
MATCH-MERGING: 20 Some Traps and How to Avoid Them

Malachy J. Foley

 University of North Carolina at Chapel Hill, NC

ABSTRACT

 Match-merging is a common form of combining files. Yet, it has its
pitfalls. This tutorial examines more than 20 traps that can snarl even a
seasoned programmer, and provides proven strategies for avoiding these traps.

INTRODUCTION
 The little old match-merge is a complicated thing indeed. How complicated?
Well in 1997, Foley (see REFERENCES) identified a dozen traps associated with
match-merge. Amazingly, that was just the beginning.

 This paper identifies and examines another fifteen ways match-merge can
ambush a programmer. It summarizes all 28 pitfalls outlined in the two papers
and explores defensive strategies to avoid all of them.

 Among other strategies, a beta version of a SASÒ macro is presented to catch
traps. This macro, when used with the SAS log, will detect or sidestep 88% of
the traps. You can use this macro even if you are unfamiliar with macro code.

 This article is for anyone who uses the SAS BASE product and match-merge.
After studying it, you should know what most of the match-merge pitfalls are and
how to defend yourself against them.

DECEIVING CODE COMPLEXITY
 The first trap to explore is the complexity of the SAS code used for match-
merging. It is deceivingly simple. For example, look at the code for the
classic match-merge.

 Exhibit 1: Classic 4-statement Match-Merge

 DATA ONE TWO;
 MERGE ONE TWO;
 BY ID;
 RUN;

 This code could hardly be simpler or more compact. The pitfall is that the
code's utter simplicity lulls the user into thinking nothing can go wrong.
Consequently, the user drops his or her guard, and that is when things start to
go wrong. These four seemingly innocent lines of code have burnt more than
their share of SAS programmers, often badly.

Advanced TutorialsAdvanced Tutorials

28 TRAPS
 So, what specifically can go wrong with a simple match-merge. The following
table lists twenty-eight (28) ways a match-merge can go awry. SAS provides a
note, warning, or error message for some of these situations. However, for most
of the traps listed, no messages are produced. In these cases, it is totally up
to the programmer to be aware of the traps and to catch them before they produce
a faulty merge.

 TABLE 1: List of Traps

 By variable traps
 - Type mismatch Pre ERR
 - Missing By statement Pre
 - Justification mismatch Pre
 - Ambiguous By variables Pre
 - Length mismatch Pre
 - Value instability Pre
 - Manipulation History Pre
 - BY var not in file New ERR
 - Different case BY value New
 - Missing By values New

 Statement-related traps
 - Missing DATA statement New ERR
 - Missing MERGE statement New ERR
 - Missing RUN statement New
 - empty DATA statement New
 - empty MERGE statement New
 - empty BY statement New
 - MERGE state. with 1 DS New
 - Incomplete BY statement New

 Other traps
 - Testifying simple code P/N
 - Automatic retain P/N
 - Overlapping variables P/N INF
 - Fractional BY values Pre
 - Many-to-many/few merge Pre NTE
 - Calculations in Merge Pre
 - IF in Merge Data Step New
 - WHERE on input vars New
 - Input Files must exist New ERR
 - Input files not sorted P/N ERR

 In the previous SUGI paper by Foley, some of the traps listed in the above
table were identified and discussed at length. These traps are tagged "Pre"
(for Previous) in Table 1. Experienced SAS programmers actually fall into these
traps.

Advanced TutorialsAdvanced Tutorials

 This paper picks up where the other paper left off. It analyzes the
remaining pitfalls in Table 1. These traps are labeled "New". This paper also
provides an array of defensive strategies that programmers can apply to avoid
most of the traps.

 Situations that are detected by SAS are marked as NTE, ERR and INF which
correspond to NOTE, ERROR and INFO messages. The INFO message is produced by
SAS only if the "OPTIONS msglevel=i" statement is invoked.

BY VARIABLE TRAPS
 The first part of Table 1 shows 10 traps associated with BY variables. A BY
variable is one of the variables listed in a BY statement. The SUGI 22 paper
gives a comprehensive treatment of most of these traps. The next two sections
of this paper examine the two BY variable traps not discussed in the previous
paper.

 DIFFERENT CASE BY VARIABLE VALUES
 It happens more often than you would like. You are trying to merge two
files and the BY variables, which are character variables, should be all one
case (upper or lower) and they are not. Usually one input file has all of its
BY variable values (the value assigned to a BY variable) in upper-case letters
and the other file has its BY variable values in lower-case letters.

 The SAS match-merge is case sensitive. For instance, an upper-case letter
"A" will not match with a lower-case "a". This is as it should be. A lower-
case letter is not the same as an upper-case letter. Yet, often when you
receive data from different sources, the alphabet is not keyed uniformly in
upper or lower case.

 Here is an example of this trap.

 Exhibit 2: Ex. of BY Value Case Mismatch

 DATA ONE TWO
 MERGE ONE TWO;
 BY ID;
 RUN

 --------- ----------- ------------------
 FILE ONE FILE TWO FILE ONE TWO
 --------- ----------- ------------------
 ID NAME ID AGE SEX ID NAME AGE SEX
 --------- ----------- ------------------
 A01 SUE a01 58 F A01 SUE .
 A02 TOM a02 20 M A02 TOM .
 A05 KAY a04 47 F A05 KAY .
 A10 JIM a10 11 M A10 JIM .
 a01 58 F
 a02 20 M
 a04 47 F
 a10 11 M

Advanced TutorialsAdvanced Tutorials

 NOTE: The data set ONE TWO has
 8 observations and 4 variables.

