradient
- Double Dogleg
- Nelder-Mead Simplex
- Newton-Raphson
- Newton-Raphson Ridge
- (Dual) Quasi-Newton
- Quadratic Optimization
- Trust Region

and for nonlinear least squares problems:

NLPLM - Levenberg-Marquardt
NLPHQN - Hybrid Quasi-Newton

Two specialized routines are:

NLPFDD - Approximate Derivatives by Finite
Differences

NLPFEA - Feasible Point Subject to Constraints

For documentation see Chapter 4 of SASJIML Sofbvare -
Changes and Enhancements through Release 6.11. Each
method has its own requirements for derivative
information and the.kinds of constraints it can handle. For
example, Newton-Raphson requires fust- and second-
order derivatives and handles boundary and linear
constraints; quasi-Newton needs only fwst-order
derivatives and can handle boundary, linear and nonlinear
constraints; Nelder-Mead Simplex method needs no
derivatives and can also handle boundary, linear and
nonlinear constraints.

For those methods requiring fust- andfor second-order
derivatives, if the user does not supply these derivatives
then they are approximated by finite difference formulas.
The routine NLPFDD is helpful in checking user-supplied
analytic derivatives with finite difference approximations.

The objective flmction for least squares problems can be
written as j(fl) =%@(Q) +... +2(Q)). When using the two
special least squares routines NLPLM or NLPHQN, the
finctions j@ are specified. For the other algorithms the
nonlinear fiction HQ) is passed as an argument and the
special least squares structure is not taken advantage of.

When nonlinear constraints are not imposed on the
parameters the optimization algorithms are feasible ~oint
methods. Given a feasible point Q(k),a search direction
is found and the next feasible point Q@+])determined.—
If an initial feasible point is not supplied, the optimization
routines call NLPFEA to fmd one.

The NLP procedure in SAS/OR can also do nonlinear

optimization (see Hartmann and Ashton for a comparison
of IML with NLP). An advantage of IML is the
flexibility of the matrix language in formulating
likelihood timctions and calculating standard errors. NLP
is faster and can compute analytic frost- and second-order
derivatives with a special compiler.

The syntax for calling the various optimization routines is
essentially the same. The Quasi-Newton routine NLPQN
will be used for illustrative purposes. Since NLPQN uses
f~st derivatives, it is better that the user provide analytic
derivatives instead of relying on finite difference
approximations.

The fust step is to write an IML function module defining
the function to be maximized, in our case the log-
likelihood. The second example presented below in more
detail is a probit model. Call its log-likelihood function
LL and let theta be the (row) vector of arguments for LL,
i.e., the parameters of the underlying distribution. For use
with the optimization routines the fimction module LL
can only have the distribution parameters passed as
arguments when LL is called. Other quantities needed to
evaluate LL, such as the observed data, can be passed to
LL via the global option. In this example the data consists
of three variables, dose, n and response. A skeleton of the
module LL is:

start LL(theta) global(dose, n, response);
(body of fi.mction)

f=...;
return(f);

finish LL;

The second module needed for this example defines the
gradient of LL. Since the parameter vector theta has two
components in this case, the gradient is a 1x2 row vector.
A skeleton of the gradient module is:

start GRAD(theta) global(dose, n, response);
nparm = ncol(theta);
g =j(npann,l,O);
g[l] =
g[2] =
return(g);

finish GRAD;

For standard errors the user can define modules to
calculate either the pxp Hessian matrix or pxN
contributions to the gradient matrix CG defined above.
Skeletons of these modules are:

start HESS(theta) global(dose, n, response);

2

nparm = ncol(theta);
H = j(nparm,nparm,O);
H[l,l] =

H[nparm,nparm] =
return(H);

finish HESS;

start CG(theta) global(dose, n, response);
nparm = ncol(theta);
nobs = nrow(dose);
CG = j(nparm,nobs,O);
CG[l,l] =

CG[npann,nobs] =
return;

finish CG;

In most cases there will be a pattern to the matrix CG and
it can be defined in a loop.

Once modules for the function and its derivatives have
been defined, the IML function NLPFDD is usefid to
compare the user-defined analytic derivatives with finite
difference approximations produced by NLPFDD. The
syntax for NLPFDD is:

CALL NLPFDD(f,g,h, “fim’’,xO<,par,’’gr>);>);

The argument “fun” refers to the user-defined module for
the function to be optimized. In our case, we’re calling
this fiction LL. If “fin” returns a scalar, then NLPFDD
returns the function f, gradient g and Hessian h evaluated
at the point xO.Also, for a scalar “fun” the optional
argument “grd” refers to a user-defined module (which in
our example is called GRAD) which calculates analytic
derivatives. NLPFDD then reports on any discrepancies
between the analytic and approximate derivatives. The
user could do this directly as follows:

theta = (0.5 0.3);
gradl = GRAD(theta);
call NLPFDD(f,g,h, “LL’’,theta);
print ‘For theta = ‘ theta ‘ analytic gradient = ‘

gradl - approximate gradient= ‘ g;

If “tin” returns a column vector of m fimction values,
then NLPFDD assumes a least-squares fi,mction is
specified and calculates the vector f, Jacobian matrix J
and cross-product matrix YJ evaluated at xO. The now
required argument par has three components: par[1]
specifies m, the number of values returned by “fun” and
the other components control details of the approximation

and precision.

