
Native Help Technology in SAS/AF Applications
John Kruth, SAS Institute Inc.

ABSTRACT

Attaching native help to a SAS/AF application can be a complex
task. This paper will examine some of the tools and techniques
available to both help authors and application developers to
simplify this task. Topics will include:

Details of the expanded _HELP_ method available in Release
6.12

How the SAS System calculates help topic identifiers for
SAS/AF objects, and how you can plan your help system to
answer those identifiers

How to invoke context-sensitive help for FRAME objects

How to provide access to your help system from your
application’s help pmenu

INTRODUCTION

With the introduction of native help to the SAS System in Release
6.11, SAS/AF developers can add native help to their
applications. In Release 6.11, determining help IDs for these
native help files involved a complex process of deciphering the
help attributes that referred to CBTs and translating them into
native help information. The enhancements made to the _HELP_
method in Release 6.12 simplify the process of determining help
IDs and make it easier for SAS/AF developers to attach help to
their applications. In this paper I will describe the changes made
to the _HELP_ method and supply SCL code that can be added to
SAS/AF applications to invoke help.

THE _HELP_ METHOD

The _HELP_ method enables a SAS/AF developer to call a help
topic for an object in a FRAME application. The method
determines whether SAS is configured to deliver native help or
CBT-based help and displays the help topic in the appropriate
format. This method is defined in theWIDGET class, and any
object derived from theWIDGET class will have the _HELP_
method defined in its method list. Since every object which is
displayed on the screen in a FRAME application must be derived
from theWIDGET class, any visible object can use this method.

Using the _HELP_ Method Before Release 6.12

In previous releases of SAS (including Release 6.11), the
_HELP_ method determined which help topic to display based on
the help ID that was supplied by the SAS/AF developer. The help
ID was specified by setting the Object Help attribute for the object
using a format that specified a CBT name and a frame in that
CBT. For example:

Figure 1 Help Attribute Screen for a SAS/AF Object

When the _HELP_ method was called, it would determine
whether SAS was configured to deliver native help or CBT-based
help. If CBT based help was specified, the CBT indicated in the
help ID would be located and the frame indicated would be
displayed in the SAS CBT viewer. If native help was specified, the
_HELP_ method used the help ID to determine which help file
should be opened and which topic within that help file contained
the help information for the object.

Native help information was extracted by using the following
method:

1. The help file had the same name as the catalog indicated in
the CBT portion of the help ID.

2. The ID of the help topic in the help file was created by
concatenating the CBT name with the frame name and
preceding the CBT name with the letter C and the frame name
with the letter F. For example, the help ID in the figure above
specifies that the help for that object is stored in the mycat.hlp
file and that the topic ID would be CmycbtFmyframe.

3. The _HELP_ method invoked the native help viewer
appropriate for the platform and displayed the correct help
information.

Enhancements to the _HELP_ Method for Version 6.12

Although the Release 6.11 version of the _HELP_ method
enabled a developer to use the native help viewer when
displaying help, it still required the application developer to supply
unique help IDs for each object in the system, set an attribute for
each object, and notify the help author of each of these help IDs.
In Release 6.12, the _HELP_ method has been enhanced to
remove the burden of creating help IDs from the developer and to
allow the help author to predict the help IDs that will be needed for
any object in a SAS/AF application. In addition, the new _HELP_
method makes it possible for a writer to create default help which
will be displayed if no other help is available for an object.

The enhanced method generates a unique help ID for each object
in a SAS/AF application based on the context of the object within
the application. Since each frame in a SAS/AF application can be
identified by a unique four level name (for example,
sashelp.mycat.myframe.frame), and since each object within a
frame must have a unique name, a unique help ID is created by
using this information. The help file is identified by the catalog in
which the frame is stored. For example, the help information for a
frame named sashelp.mycat.myframe.frame would be in the
mycat.hlp file. The help information for each object within that
frame would also be in the mycat.hlp file.

The topic ID, which indicates which topic within the help file
should be displayed, is created by concatenating an underscore

1



(_) and the character1 on the end of the frame name. So, the
topic ID for sashelp.mycat.myframe.frame would be myframe_1.
This topic ID would be used in an RTF or IPF file to identify the
help topic for that frame.