 In this example, there are two input files called ONE and TWO. These files
are combined using the classic 4-statement merge. Notice how none of the
records matched in the output file, ONE TWO. The SAS log file shows no problems
except for the NOTE (see above) which indicates that there are 8 observations in
the output file.see DIf_case.* for information
 - Maybe want to write sections on symptoms that you see and what
 they can mean, for example no match symptom can mean just /dif
 - Is BOTH the best way to describe this union of files?
 - OR you can get nothing see EX 2 in DIF_CASE??? -figure out what this means
IF you have time later on.

 One way to detect a case mismatch problem (as well as the justification
mismatch described in the SUGI 22 paper) is to check the SAS log for the
observation count. If the number of observations in the output file is equal to
the sum of the observations in the two input files, then none of the records
matched.

 Another way to detect these mismatches is to add the following code after
the merge DATA step. This code automatically checks the observation counts for
two input files.

 Exhibit 3: Check for justification/case mismatch.

 DATA NULL ;
 IF 0 THEN DO;
 SET ONE NOBS=NOBS1;
 SET TWO NOBS=NOBS2;
 SET ONE TWO NOBS=NOBS3;
 END;
 IF NOBS3=NOBS1+NOBS2 THEN DO;
 PUT "*** ERR: No records matched!";
 PUT "*** Check the justification/case";
 END;
 STOP;
 RUN;

MISSING BY VALUES
 One of the more subtle traps associated with BY variables is having an input
file with missing values for the BY variables. The following exhibit
illustrates this trap.

 Exhibit 4:

 DATA ALPH BET;
 MERGE ALPHA BETA;
 BY ID;
 RUN;

 ------- -------- -----------
 ALPHA BETA ALPH BET

Advanced TutorialsAdvanced Tutorials

 ------- -------- -----------
 ID V1 ID V4 ID V1 V4
 5 15 5 15
 A35 3 22 5 22
 A35 61 A35 3 61

 The code in this case is the classic four-statement match-merge. The input
files are normal in every aspect except that some of the values for the BY
variable ID are missing.

 The merge works properly and matches all the records according to the BY
variable values. The trap lies in the fact that the BY variable values are
faulty. It makes no sense to match records based on a nonexistent ID.

 As such, the first record in the ALPHA file belongs to nothing and can not
logically be matched to another record. Yet it is matched to two records in the
BETA file.

 The function of a BY variable in a match-merge is to IDENTIFY the record as
belonging to someone or something. For instance, the ID could be the social
security number of a person, an account number, or an inventory number. In each
of these cases, the data in the record/observation is attached respectively to a
specific person, account, or product.

 When one of the record’s key variables is missing, it is impossible to
ascertain to whom or what the data belongs. Therefore, the data in such a
record is essentially useless. To keep a record with missing key variable
values is misleading. It gives the impression that the information contained in
the record belongs to some person or thing. Of course, there is no way of
knowing to whom or what any of the information belongs.

 When observations have missing values in their key fields, they probably
should be deleted from the output file and flagged. At the very least, they
should be flagged. One way of doing this is by adding an IF statement to the
original four statements. For character ID’s, the code is:

 EXHIBIT 5:

 DATA ALPH BET;
 MERGE ALPHA BETA;
 BY ID;
 IF ID=" " THEN
 PUT "WRN - MISSING VALUE FOR A BY VARIABLE";
 RUN;

 For numerical ID's, the IF statement is:

 EXHIBIT 6:

 IF ID le .Z THEN
 PUT "WRN - MISSING VALUE FOR A BY VARIABLE";

AUTOMATIC RETAIN

Advanced TutorialsAdvanced Tutorials

 When there is a MERGE statement in a DATA step, all the input variables
values are set to missing at the beginning of each BY group. These values are
then retained until they are overwritten by new values which are inputted from
one of the files. This retain function is implied by the MERGE statement and
automatically implemented. For example, observe the following files.

 EXHIBIT 7:

 INPUT INPUT OUTPUT
 FILE ALPHA FILE BETA FILE ALPH BET
 ---------- --------- -------------
 ID V1 ID V4 ID V1 V4
 -------- ------- -------------
 A32 5 A32 15 A32 5 15
 A35 3 A32 22 A32 5 22
 A42 6 A32 61 A32 5 61
 A42 47 A35 3 .
 A42 6 47

 In this example of a match-merge, note how the value 5 of V1 is retained for
the entire A32 BY group. That is, see how the second and third records in the
output file have V1=5, even though there is no corresponding record in the ALPHA
file. Also note how V4=. for the A35 BY group, since V1 and V4 were set to
missing at the beginning of the BY group. (BY groups are explained in section
entitled MATCH-MERGE in the SUGI 22 paper.)

 The automatic retain function causes much confusion about how the match-
merge works. The confusion seems to come from two sources.

 First, there is no such RETAIN in the "normal" DATA step that uses a SET
statement. To retain a variable in a "normal" DATA step, you must explicitly
use a RETAIN statement. So the first source of confusion is that one often
forgets that the automatic retain actually exists when a MERGE statement is
used.