The syntax for Quasi-Newton Optimization is:

CALL NLPQN(rc,xr,’’fhn’’,xO<>);.>);

<,...> refers to a list of 8 optional, positional arguments.
These arguments also have an alternative keyword-type
specification that avoids counting commas. For example,
to pass the name of the gradient module to NLPQN:

CALL NLPQN(rc,xr,’’LL’’,theta,,,,,GRAD”);”);
or

CALL NLPQN(rc,xr,’’LL’’,theta) grd=’’GRAD”;

The argument rc represents a return code ranging from
-10 to +10 indicating the status at termination of the
optimization problem. A return code rc >0 indicates
successful termination. A summary of the values of rc is
on p. 161 of the SAS/IML reference.

The row vector xr is the optimal solution when rc >0. A
variety of user-controlled options are available with the
other arguments; for example, specifying constraints,
termination criteria and algorithmic-specific variations.
Through the “ptit” argument the user can provide an IML
module to control the iteration history and termination
criteria.

An Illustrative Example

Before presenting the Tobit model a simple example with
the Rosenbrock ti,mction will be given to illustrate the
mechanics of using the IML optimization routines. It is
discussed in the SAWIML Sotlsvare reference.

The Rosenbrock function is defined as

j?j) = *[100 (X2-X:)z +(1 -x,)’]

= :C7y(x) +f;(x)l , X=(X1,X2)

The minimum occurs at x*= (1, 1). A plot of f(x) is given
below.

3

print ‘Solution =‘ xres;

The IML modules defining the function, gradient and
Hessian are listed below. Since the Trust Region Method
is used, second derivatives are needed.

Various combinations of starting values and specifying
the gradient and/or Hessian were tried. The results are
below.

Start Solution Gradient Hessian
--

(2.0 2.0) (1.0000 1.0000) Y Y
(2.0 2.0) (1.0000 1.0000) Y N
(2.0 2.0) (0.9999 0.9999) N N
(-2.0 -2.0) (0.9999 0.9999) Y N
(-20.0 20.0) (1.0000 1.0000) Y N

The Tobit Model

* define function;
start F_ROSEN(x);

yl = 10. * (X[2] -X[l]*X[l]);
y2 = 1. -x[l];
f= .5 * (yl*yl + y2*y2);
return(f);

finish F_ROSEN;
* define gradient;
start G_ROSEN(x);

g =j(l,2,0.);
g[l] =-200. * X[l] * (X[2] -X[l]*X[l]) - (1. - X[l]);
g[2] = 100. * (X[2] - X[l]*X[l]);
return(g);

finish G_ROSEN;
* define Hessian matrix;
start H_ROSEN(x);

h = j(2,2,0.);
h[l,l] = -200. * (x[2] - 3.*x[l]*x[l]) + 1.;
h[2,2] = 100;
h[2,1] = -200. * x[l];
h[l,21 = h[2,11;
return(h);

finish H_ROSEN;
* define starting values;
x = {2. 2.};
* define options;
* 1st arg defines type of problem: = Omeans

‘minimization problem’;
* 2nd arg controls output: = 2 means iteration history +

initial & final parameter estimates;
Optn= {0 2);
* syntax for NLPTR call
nlptr(rc,xr,’’fun’’,xO,<opt,blc,tc,par, “ptit’’,’’gr,’’,’’>);’’>);

call nlptr(rc,xres,’’F_ROSEN’’,x,optn) grd=’’G_ROSEN”
hes=”H ROSEN”;—

reset noname;

The tobit model is also known as a censored regression
model (see Breen & Greene for thorough discussions of
the tobit model). A censored model is similiar to a
truncated model. In a censored model some sample values
are reported at a limit value instead of at actual values,
and in a truncated model only non-limit values are
reported, i.e., the truncated sample is drawn from a subset
of the target population. For example, in a studying
household incomes for a population of households, a
minimum value of household income of $10,000 maybe
set and all values below $10,000 are reported at the limit
value of $10,000. If the sample consists of observations
both above and at the limit then the sample is censored. If
only observations above the limit are in the sample, then
the sample is truncated.