Specific object help (or context-sensitive help) can also be
created for each object within a frame. The topic ID for any object
in a SAS/AF application is created by concatenating an
underscore and the object’s name onto the name of the object’s
container (in this case, the frame). So, if
sashelp.mycat.myframe.frame contains an object called mybutton,
the topic ID for that object would be myframe_mybutton, and that
topic would be in the mycat.hlp file.

IMPORTANT: The _HELP_ method only generates these help
IDs if there is not a Release 6.11 style help
attribute defined for an object. If a 6.11 style help
attribute is supplied, the _HELP_ method
determines the help file and help ID based upon
the methods described earlier in this article. If you
want to suppress the 6.11 style help attribute and
allow the help ID to be generated by the enhanced
_HELP_ method, you must remove the CBT and
frame information from the help attribute screen
for that object.

Determining an Object’s Name

The _HELP_ method uses the object’s LABEL= attribute to
determine the name of the object. When the NAME= attribute is
set by the application developer, the LABEL= attribute is
automatically set to the same value as the NAME= attribute.

To determine an object’s name:

1. Using build mode, open the frame that contains the object.
You can do this by double clicking on the frame in the BUILD
window or by issuing the BUILD <frame> command at the
command line.

2. Click on the object whose name you want to find.

3. Open the OBJECT ATTRIBUTES window by choosing Object
Attributes under the Locals pmenu choice.

4. The text in the NAME: field is the name used by the _HELP_
method.

Names for Widgets Created Programmatically

Developers sometimes create widgets programmatically in an
SCL program. Since these widgets are dynamically created while
the application is running, by default, the LABEL= attribute is not
set for these widgets, and object help cannot be created for them.
In order to create object help for dynamically created widgets, the
developer must set either the NAME= attribute or the LABEL=
attribute for the widgets. This is done by adding these attributes to
the attribute list that is passed to the NEW method that is used to
create the widget. See your SAS/AF documentation for
information on the CLASS class and the NEW method.

IMPORTANT: The NAME= or LABEL= attribute must be set for
every dynamically created widget even if the
widget is documented using class or default help.

DEFAULT OR CLASS BASED HELP

Within a SAS/AF application, a specific type of object (or object
class) may be used repeatedly in different frames. If these objects
are all used in the same way, it may be more efficient to write a
single, default help topic, rather than writing separate help topics
for each object. The enhanced _HELP_ method provides a simple

way to create default help topics. The help ID for this default topic
is the name of the object class with an underscore and1
concatenated on the end of it.

If you have a class called myclass and you use multiple instances
of the myclass class within the sashelp.mycat catalog, you can
supply help for all of these instances by creating a single help
topic called myclass_1 in the mycat.hlp file.

This default or class help will only be called if no specific object
help exists. This allows a writer to create default help for every
instance of an object class, and to supply different help for an
object which is derived from the same class but is used in a
different way.

For example, suppose there are two frames,
sashelp.mycat.frame1.frame , and sashelp.mycat.frame2.frame ,
and each frame has an object within it named mybutton. Both of
the mybutton objects are instances of the myclass class. To
supply default help for both of the mybutton objects, you could
create the topic myclass_1 in the mycat.hlp file. In fact, this help
topic is not only the default help for these two objects, but it is also
the default help for any objects within the mycat catalog that are
instances of the myclass class.

If the mybutton object in frame2.frame must be documented
differently than the majority of the instances of the myclass class,
you can override the default help for that object by creating object
specific help with the help ID frame2_mybutton. This allows you to
supply default help for all instances of the myclass class, but,
where it is appropriate, also supply object specific help for the
instances which must be documented differently.

COMPOSITE WIDGETS

Because composite widgets are usually a group of objects which
are stored as a single, composite object, composite widgets
actually act as containers for other objects. When a help ID is
generated for the objects inside a composite widget, the name of
the composite widget is used as the container and therefore, the
first portion of the help ID.

Figure 2 Example Frame MYFRAME.FRAME

The above frame is called myframe.frame and it contains two
widgets; one named OK and another, which is a composite
widget, named COMP1. COMP1 is an instance of a composite
class called mycomp.class. The mycomp.class class is made up
of 3 objects, LIST1, BUTTON1, and BUTTON2.