 Second, the automatic retain associated with the MERGE statement works
differently from the explicit RETAIN statement that is used in a "normal" DATA
step. One difference is that the explicit RETAIN statement initializes only the
variables mentioned in the RETAIN statement. While the automatic retain
statement initializes ALL of the input variables. Another difference is that
the explicit RETAIN statement initializes its variables only once at the very
beginning of the DATA Step. While the implied retain in a MERGE DATA step
initializes its variables at the beginning of every BY group.

 Consequently, with the RETAIN statement in the "normal" SET DATA step,
values are retained for EVERY iteration of the DATA step. While in the MERGE
DATA step, values are retained only during the BY group.

 Since the implied retain is often forgotten and acts differently then the
RETAIN statement, it causes even experienced programmers trouble, often heaps of
trouble. In fact, from comments the author has received, the automatic retain
is the single biggest cause of confusion regarding the match-merge. As such, it
is included in the list of traps.

GETTING FANCY

Advanced TutorialsAdvanced Tutorials

 Once you are familiar with the match-merge code and the corresponding DATA
step algorithm, the temptation is to start adding code to the four-statement
match-merge. For instance, adding a little calculation, or an IF statement to
the DATA step loop seems harmless enough. But, as the previous paper
demonstrates, adding a single calculation (assignment statement) to the basic
match-merge can cause unexpected results.

 The next exhibit shows how adding just one IF statement to the merge DATA
step can cause unexpected results.
 EXHIBIT 8:

 DATA ONE TWO;
 MERGE ONE TWO;
 BY ACCT;
 IF REASON=400 THEN REG=99;
 RUN ;

SLIDE C too
ACCT--> ID

 ------------------- ---------
 FILE ONE FILE TWO
 ------------------- ---------
 ACCT REASON VAL ACCT REG
 1 100 100 1 50
 1 200 500 2 57
 1 400 670
 1 600 150
 1 700 900
 2 150 325

 FILE ONE TWO

 ACCT REASON VAL REG

 1 100 100 50
 1 200 500 50
 1 400 670 99
 1 600 150 99
 1 700 900 99
 2 150 325 57

 Here, the intent of the IF statement is to set the region (REG) equal to 99
when the reason variable is equal to 400. Yet look at what happens when two
files are merged using the code.

 Because SAS automatically retains the values of all the input variables
during a BY group, not only is REG set to 99 when REASON=400, but it is also set
to 99 when REASON equal 600 and 700 (the rest of the BY group).

 In this case, no SAS messages existed in the log to indicate that anything
is amiss. What is worse, is that the code was used to suppress billings for
reason codes 400. If the bills had been mailed, there would have been serious
consequences.

Advanced TutorialsAdvanced Tutorials

 One defensive strategy to avoid this trap is to never change any of the
input variables, but rather to create new variables to receive the outcome of
any manipulation of the input data.

 The following code and output file demonstrate this strategy. It uses the
same input files given in the previous exhibit. Again, the intent of the IF
statement is to set the region equal to 99 when the reason variable is equal to
400. The difference between the next example and the previous example is that
the input variable REG is not changed, but rather a new variable REG2 is created
to receive the new/changed region information. Of course, the IF statement
changes to reflect the new variable. In this example, the intended results are
obtained.

 EXHIBIT 9:

 DATA ONE TWO;
 MERGE ONE TWO;
 BY ACCT;
 IF REASON=400 THEN REG2=99;
 ELSE REG2=REG;
 run ;

 FILE ONE TWO

 ACCT REASON VAL REG REG2

 1 100 100 50 50
 1 200 500 50 50
 1 400 670 50 99
 1 600 150 50 50
 1 700 900 50 50
 2 150 325 57 57

 Another defensive strategy that many SAS programmers actually employ and
recommend is: to use only the basic 4-statement match-merge when merging files
and to do all other processing in a separate DATA step. This is their policy.
It may seem a bit extreme, but it is definitely the safest way to merge.

THE CASE OF WHERE=
 This is a strange case. It is mentioned because it actually causes users
problems and questions. It consists of using the WHERE= data set option with a
match-merge. Specifically, a user has the following two input data sets:

 EXHIBIT 10:
 ALPHA BETA
 --------- --------
 ID V1 ID V4
 --------- --------
 A20 5 A20 15
 A21 7 A20 12
 A24 4 A24 92
 A35 3 A24 38
 A35 61

Advanced TutorialsAdvanced Tutorials

 The goal is to output only those records where V1=5. The program that
follows was proposed to meet this goal.

 EXHIBIT 11: ALPH BET
 --------------------------- ------------
 DATA ALPH BET; ID V1 V4
 MERGE ALPHA(WHERE=(V1=5)) ------------
 BETA; A20 5 15
 BY ID ; A20 5 12
 RUN ; A24 . 92
 --------------------------- A24 . 38
 A35 . 61

 However, the above output was not exactly what the user was expecting from
the program. He was surprised there were output records for ID's A24 and A35,
since V1 was not 15 for these ID's.

 One programmer admitted that a situation, like this one, took him days to
figure out and correct.

 Of course if the automatic retain that accompanies the MERGE statement is
remembered and fully understood, it is obvious how to get the desired results.
What happened in this case is that the automatic retain was not remembered.

