
Storage Strategies for Data, Formats, Catalogs and Other
Information in Application Development Using The SAS@System

Sharon Mosley-Hixon and Ray L Ransom, Centers for Disease Control and Prevention

Abstract

When doing cross-platform development using the
SAS System, developers have many options for the
storage and access of information needed and
generated by their applications. Using the many
different engines provided and SAS/ACCESS@
software, developers are not restricted to traditional
SAS table and catalog storage. Alternative means of
storage can enhance an application by minimizing
maintenance required, increasing query speeds for
large tables, standardizing storage strategies,
efficiently using RAM, and utilizing the advantages of
the Structured Query Language (SQL). Developers
of a sexually transmitted disease (STD) information
system (STDINFO) at the Centers for Disease
Control and Prevention(CDC) tried storing
information in several standard and alternative
structures recognizing benefits and short-comings of
each approach. This paper will provide a brief
description of these strategies and discuss their
performance with various SAS/AF@ software FRAME
classes and certain specific objects. An overview of
storage solutions selected for STDI NFO will be
demonstrated. This information is applicable to
developers running SAS version 6.11 on the UNIX,
Wh_tdows 3.1, Windows NT, and Windows 95
operating systems.

Introduction

STDINFO is an information system being developed
at CDC by the Division of Sexually Transmitted
Disease Prevention (DSTDP). A decreased
programmer to researcher ratio and the increasing
computer savvy of the researchers are driving
DSTDP programmers into positions of application
developers to maximize use of limited programmers’
time. FRAME development and true object-oriented
programming being relatively new to the SAS
system, resources for tips and techniques using SAS
Screen Control Language (SCL) are in great
demand. Having benefited from many such papers,
developers in DSTDP wish to share some of their
experiences with other SAS developers.

DSTDP maintains seven surveillance data sets and
accompanying format catalogs on an IBM MVS

mainframe. This data collection and management
process is routine and has remained fairly
unchanged for several years. Every year the average
researcher and statistician becomes a little more
“comfortable” in a “Windows-like” environment due
to the ever increasing presence of the PC on
desktops and in homes. This trend has resulted in an
increased reluctance for scientist to navigate an
often cumbersome mainframe environment. As a
result, requests for queries on or downloaded
subsets of surveillance data are made to the DSTDP
programmers. These tasks often take two weeks to
complete simply due to heavy work loads. This
inefficiency reduces the likelihood of scientists
utilizing the surveillance data. Programmers
recognize that the relative staleness of these data
and the consistency of the requests make
application development the obvious solution to this
problem. Given that the tables and formats catalogs
would be maintained on the network by data
management staff, developers proceeded to plan for
the application (STDINFO).

Application Requirements

Developers recognized STDINFO must run quickly
and be easy to use in order to be accepted by
DSTDP staff. To minimize impact on DSTDP
resources the application also must require little to
no training and minimal maintenance as data are
added on a regular basis. The application must be
well documented and all processes of preparing
tables for the application from the original master
files must be automated through batch or cron
processing. STDINFO will be used by approximately
150 clients accessing the application from the
desktop.

DSTDP Resources

■ Master data tables and formats catalogs
maintained by data management group

■ IBM MVS mainframe
■ SUN@ UltraSPARC Enterprise 3000 system
■ VVindows NT Server with SQL server
■ Novell application server
■ SAS software, version 6.11 wave 2 available on

all platforms

1



■ PC Clients ranging from 486/50 16M RAM to
Pentium Pro 20032M RAM

g Windows 3.1/Windows95 on clients
■ OLE compliant network software (WP6. I@, Lotus

Freelance@, Harvard Graphics@, etc.)

Application Data

■ Indexed table of data to be queried
■ Format catalogs

-stored value
-formatted value

■ Variable names
■ Variable labels
■ Graphics

-maps
-generated tables/charts

■ Frame catalogs and associated SCL code
■ Help text/documentation
■ Other tables generated in batch for application

Storage Strategies

The master data tables are downloaded from the
mainframe and stored on the SUN system. Variable
lengths are shortened and an index is built on the

Figure 1.

key variables used for querying. For further
explanation of the systems architecture and the
decision to remote submit queries on these indexed
tables to the SUN system, please refer to Keith
Humphrey’s paper in these same proceedings. The
primary focus for this paper is the storage of
additional information required by STDINFO. At the
time of this paper’s publishing, the primary objective
of the application is to allow users to select subsets
of yearly STD surveillance data and calculate rates
on selected BY-variables or save subsetted tables
for further analysis.

The indexed data table contains basic demographic
variables and case and population counts for all
strata. The application user is prompted to specify
selection criteria and BY-variables using a
combination of widgets including a text label, text
entry and control object. When the control object is
activated an SCL list appears containing all values
for that variable. This SCL list somehow must be
populated with that information. Once selection
criteria are specified and desired states are selected
from the hot-spotted map clicking on the RUN icon
object remote submits the SQL code including an
SQL query to the SUN system (see figure 1 & 2).