The tobit model can be described in terms of a latent
variable y*. Suppose y* = ~ + e where e - N(O, 02) and
the observed variable y satisfies :

Y=y” ify”~a
y=a ify” < a

for some limit value a. Truncation ffom above can be
similarly treated. y is called a censored normal variate. It
can be shown that

E[y/x] = O(U) a +(1 - @(et))(p + d.(a))

where a = (a - p)/o, A(ct) = @(c.t)/(1- O(U)) , v = ~ and
1$and@ are the standard normal density and distribution
functions respectively (see Greene, p. 692). A,(ct)is called
the inverse Mills ratio. Therefore, the marginal effects are

dE[y*/x]/i3x=Q
and

~E[y/x] /i3x=E@((ti-a)/o).

Note that the marginal effect on E[y*/ x] is the usual
formula for a linear model, but that the marginal effect on
the mean of the censored variable y is a positive multiple
of&l.The marginal effect can be easily calculated in IML.

In deriving the log likelihood finction for the censored
regression model, we can assume that the limit value a =
O(otherwise, define z = y - a, z is censored at O).

in L = - % ZI (ln(27c)+ ln(o’) + (y - ~)2/ a’) +
X, h(l - @(fii/0))

where the fwst sum 21 is over the non-censored
observations and the second sum XOis over the censored
observations.

While not required, the f~st derivatives of h L with
respect to the parameters ~ and u can be carefully worked
out and, even more carefifiy, coded into an IML module
to calculate the gradient vector. Fortunately, the HvIL
module NLPFDD is available to catch the inevitable
errors made on the fwst ten attempts.

The example on page 1024 of the SAS/STAT User’s
Guide uses PROC LIFEREG to estimate a tobit model.

title ‘TOBIT.SAS: MLE using IML of Tobit Model for
Durable Goods Expenditures’;
data test;

input durable age lqty 6)6);
if durable = O then lower = .;

else lower = durable;
limit = lower;
label durable = ‘Durable Goods Purchase’

age = lAge in Years!
lqty = ‘Liquidity Ratio Times 1000’;

cards;
0.057 .72360.0 59.8216 10.446.8207 0.039.9 219
0.750.9283 0.0 44.3 284 0.058.0 249 0.033.4 240
0.0 48.5 2073.745.1 221 0.0 58.9 246 3.5 48.1 266
0.0 41.7220 0.0 51.7275 0.0 40.0 277 6.1 46.1 214
0.0 47.72383.0 50.0 269 1.5 34.1 231 0.0 53.1 251;
proc 1ifereg;

model (lower,durable) = age lqty / d=normal
nolog itprint corrb covb;
run;

Some of the output is:

Log Likelihood for NORMAL -28.92596097
Last Evaluation of the Gradient

INTERCPT AGE
3.6226E-10 1.8215E-8

Variable OF Estimate
INTERCPT 1 15.2771208
AGE 1 -0.1340075
LQTY 1 -0.0451356
SCALE 1 5.56935051

LQTY SCALE
8.69292 E-8 -1.49385E-9

Std Err ChiSquare
16.03272 0.907964
0.218931 0.374664
0.058269 0.600026
1.728145

Estimated Covariance Matrix

INTERCPT AGE LQTY SCALE
INTERCPT 257.0481 -1.7205 -0.7251 1.36720
AGE -1.7205 0.0479 -0.0019 -0.07174
LQTY -0.7251 -0.0019 0.0033 -0.00053
SCALE 1.3672 -0.0717 -0.0005 2.98648

A macro using SAWIML to estimate the tobit model is
now listed:

%nacro tobit(dsn=_last_, y=,x=,cutoff=O, theta=O);
proc iml;

reset noname;
use &dsn;
read al 1 var {&x} into x;
read al 1 var {&y} into y;
yx=yl lx;
* a = lower truncation point;
a = &cutoff;
* define var indicating censored ohs;
limit = y;
limit [loc(y=a)l = .;
n = nrow(y);

nO = ncol(loc(limit=.));
print nO “ observations are censored at

&cutoff out of u n Itobsll;

* define log likelihood function;
start LL(theta) global (yx, limit, a);

* split data into censored and uncensored ohs;
yxl = yx[loc((limit ‘= .)),1;
nl = nrow(yxl);
k = ncol(yxl);
yl = yxl[,ll;
xl = j(nl,l,l) II yxl[,2:kI;
yxO = yx[loc((limit = .)),1;
nO = nrow(yxO);
k = ncol(yxO);
yo = yxo[,ll;
XO ❑ j(nO,l,l) II yxO[,2:k];
* separate param vector into beta and sigma;
k = ncol(theta);
kl = k-l;
beta = theta [1:kll ;
sigma = theta [k];
sigma2 = sigma*sigma;
alpha = (a - xO*beta)/sigma;
n = nrow(y);

pi = arcos(-l);
chk = probnorm(alpha);
zero = loc(chk<=O);
if nrow(zero) >= 1 then chk[zero] = O.le8;
f = -(nl/2) *(log(2*pi) + lo9(si9ma2))