 --------------------------- ALPH_BET
 DATA ALPH_BET(WHERE=(V1=5)); ------------
 MERGE ALPHA BETA ; ID V1 V4
 BY ID ; ------------
 RUN ; A20 5 15
 --------------------------- A20 5 12

 The way to sidestep this kind of trap, once again, is to keep the match-
merge as simple as possible. Stick to the basic 4-statement match-merge. The
WHERE can safely be used in a subsequent DATA Step.

BETTER SAFE THAN SORRY
 The last two cases showed how the automatic retain can occasionally trip up
even the most experienced programmer. They showed how the trip ups were caused
by adding just a little bit of extra code to the basic four-statement match-
merge. These kinds of trip-ups can have serious consequences, like the under
billing of clients.

 A good defensive strategy at any time, in any profession, to avoid problems
is the KISS principle. KISS is an acronym for "Keep It Short and Simple". It
is a well-known fact in reliability theory that the fewer components a system
has, the less likely it is to fail. KISS is just a another way of stating this
fact.

 When applied to match-merging the principle can be stated as follows: "Use
only the basic 4-statement match-merge and to do all other processing in a
separate DATA step". In other words, whenever possible, NEVER use a WHERE, an
IF statement, an assignment statement, or anything else in the match-merge code.

Advanced TutorialsAdvanced Tutorials

If manipulation is required, if at all possible, do it in a separate DATA step
after the merge DATA step. This is extreme, but it works.

 When programming, there certainly is a temptation to get fancy, and add a
little code. Nevertheless "Keeping It Short and Simple" is frequently a good,
easy, safe trick, which avoids untold amounts of anguish and work.

STATEMENT-RELATED TRAPS
 Most programmers are interrupted frequently during the day by phone calls,
office visits, and the like. After each interruption, they must recapture their
train of thought and continue with their programming where they left off.
Sometimes after an interruption, a tiny part of the programming that was in
process is skipped.

 Take the four-statement match-merge, for instance. One can unintentionally
leave out whole statements or part of the statements. Often the missing part of
a match-merge goes undetected and causes errors in the program’s output. The
next sections of this paper explore all possibilities of missing pieces of code.
These sections also look at the consequences of the missing code, and strategies
to avoid having missing code in your programs.

MISSING STATEMENTS
 What happens when one of the four statements in the classic merge is
missing? There are four possibilities.

 SAS puts an error message in the log file when there is either a missing
DATA statement or a missing MERGE statement. For a missing DATA statement, the
message is:

 ERROR 180-322: Statement is not valid or it is
 used out of proper order.

 For a missing MERGE statement, the message is:

 ERROR: A SET, MERGE, or UPDATE statement not present.

 SAS gives no messages for a missing BY statement. Rather it performs a one-
to-one merge, instead of a match-merge. Forgetting a BY statement is a common
and potentially catastrophic event.

 When a RUN statement is missing, the merge will usually execute properly.
However, when the merge DATA step is the last step in the program and RUN is
missing, the merge will not execute and SAS issues no message.("step
boundaries") This is one reason why it is always good programming practice to
include the RUN statement at the end of each DATA step.

 The consequences of omitting one of the four classic match-merge statements
can be as simple as losing the time it takes to run the job, review the log and
correct the code. Or the consequences can be as serious as getting a wrong
output without even knowing it.

Advanced TutorialsAdvanced Tutorials

 To sidestep all of these consequences, you can look at the log file for all
the messages regarding the DATA step and check that the output file has the
expected number of observations.

 However, another procedure to sidestep missing statements is to use a macro
which already has all the statements in it. This procedure is easier and more
reliable than checking the log. Such a macro is described below.

EMPTY STATEMENTS
 The previous section reviewed what happens if one of the four statements of
the classic match-merge is missing. But what happens when the statement is
empty.

 A statement is empty when it has nothing placed between the statement
keyword and the semicolon. For example, a DATA statement is empty when there is
no file name specified between DATA and the semicolon.

 When you have an empty DATA statement (DATA ;), SAS puts no message in the
log file. Rather SAS performs the match-merge and automatically assigns an
output data set name in the WORK library.(see One_DS.*)

 When you have an empty MERGE statement (MERGE;), SAS gives no message. It
simply outputs the most recently created data set! In the unlikely event that
such a data set does not exist, SAS will issue the following message:(see
One_DS1.*)

 ERROR: There is not a default input data set
 (LAST is NULL).

 When the BY statement is empty (BY ;), SAS provides no message and performs
a one-to-one merge. In this case, SAS acts just like it does when there is a
missing BY statement. (see no_byvar.*) (gives no error, warning or note!)

 Of course, the RUN statement is usually empty, and as such, is always
fine.(can have a CANCEL argument) (move this above?)

PARTIAL STATEMENTS
 Finally, in looking at what can go wrong with the SAS statements themselves,
partial statements are examined. In this paper, a partial statement is defined
as a statement that has some, but not all, of its parameters specified.

 The RUN statement is always "complete" since it requires no parameters.

 The DATA statement usually has one file specified as a parameter. Indeed,
this paper suggests that it have only one file specified to keep the merge code
simple. Of course, the DATA statement does not require a data set to be
specified, and this scenario is covered in the section on EMPTY STATEMENTS.

 If a MERGE statement has only one input file specified, SAS will output that
file as is, without giving any messages. One way to avoid this situation is to
use macro code which checks that the MERGE statement has at least two input
files. Such code is found in the section entitled MACRO later in this paper.