2



The help IDs for each of the objects within this frame would be
generated as follows :

For the entire frame, the help ID is MYFRAME_1.

For the OK object in the frame, the ID is MYFRAME_OK .

For the entire composite widget (COMP1), the ID is
MYFRAME_COMP1.

The objects within the composite widget, COMP1, would be
identified with the help IDs COMP1_LIST1,
COMP1_BUTTON1, and COMP1_BUTTON2.

Notice that when we are generating the help IDs for the objects
within the composite widget, the container portion of the help ID is
the name of the composite widget and not the name of the frame.

DEFAULT HELP AND COMPOSITE WIDGETS

Just as it is possible to create default help for other classes within
SAS/AF, default help can be created for composite classes and
for the objects inside the composite classes. A composite class is
treated like any other class in SAS/AF. To create a default help
topic for the entire composite class, concatenate an underscore
and a1 onto the name of the class. So, for the COMP1 object in
the frame above which is an instance of the class mycomp.class,
the default help ID for the entire composite widget is MYCOMP_1.

The objects in the composite may also have default
documentation. When creating default help for the objects in a
composite widget, use the composite class name as the container
(or the first part of the ID) and use the name of the object in the
composite as the second part of the ID. For the three objects in
the COMP1 composite object, the IDs for the default help are
MYCOMP_LIST1, MYCOMP_BUTTON1, and
MYCOMP_BUTTON2 . Notice that when you are writing default
help, the class name (MYCOMP) is the container, but when you
are writing instance specific help, the instance name (COMP1) is
the container. Again, the default or class help will only be used if
there is no instance help available for an object.

OTHER FEATURES OF THE _HELP_ METHOD

Search Order

When help is requested for an object within a frame, the _HELP_
method searches for the help IDs for an object by using the
following search order:

1. The _HELP_ method searches for instance-specific help on
the object.

2. The _HELP_ method then searches for default or class help
for the class that is associated with that object.

NOTE : If the object is a part of a composite widget, class
help is determined in two steps. First, the
_HELP_ method looks for class help in the
context of the composite widget. If that is not
found, it looks for class help for the object itself.

3. The _HELP_ method then searches for help on the object that
contains the object for which help was originally requested.
This may be the frame that the object is in or the composite
widget that this object is part of.

This hierarchical search path makes it possible for an author to
document only the specific items in the frame that need
context-sensitive help. As long as each frame is documented, the
user will get some help even if the specific object that help was
requested for does not have help written for it.

NOTE : This search order only applies if there is no CBT and
frame attribute specified for the object. See the note
in the section above describing the enhancements to
the _HELP_ method in Release 6.12.

Unique Catalog Names

Because the _HELP_ method uses the catalog name to identify
the help file, the catalog names used for the applications must be
unique in order for the help system to work correctly. There
cannot be two files called base.hlp in the help directory. A BASE
catalog cannot exist in a library other than the SASHELP library.
For the _HELP_ method to work correctly, all of the catalog
names within the SAS System must be unique regardless of
whether or not they are stored in different libraries.

Popups vs. Topic Windows

Help for a specific instance of an object is delivered in a popup
window on systems where popups are available. Help for a frame
and default help for classes is delivered in a full help viewer topic
window. If popups are not available on the host platform, all help
information is delivered in a full viewer window. To simplify this, if
the help ID ends with _1, the help information is delivered as a full
topic window. All other help is delivered in a popup window.

CALLING HELP FROM A SAS/AF APPLICATION

Now that we have an understanding of how the _HELP_ method
generates help IDs for objects in a SAS/AF application and how
help authors must use this information when writing their help
files, let’s examine what the SAS/AF developer must do to enable
help to be called from within an application.

Context-Sensitive or Object Help

The helpmode command has been created to allow SAS/AF
developers to put the SAS system into context-sensitive help
mode. When the helpmode command is issued at the command
line, the cursor changes to a? and the SAS System prepares to
deliver object help on the next item that is clicked upon. When an
item is chosen while in helpmode, the _HELP_ method is called
for that object.

The helpmode command may be issued at the command line, or
by a menu choice, or as the result of some action like a push
button being clicked. Many developers choose to put a
context-sensitive help icon on a toolbar and issue the helpmode
command when it is selected.