2



Figure 2.

This one frame requires several pieces of
information which can be provided in various ways.
For instance, we first tried to use list boxes
containing the formatted variable values but soon
realized that the screen was not large enough to
allow for all the necessary list boxes. Popmenus
were the next obvious choice, but this option does
not allow for multiple selections, therefore, a control
object popping up an SCL list was decided upon.

Now we are faced with how to populate the SCL list.
First we populated the list manually in the SCL code
behind the frame, but it was pointed out this would
require editing the SCL every time new data were
introduced to the application (an additional year, for
instance) . Given that the data management group
would manage the format catalog, we decided to
populate the list from the indexed data table using
the formatted values. After referencing Don Stanley’s
paper titled “Using List To Replace Formats In SCL
Applications” presented at SUGI 21, we decided to
create a smaller data set using the CNTLOUT=
option in the Frequency Procedure. This eliminated
two problems. Populating from the original table was
too slow due to the large size of the table. Finally, the
inability to control the loading and unloading of
formats in RAM was inefficient. Code for generating
the formats data set follows.
PROC FORMAT

DATA=APP1 .APPIDATA

CNTLOUT=APP1 .FORMATS ;

The list is then populate using the following syntax in
SCL
NAME.DATALIST (LISTID, ‘mm’ ,‘sELEcT YEARSJ ,‘NJ ,14) ;

Another possible piece of information needed by an
application would be the variable label or actual
names. Once again, you might not want to get this
information from the actual table if the table is large.
Similar to how we created a data set from the
FORMAT Procedure, we could us the OUT= option
in the CONTENTS Procedure to create a small table
which could be used to quickly populate an SCL list
with syntax similar to the above depending on the
characteristics of your object.

The frame displayed above sets all values as the
default selection criteria for all variables. This
requires a character string to be passed to the SQL
selection code within the SCL source code. A string
is need for each variable containing all possible
values. A data set was created containing these
strings using DATA Step processing and the
concatenation operator. All of the table creations
listed above can easily be run in a batch program
that is automatically queued when a change is
detected in the master data files.

An especially important piece of information provided
to the application by the developers are help files
which are displayed using OLE classes from
WordPerfect 6.1. This structure allows for easy

3



creation of help text and creates automatic
documentation for STDINFO.

The application itself generates information that must
be stored. Although it is rumored to be in a future
release in SAS, a DSTDP developer generated a
hot-spotted map of the United States for this
application. Also each frame is stored in a catalog
with SCL source code. It is the decision of the
STDINFO development team to store this
information and the small tables mentioned above on
the local Novell network for quickest access. Should
network storage space become a problem or these
tables grow considerably in size, Windows NT SQL
could be used for storage simply by using
SASIACCESS. We have successfully accessed
tables from the NT server, but current LAN
resources make this unnecessary.

Any generated output or tables can be saved to the
users hard disk. Subsetted tables may also be saved
by the user to their hard disk. By not allowing
network storage by the user, we placed the onus of
disk space management on the user. A method to
determine the most frequently requested tables or
graphics by a given application is being developed by
DSTDP staff. These images will be stored in a SAS
graphics catalog were retrieval time will certainly be
much shorter than if they were generated
dynamically. Depending on the types these graphics
or images, different classes of objects could be used
for their display.

Conclusions

Information needed and generated by an application
can be stored in a variety of ways thanks to the
flexibility of the SAS system. Often times a
developers decision is driven by maintenance and
performance considerations. STDINFO utilizes what
we consider to be smart storage strategy requiring
minimal maintenance. What little maintenance that is
required is automated. The SCL programming is
neither difficult nor sophisticated.

References

SAS Institute Inc. (1989), SAS Guide to the SQL
Procedure, Version 6, First Edition, Cary, NC: SAS
Institute Inc.

SAS Institute Inc. (1994), SAS Screen Contro/
Language, Reference, Version 6, Second Edition,
Cary, NC: SAS Institute Inc.

Stanley, Don (1996), “Using Lists To Replace
Formats In SCL Applications”, Proceedings of the
Twenty-first Annual SAS User’s Group International
Conference, 17, 102-107.

Acknowledgments

The authors thank the following people at CDC for
their contributions to this paper
Keith Humphrey and Brenda Sullivan

The SAS System, SASIACCESS, SASIAF, FRAME,
and SAS/SCL are registered trademarks or
trademarks of SAS Institute Inc. In the USA and
other countries. @indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

Sharon Mosley-Hixon
Centers for Disease Control and Prevention, MS E-63
1600 Clifton Road
Atlanta, GA 30333
shm5@cpsstdl .em.cdc.gov

Ray L Ransom
Centers for Disease Control and Prevention, MS E-02
1600 Clifton Road
Atlanta, GA 30333
rlrl @cpsstdl .em.cdc.gov

4


	Main TOC