Advanced TutorialsAdvanced Tutorials

 A BY statement is incomplete when there are fewer BY variables specified
than are required to completely identify the observations for proper matching.
An incomplete BY statement is very hard to spot. Two ways to detect this
situation are: (1) to compare the actual number of observations in the output
file against the number of expected observations; and (2) to examine a print out
of the observations in the output file. Both these ways are cumbersome and
time-consuming. So a better defense is to be very careful in choosing and
specifying the variables in a BY statement. The section entitled BY VARIABLE
CHECK LIST has more information on this topic.

OVERLAPPING VARIABLES REVISITED
 The SUGI 22 paper examined overlapping variables, explained why they were
undesirable, and offered some defensive strategies to evade them. Here the
overlapping variable is revisited and more defensive strategies are offered.

 When two input files have some non-BY variables in common, those variables
are called overlapping variables.

 The following is an example of a match-merge with one overlapping variable,
V4.

 EXHIBIT 12: ------------------
 ---------- DATA ALPH BET;
 MERGE ALPHA BETA;
 BY ID;
 RUN;

 ------------ --------- -------------
 FILE ALPHA FILE BETA FILE ALPH BET
 ------------ --------- -------------
 ID V1 V4 ID V4 ID V1 V4
 ------------ ------- -------------
 A32 5 10 A32 15 A32 5 15
 A35 3 6 A32 22 A32 5 22
 A35 3 6

 Note how, in the first record, the value of V4 in the second merge file
overwrites the value of V4 in the first merge file. Even a missing value can
overwrite a valid value.

 Since overlapping variables cause SAS to overwrite values, the merit of the
overlapping variable is often dubious. When a programmer is unaware of
overlapping variables or forgets about them you will hear the question "why are
the values of my variables changing".

 One way to check for overlapping variables is to examine a PROC CONTENTS of
all the input files and see if any overlapping variables exist. This method is
cumbersome, time-consuming, and error-prone.

 Another method is to compare the number of input variables with the number
of output variables. If there are two files and no overlapping variables, the
number of output variables (O) should be the sum of number of input variables
(I1+I2) less the number of BY variables (B). In formula form, O=(I1+I2)-B. If

Advanced TutorialsAdvanced Tutorials

there are n files and no overlapping variables, then O=(I1+...In)-B*(n-1). This
method is less error-prone and cumbersome than the first, but still a bit
difficult to employ.

 Another method to detect overlapping variables is to add a system option
before your merge DATA step.

 EXHIBIT 13:
 OPTIONS MSGLEVEL=i;
 DATA ONE TWO;
 MERGE ONE TWO;
 BY ID;
 RUN;

 This option will make SAS print messages to the log which identify each
overlapping variable, including the BY variable which legitimately need to
overlap. The message is of the form:

INFO: The variable ID on data set WORK.ONE
 will be overwritten by data set WORK.TWO.

INFO: The variable V4 on data set WORK.ONE
 will be overwritten by data set WORK.TWO.

 This method of discovering overlapping variable is better than the previous
two. Yet, you must remember to add the OPTIONS statement and to distinguish
between the BY variables and the non-BY variables in the INFO statements.

 Another technique for catching overlapping variables is to use macro code to
implement the variable-counting method. The section entitled MACRO has such
code.

DEFENSIVE STRATEGIES
 Many things can go wrong when you attempt to do a match-merge. Usually it
is a case of forgetting a statement or part of a statement, or forgetting one of
the many nuances associated with the match-merge. Various ways to detect or
prevent a trap from leering its nasty head have been suggested here and in the
previous paper. However, there are so many suggestions, it is hard to know how
to proceed to actually sidestep the many traps. The next sections of this paper
attempt to put it all together and come up with a comprehensive strategy to
avoid as many traps as possible.

MACRO
 Here is the first strategy. It is a beta version of a "do-it-all" macro
which avoids or detects 17 traps.

 For example, earlier in this paper eight statement-related traps were
discussed. These traps occur where a programmer forgets or mis-keys a statement
or part of a statement, obtaining unexpected, and often undetected, results.
One way to sidestep all these statement-related difficulties, is to use a macro
with the classic match-merge code already written into it. Such a macro is
proposed below. Copying this macro (called MATCH) into your program and

Advanced TutorialsAdvanced Tutorials

invoking it makes it nearly impossible to miss a statement or the parameters
necessary for a basic match-merge.

 Also described above were three cases where adding extra code to the basic
match-merge caused unexpected results. Using the MATCH macro guarantees that no
extra code is accidentally added to the basic merge.

 The MATCH macro includes the code discussed in the section entitled
DIFFERENT CASE BY VARIABLE VALUES(this is the title as of 1/8). Thus, MATCH
catches the two traps of different cases and different justification in the BY
variables values.

 Furthermore, MATCH alerts the programmer to BY variables LENGTH mismatch and
fractional BY variables. Both of these pitfalls are discussed in the prior
paper. Either can indicate a manipulation history mismatch. And both can cause
incorrect merges.

 Finally, MATCH detects overlapping variables.

 For your reference, here is a listing of the MATCH macro. You can use this
macro even if you are unfamiliar with macro code. The next section of this
paper describes how to use the macro..