- ssq(yl - xl*beta)/(2*sigma2) +
(log(chk))[+l;

return(f);
finish LL ;

* define gradient;
start GRAO(theta) global (yx, limit, a);

* Spl it data into censored and uncensored ohs;
yxl = yx[loc((limit ‘= .)),1;
nl = nrow(yxl);
k = ncol(yxl);
yl = yxl[,ll;
xl = j(nl,l,l) II yxl[,2:kl;
yxO = yx[loc((limit = .)),1;

nO = nrow(yxO);
k = ncol(yxO);
yo = yxo[,ll;
Xo = j(no,l,l) II yxO[,2:kl;
* define gradient vector;
k = ncol(theta);
g = j(l,k,O);
* separate parms into beta and sigma;
kl = k-1;
beta = theta[l :kll ;
sigma = theta [k];
sigma2 = sigma*si gma;
nl = nrow(yl);
pi = arcos(-l);
alpha = (a - xO*beta)/sigma;
phi =

l/(sqrt(2*pi))*exp(-alpha#alpha/2);
lambda = phi/probnorm(alpha);
templ = (yl -“xl*beta)/sigma2;
temp2 = lambda/sigma;
g[l,1 :kll = templ’*xl - temp2’*xO;
g[l ,kl = -nI/sigma + ((yl - xl*beta)#(yl -

xl*beta)/(sigma2*sigma)) [+1 -
((alpha#l.ambda)/sigma) [+1;

return(9);
finish GRAO ;

optn={? 2>;
* define starting values for theta:

either user-provided or OLS;
thetaO = θ
if thetaO = O then

do;
k = ncol(yx) + 1;
n = nrow(y);
thetaO = j(l,k,O);
xx = j(n,l,l) II x;
beta = inv(xx’*xx)*xx’ *y;
e = y - xx*beta;
s = sqrt(ssq(e)/(n- k));
thetaO[l:(k-1)1 = beta’;
thetaO [k] = s;
print ‘OLS starting values for theta = ‘

thetaO;
end;

else print ‘User-supplied starting values for
theta = ‘ thetaO;

call nlpnrr(rc, theta, ILL!,thetaO,optn)
grd=’GRAO’;

call nlpfdd(f, g,h,’LL’, theta);
var = inv(-h);
sd = sqrt(vecdi ag(var));
print lHessian = 1 h 1 Covariance matrix = ‘ var

i Standard errors = 1 sd;
run;

%nend;

%tobit(dsn=test, y=durable, x=age lqty);

Some of the output is:

13 observations are censored at O out of 20 obs
OLS starting values for theta = 11.135579 -0.027717
-0.0345062.7914862

Parameter Estimate Gradient
1 xl 15.277121 -1.086E-10
2 x2 -0.134008 -5.527E-9

3 x3 -0,045136 -2.8239E-8
4 x4 5.569351 4.3235E-10
Value of Objective Function = -28.92596097
Standard errors = 16.067133

0.219058
0.0584599
1.7280038

Comparison of the LIFEREG and macro output shows
agreement for the parameter estimates and standard
errors. The advantage of IML is that quantities of interest,
such as the marginal effects, can be computed with just an
additional line of code.

Conclusions

SAS/IML provides all the tools necessary to perform
maximum likelihood estimation and inference. IML’s
flexibility places all aspects of the MLE procedure under
user control. To illustrate the process a Tobit model was
presented and estimated with IML.

References

Breen,R. (1996), REGRESSION MODELS Censored

Sample Selected or Truncated Data, SAGE
Publications

Cramer,J.S. (1986), Econometric applications of
Maximum Likelihood methods, Cambridge University
Press

Davidson,R. and J. MacKinnon, (1993), Estimation and

inference in econometrics, Oxford University Press
Eliason,S.R. (1993), Maximum Likelihood Estimation,

SAGE Publications
Greene, W., (1993), Econometric Analysis, Macmillan
Hartmann,W. and J. Ashton, (1995), Maximum

Likelihood Estimation with PROC NLP and

SAS/IML Soj?ware, Proceedings of the 20th SAS
Users Group International Conference, 311-317

SAWML Softiare: Changes and Enhancements through

Release 6.11, (1995), SAS Institute
SAS/STAT User’s Guide, Version 6, Fourth Edition,

Volume 2(1 990), SAS Institute

The author can be contacted at:

Charles Hallahan
USDA/ERS/ISD, RM 212
1301 New York Ave, NW
Washington, DC 20005

hallahan@econ.ag. gov
202-501-6928
202-219-0112 (fax)

6

	Main TOC