Help Buttons

Most applications have frames with a help button. To use a help
push button to deliver help on an entire frame, send a message to
the frame to call the _HELP_ method.

For example, when the push button is clicked, issue the following
statement in the SCL code:

call send(_frame_, ’_HELP_’);

This statement displays the help information that was written for
the frame that contains the push button.

At times, the help button is not intended to deliver help on an
entire frame, but only on a specific object within the frame (like the
active page in a tabbed dialog box). In those cases, the developer
must maintain a variable that contains the widget ID of the object
on which help should be delivered (eg. the current page). When

3



the help button is clicked, the SCL code should call the _HELP_
method for that widget.

For example, if the variable that contains the widget ID of the
object is CURR_OBJ, the SCL code for the help button should be:

call send(CURR_OBJ, ’_HELP_’);

Using call send to invoke the _HELP_ method allows you to
deliver help on any object in SAS/AF.

Opening a Specific Help Topic

You may wish to bring up a specific help topic that is not
associated as object help. For example, a menu item might be
used to bring up a table of contents topic for some online
reference documentation. To call a specific topic, you must use a
Release 6.11 style help call.

To bring up a specific topic, first be sure that the topic ID for the
topic conforms to the Release 6.11 style. The ID must be in the
format:

CcbtnameFfname

Once you know the topic ID that you wish to display, the following
type of command must be issued :

help c=sashelp.helpfile.cbtname.document
frame=fname

Where helpfile is the name of the help file that contains the topic
and cbtname and fname correspond to the first and second parts
of the topic ID.

Finally, be sure that you have a help index file (see the section
below) which contains an entry for your help ID.

PRACTICALITIES

Help Index (hdx) Files

Help index (or hdx) files are used by the SAS System to map
textual context IDs to numerical context IDs. Every native help file
that is connected to a SAS/AF application must have an hdx file
associated with it. The hdx file must have the same name as the
help file, but it must have the extension .hdx instead of the .hlp
extension.

When you build your native help file, you can associate the textual
context IDs with numeric IDs. When using WinHelp or Helplus (a
proprietary help viewer developed by SAS Institute for UNIX
platforms) this is done via the help project file. In OS/2, this is
done by including a res ID for the topics. Details on this mapping
process can be found in the documentation for the viewer or help
compiler that you are using.

The help index files have a three column format. The first two
columns are the two portions of the help ID (the container and
object name). The third column is the numerical ID that is mapped
to the textual context ID in your help file. The following is an
example of an hdx file:

frame 1 1000
frame object 1001
class 1 1002
class object 1003

The first entry indicates that the frame_1 context ID is mapped to
the numeric ID1000. The second entry shows the frame_object
context ID mapped to1001. The spacing is not important in the
hdx files, but there must be at least one space between the
columns.

An hdx file should only contain entries for objects that are
documented in the help file. If default help (or class help) is used
for an object, the hdx file should only have an entry for the ID for
the class help and not the ID for the instance help.

For more information about help files and hdx files and how they
should be created and formatted, see the article entitled
Developing Native Help for SAS/AF Applications in the SUGI 21
proceedings.

Helploc

For the help system to find your help information, your help files
and hdx files must be available in the help location specified by
the helploc option in SAS. You can create your help files and
store them in the directory specified by helploc, or the helploc may
be changed when you start a SAS session. To reset the helploc
option, issue the -helploc <path> command line option. For more
information see SAS Software : Changes and Enhancements,
Release 6.11.

ACKNOWLEDGEMENTS

I would like to thank Elizabeth Brownrigg, Jeff Diamond, and
Philip Shelton of SAS Institute who reviewed this paper. I would
also like to thank Jeff Polzin, Deva Kumar, and Jeff Diamond for
thier help in implementing these features in Release 6.12 of the
SAS System. And finally, I would like to thank Chris Hemedinger
for his expertise and assistance in understanding native help files
and how they are created.

SAS and SAS/AF are registered trademarks of SAS Institute Inc.
in the USA and other countries. indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

John Kruth, SAS Institute Inc., SAS Campus Dr., Cary NC 27513,
(919)677-8000 x5841, sasjgk@unx.sas.com

4


	Main TOC