%MACRO MATCH(IN_FILES=, OUT_FILE=, BY_VARS=);
 * Copyright (c) 1998 by Malachy J. Foley;
 * All rights reserved except as noted;
 %LET FLAG=0; %* THIS IS AN ERROR FLAG;

 *---------------------------------------;
 * CHECKING THE STATEMENT PARAMETERS;
 %LET NIN=0;
 %DO %WHILE(%SCAN(&IN_FILES,&NIN+1) NE);
 %LET NIN=%EVAL(&NIN+1);
 %END;
 %IF &NIN NE 2 %THEN %DO;
 %LET FLAG=1;
 %IF &NIN<2 %THEN
 %PUT *** ERR: TOO FEW INPUT FILES SPECIFIED;
 %IF &NIN>2 %THEN
 %PUT *** MATCH REQUIRES EXACTLY 2 INPUT FILES;
 %END;
 %ELSE %DO;
 %LET FILE1=%SCAN(&IN_FILES,1);
 %LET FILE2=%SCAN(&IN_FILES,2);
 %END;

 %LET NOUT=0;
 %DO %WHILE(%SCAN(&OUT_FILE,&NOUT+1) NE);
 %LET NOUT=%EVAL(&NOUT+1);
 %END;
 %IF &NOUT NE 1 %THEN %DO;
 %LET FLAG=1;
 %PUT *** MATCH REQUIRES EXACTLY 1 OUTPUT FILE;
 %END;

 %LET NBY=0;
 %DO %WHILE(%SCAN(&BY_VARS,&NBY+1) NE);

Advanced TutorialsAdvanced Tutorials

 %LET NBY=%EVAL(&NBY+1);
 %END;
 %IF &BY_VARS= %THEN %DO;
 %LET FLAG=1;
 %PUT *** ERR: BY VARIABLES MUST BE SPECIFIED;
 %END;

 %*---;
 %IF &FLAG=0 %THEN %DO;
 * CHECK FOR OVERLAPPING VARS;

 * THE TEMPORARY FILE;
 DATA KILLZYXW;
 MERGE &IN_FILES;
 BY &BY_VARS;
 STOP;
 RUN;

 PROC CONTENTS DATA=&FILE1
 OUT=CONTNTS1(KEEP=VARNUM) NOPRINT;
 PROC CONTENTS DATA=&FILE2
 OUT=CONTNTS2(KEEP=VARNUM) NOPRINT;
 PROC CONTENTS DATA=KILLZYXW
 OUT=CONTNTS3(KEEP=VARNUM) NOPRINT;
 DATA _NULL_;
 IF 0 THEN DO;
 SET CONTNTS1 NOBS=NVAR1;
 SET CONTNTS2 NOBS=NVAR2;
 SET CONTNTS3 NOBS=NVAR3;
 END;
 IF NVAR3 NE (NVAR1+NVAR2-&NBY) THEN DO;
 PUT "*** ERR: OVERLAPPING VARIABLES.";
 CALL SYMPUT(’FLAG’,’1’);
 END;
 STOP;
 RUN;
 %END;
 %*---;
 %IF &FLAG=0 %THEN %DO;
 * CHECK FOR LENGTH MISMATCH;

 PROC CONTENTS DATA=&FILE1(KEEP=&BY_VARS)
 OUT=CONTNTS1(KEEP=NAME LENGTH TYPE
 RENAME=(LENGTH=LEN1)
) NOPRINT;RUN;
 PROC SORT; BY NAME;RUN;
 PROC CONTENTS DATA=&FILE2(KEEP=&BY_VARS)
 OUT=CONTNTS2(KEEP=NAME LENGTH
 RENAME=(LENGTH=LEN2)
) NOPRINT;RUN;
 PROC SORT; BY NAME;RUN;

 DATA _NULL_;
 MERGE CONTNTS1 CONTNTS2;
 IF LEN1 NE LEN2 THEN
 PUT "*** WRN: BY VAR LENGTH MISMATCH " NAME;
 RUN;

Advanced TutorialsAdvanced Tutorials

 %END;
 %*---;
 %IF &FLAG=0 %THEN %DO;
 * SET UP FOR CHECKING MISSING BY VALUES;
 * (NOTE 200 CHARACTER LIMIT);
 DATA _NULL_;
 SET CONTNTS1 END=LAST;
 LENGTH LIST_N LIST_C $200;
 RETAIN LIST_N LIST_C;
 IF TYPE=1 THEN DO;
 L=LENGTH(LIST_N);
 LIST_N=SUBSTR(LIST_N,1,L)||" "||NAME;
 END;
 ELSE DO;
 L=LENGTH(LIST_C);
 LIST_C=SUBSTR(LIST_C,1,L)||" "||NAME;
 END;
 IF LAST THEN DO;
 CALL SYMPUT("BYVARSN",LIST_N);
 CALL SYMPUT("BYVARSC",LIST_C);
 END;
 RUN;
 %LET NBYN=0;
 %DO %WHILE(%SCAN(&BYVARSN,&NBYN+1) NE);
 %LET NBYN=%EVAL(&NBYN+1); %END;
 %LET NBYC=0;
 %DO %WHILE(%SCAN(&BYVARSC,&NBYC+1) NE);
 %LET NBYC=%EVAL(&NBYC+1); %END;
 %END;
 %*---;
 %IF &FLAG=0 %THEN %DO;
 * THE CLASSIC 4 STATEMENT MERGE;
 DATA &OUT_FILE;
 MERGE &IN_FILES;
 BY &BY_VARS;

 * CHECK FOR MISSING BY VALUES;
 %IF &NBYN NE 0 %THEN %DO;
 ARRAY NNNNN(&NBYN) &BYVARSN; %END;
 %IF &NBYC NE 0 %THEN %DO;
 ARRAY CCCCC(&NBYC) &BYVARSC; %END;
 %IF &NBYN NE 0 %THEN %DO;
 DO IWXYZYX=1 TO &NBYN;
 IF NNNNN(IWXYZYX) LE .Z THEN
 PUT "*** WRN: MISSING BY VALUE DETECTED"
 NNNNN(IWXYZYX)=;
 * LITTLE CHECK FOR FRACTIONAL BY VALUES;
 IF NNNNN(IWXYZYX) NE
 (INT(NNNNN(IWXYZYX))) THEN
 PUT "*** WRN: FRACTIONAL BY VALUE "
 NNNNN(IWXYZYX)=;
 END;
 %END;
 %IF &NBYC NE 0 %THEN %DO;
 DO IWXYZYX=1 TO &NBYC;
 IF CCCCC(IWXYZYX)=" " THEN
 PUT "*** WRN: MISSING BY VALUE "

Advanced TutorialsAdvanced Tutorials

 CCCCC(IWXYZYX)=;
 END;
 %END;
 RUN;
 *--;
 * CHECK FOR JUSTIFICATION/CASE PROBLEMS;
 DATA _NULL_;
 IF 0 THEN DO;
 SET &FILE1 NOBS=NOBS1;
 SET &FILE2 NOBS=NOBS2;
 SET &OUT_FILE NOBS=NOBS3;
 END;
 IF NOBS3=NOBS1+NOBS2 THEN DO;
 PUT "*** ERR: NO RECORDS MATCHED! (CHECK";
 PUT "*** THE JUST/CASE OF CHAR BY VALUES)";
 END;
 STOP;
 RUN;
 %END;
 %ELSE %PUT *** WRN: DUE TO ERRS, MERGE IS CANCELLED;
%MEND MATCH;

 This macro is a beta version. So it may have some bugs, and you should use
it at your own risk. Also, it does not work in all cases. For example, it is
definitely not designed to handle more than two input files at a time. However,
it could be generalized to handle more than two input files. Also, it can be
refined. For instance, it would be nice to have it write the "Fractional BY
value" warning only once. Despite these limitations, it is useful and it
provides an idea of the kind of code that can be used to avoid many of the traps
associated with the match-merge. You can use the macro as is or you can modify
it. It may be used freely for in-house programming which is not sold. It is
not intended to be sold by itself or as part of a larger program without the
author’s permission.

HOW TO USE THE MATCH MACRO
 The simplest way to use the MATCH macro is to copy it into your program as
is. Then, invoke it whenever you are going to do a match-merge later in the
program. Here is an example of how to invoke it.

 %MATCH(in_files=ONE TWO, out_file=ONE_TWO, by_vars=ID);

 Notice that MATCH, among many other things, checks that:
- there are exactly 2 input data sets in the MERGE statement;
- there is exactly 1 output file in the DATA statement; and,
- there is at least one BY variable specified in the BY statement.

 MATCH assumes that the two input files are sorted in ascending order of the
BY variables.

 MATCH is particularly suited for merging two relatively small files. If you
have several small files to merge, consider merging them two at a time with
MATCH.

 If you have large files where the computing overhead involved in running
MATCH would be prohibited, consider running some sample subset of your files

Advanced TutorialsAdvanced Tutorials

through MATCH. Or you can simplify the second to last section of MATCH to
include only the classic 4-statement merge. This would eliminate all the
overhead that would accompany two large files.
Or test the large files once and after you are satisfied they are working,
simplify the second to last section.

 It is recommended that you use MATCH as often as possible and that you do
all your data manipulation and subsetting in a later DATA step

 One thing you can not do in a subsequent DATA step is subsetting based on
the IN= data set option. In this case, it recommended that you carefully add
the IN= subsetting to the second to last part of the MATCH macro where the 4-
statement merge is located. Be sure to set IN= to a variable name that is
already used in any of the input files.

 This macro, in a single ploy, avoids 17 traps. It is not the only trick you
can use to defend yourself against faulty merges, but it certainly is the
easiest.

LOOK AT THE LOG
 It is always a great strategy to look at the SAS log. SAS directly detects
seven match-merge traps. The MATCH macro was designed to be used in conjunction
with the SAS log. Specifically, SAS detects five traps, not detected by MATCH,
and writes a NOTE or ERROR message as follows:

 · Many-to-many/few merge NOTE (a)
 · Type mismatch (char/num) ERROR (b)
 · BY variable not in file ERROR (c)
 · Input Files do not exist ERROR (d)
 · Input files not sorted ERROR (e)

 SAS also detects the following two traps detected by MATCH

 · Missing DATA statement ERROR (f)
 · Missing MERGE statement ERROR (g)

 Finally, if the "OPTIONS msglevel=i;" statement is used, SAS catches

 · Overlapping variables INFO (h)

 The corresponding messages that SAS writes for all of the above traps are:

(a) NOTE: MERGE statement has more than one data set
 with repeats of BY values.
(b) ERROR: Variable ID has been defined as both character
 and numeric.
(c) ERROR: BY variable xxx is not on input data set yyy.
(d) ERROR: File zzz does not exist.
(e) ERROR: BY variables are not properly sorted on data
 set yyy.

(f) ERROR 180-322: Statement is not valid or it is used
 out of proper order.
(g) ERROR: A SET, MERGE, or UPDATE statement not present.

Advanced TutorialsAdvanced Tutorials

(h) INFO: The variable xxx on data set yyy will be
 overwritten by data set zzz.

 Pay close attention to NOTE (a). It is only a note, nonetheless it points
to a real pitfall. It indicates that records within a BY group are being match
willy-nilly. And this pitfall is not checked for by MATCH. See the SUGI 22
paper for more information on this topic.

BY VARIABLE CHECK LIST
 The MATCH macro and the SAS log together directly detect or avoid 22 traps.
Yet these two ploys are no substitute for good input data.

 Particular attention must be given to the BY variables. Obviously, if your
BY variables are faulty in any way, the records from the input files will never
match correctly (Garbage in, Garbage out). Said another way, no matter how good
your programming skills are, or how good your defensive strategies are, your BY
variables have to be in tip-top condition. Enough can not be said about the
importance of good BY variables.

 In an ideal world, there would always be, one and only one, set of BY
variables to uniquely identify each data item. In the real world, BY variables
are slippery critters. In one file they are justified one way, in another file,
the other way. They are mis-keyed. They are not keyed, leading to missing
values. And in general, they are mis-treated in many ways.

 The twin ploy of MATCH macro and SAS log catches most traps. The only traps
that sneak past these two defensive strategies are BY variable related. In
fact, from Table 1, the only three (3) traps of substance that are not
completely detected by the two ploys are:

 - Ambiguous By variables
 - By Value instability
 - BY variable Manipulation History

 The previous paper discusses each of these traps.

 There are a couple of pitfalls that are not even mentioned in Table 1. They
are subtle (non-consistent) case mismatches and subtle (non-consistent)
justification mismatches. When there is only an occasional mismatch in the case
or justification of a character BY variable value, MATCH will not detect it. In
fact, it is very hard to detect. One way to sidestep these two traps is to
guarantee that BY variables match by applying the following code to them in
every input file before the files are merged.

 ID= LEFT(UPCASE(ID));

 A pre-condition to a good merge is to have your BY variables in tip-top
shape. Consider the following check list of conditions.

 Do all BY variables...
 - Use check digits to avoid mis-keying?
 - Have no unnecessary duplicate BY values?
 - Uniquely and unambiguously identify the data item?
 - Have no missing BY values?
 - constitute a legitimate key variable

Advanced TutorialsAdvanced Tutorials

 - Have a known manipulation history?
 - As a group, complete identify the data item?

 Do the character BY variables...
 - Have uniform justification?
 - Have uniform case usage (upper/lower)?

 Do the numeric BY variables...
 - Use only integer numeric BY values?

COMPREHENSIVE STRATEGY
 One of the goals of this paper was to develop a comprehensive strategy to
avoid as many match-merge traps as possible. The strategy proposed here for a
simple match-merge is to use a three-pronged attack: the MATCH macro, the SAS
log, and the BY variable check list.

 If you want or need to go beyond the basic four-statement match- merge, it
is recommended that you: (1) use a modified version of the three-pronged attack;
(2) keep the merge as simple as possible; (3) fully understand the automatic
retain; (4) understand the match-merge DATA step algorithm given on page 151 of
SAS Language: Reference (Version 6, First Edition), under the title "DATA Step
Processing during Match-merging"; and (5) remember that the match-merge is full
of traps.

CONCLUSION
 While the SAS code to perform a file merge is often simple, the merge
process itself can be difficult. In an ideal world, the BY variables are
carefully designed and chosen well before any data is collected. They truly and
unambiguously identify, label, and distinguish each record in a data set. In
the real world, BY variables are frequently jerry-rigged or a fuzzy merge is
required. Even when good BY variables are available, the BY value and the merge
process need to be carefully checked.

 There are at least 28 traps associated with match-merge. These traps can go
undetected and cause unexpected results. Sometimes these results are
aggravating or costly to detect and correct. Other times, undesirable results
go undetected and can cause real problems in billings, inventories, etc.

 The best defense is an offense. This paper provides a comprehensive
proactive strategy to avoid or detect all of the traps. The strategy includes a
beta version of a macro which, in conjunction with the SAS log, catches or
dodges most of the traps.

REFERENCES
Foley, Malachy J. (1997) "Advanced Match-Merging: Techniques, Tricks and Traps"
Proceedings of the Twenty-Second Annual SAS Users Group International
Conference, 199-206.

SAS Institute, Inc. (1990), SAS Language: Reference, Version 6, First Edition,
Carry, NC: SAS Institute Inc.

Advanced TutorialsAdvanced Tutorials

TRADEMARKS
SAS is a registered trademark or trademark of SAS Institute Inc. in the USA and
other countries. Ò indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

AUTHOR CONTACT
 The author welcomes comments, questions, corrections and suggestions.

 Malachy J. Foley
 2502 Foxwood Dr.
 Chapel Hill, NC 27514

 Email: FOLEY@unc.edu

Advanced TutorialsAdvanced Tutorials

	Main TOC

