
1

%SYSFUNC - The Brave New Macro World
Chris Yindra, C. Y. Training Associates

ABSTRACT

The new macro function %SYSFUNC (SAS® rel 6.12)
allows access by the macro processor to most data step
functions and several SCL functions. Solutions to many
common macro tasks can now be simpler and more
efficient. In addition, many of the SCL functions allow the
programmer to manipulate external files directly from the
macro processor without forcing step boundary conditions
with data steps. %SYSFUNC also allows the macro
processor to do floating point arithmetic.

Note: These features are also supported in the data step
with the SYSFUNC function.

INTRODUCTION

This paper will demonstrate several uses of the new
macro function %SYSFUNC including checking for the
existence of data sets and external files, retrieving
information about data sets, and manipulating external
files. Emphasis will be placed on the SCL functions
available to %SYSFUNC. This paper is intended for
those with macro programming experience.

The examples in this paper were run using SAS rel 6.12
on WINDOWS® 95.

FUNCTIONS AVAILABLE TO %SYSFUNC

All data step functions are available EXCLUDING:

DIF INPUT PUT DIM LAG RESOLVE
HBOUND LBOUND SYMGET

Instead of INPUT and PUT you can use INPUTC,
INPUTN and PUTC, PUTN for character or numeric
formats, respectively.

Note: while values returned by macro functions are not
limited to the current maximum length of data step
variables of 200 characters, the values returned by SAS
functions are limited to 200 characters.

The following SCL functions are available:

ATTRC FDELETE FRLEN SYSTEM
ATTRN FETCH FSEP VARFMT
CEXIST FETCHOBS FWRITE VARINFMT
CLOSE FEXIST GETOPTION VARLABEL

CUROBS FGET GETVARC VARLEN
DCLOSE FILEEXIST GETVARN VARNAME
DINFO FILENAME LIBNAME VARNUM
DNUM FILEREF LIBREF VARTYPE
DOPEN FINFO MOPEN
DOPTNAME FNOTE NOTE
DOPTNUM FOPEN OPEN
DREAD FOPTNAME PATHNAME
DROPNOTE FOPTNUM POINT
DSNAME FPOINT REWIND
EXIST FPOS SYSMSG
FAPPEND FPUT SYSRC
FCLOSE FREAD
FCOL FREWIND

Note: The SYSMSG function allows the programmer to
return system messages to the LOG.

REVIEW OF MULTIPLE AMPERSANDS

Multiple ampersands can be used to allow the value of a
macro variable to become another macro variable
reference. The macro variable reference will be re-
scanned until the macro variable is resolved.

The following demonstrates how macro variables with
multiple ampersands are resolved.

Symbol Table

Macro Variable Macro Variable
Name Value

A FREIGHT
B PASSENGER
C SPECIAL
CODE A

Resolving a macro variable:
1st scan

1. &CODE A

 1st scan 2nd scan
2. &&CODE &CODE A

[&&] CODE On the first scan -
 && resolves to &, CODE held

 as a token
 [&][CODE]

Advanced TutorialsAdvanced Tutorials

2

3. &&&CODE &A FREIGHT

[&&][&CODE] On the first scan -
 && resolves to &, &code to A.

 [&][A]

CHANGING THE FORMAT OF A MACRO
VARIABLE

The format of macro variables can be changed with the
INPUTN, INPUTC or PUTN, PUTC functions. To change
a macro variable using a numeric informat use the
INPUTN function. To change a macro variable using a
character format, use the PUTC function.

Syntax:
val = %SYSFUNC(INPUTC(char val, informat));
val = %SYSFUNC(INPUTN(num val, informat));

val = %SYSFUNC(PUTC(char val, format));
val = %SYSFUNC(PUTC(num val, format));

Example 1

%SYSFUNC allows us to convert a macro variable
using a format without having to resort to a data
step.

This example converts a macro variable date string into a
macro variable containing the SAS date representation
using an existing SAS format.

%LET MYDATE = 971006;

%PUT ORIGINAL VALUE: &MYDATE;

%MACRO CHNGFMT(INVAR,INFMT);
 %LET &INVAR =
 %SYSFUNC(INPUTN(&&&INVAR,&INFMT));
%MEND;

%CHNGFMT(MYDATE,YYMMDD6.);

%PUT SAS DATA VALUE: &MYDATE;

Result:

25,*,1$/ 9$/8(� ������

6$6 '$7$ 9$/8(� �����

Example 2

This example converts a macro variable using a user
format.

PROC FORMAT;
 VALUE STATEFMT 1 = 'CONNECTICUT'
 2 = 'MARYLAND'
 3 = 'NEW YORK';
RUN;

%LET STATEVAR = 2;

%PUT ORIGINAL VALUE: &STATEVAR;

%MACRO CHNGVAL(INVAR,FMT);
 %LET &INVAR =
 %SYSFUNC(PUTN(&&&INVAR,&FMT));
%MEND;

%CHNGVAL(STATEVAR,STATEFMT.);

%PUT NEW VALUE: &STATEVAR;

Result:

ORIGINAL VALUE: 2
NEW VALUE: MARYLAND

READING SAS DATA SETS

There are many functions that allow you to access and
manipulate SAS data sets with %SYSFUNC. Many of
these features were previously available in the macro
language, however many often took a round about
approach. While %SYSFUNC allows you to access data
set observations, I’ll focus on accessing data set
descriptor information.

Data set functions discussed in this paper:
OPEN - Opens a SAS data set.
CLOSE - Closes a SAS data set.
EXISTS - Checks for the existence of a SAS data set.
LIBNAME - Assigns a libref.
LIBREF - Verifies that a libref has been assigned.
ATTRC - Returns the value of character attributes of a

 data set.
ATTRN - Returns the value of numeric attributes of a

 data set.
VARFMT - Returns a variables format.
VARNUM - Returns a variables position.
VARTYPE - Returns a variables type.

Some of these functions return values while others return
a return code. The value of the return code is function
dependent. A typical variable name to pass a return

Advanced TutorialsAdvanced Tutorials

3

code into is RC although this is not required. The
standard syntax for a function that returns a return code
is:

rc = %SYSFUNC(functionname(argument));

Note: While accessing data sets, the SYSMSG() function
can be used to return error messages to the log.

Example 3

A common task for a macro programmer is to generate a
report whether or not a data set exists. This is useful
when a user may attempt to report off of a data set that
has not been created.

You can accomplish this in a macro with the EXISTS
function.

Syntax
 rc = %SYSFUNC(EXISTS, data set name);

 The values of the return code are:

0 - The data set does not exist
1 - The data set does exist

%MACRO CHECKIT(DSN);
 %IF %SYSFUNC(EXIST(&DSN)) = 1 %THEN %DO;
 PROC CONTENTS DATA=&DSN;
 %END;
 %ELSE %DO;
 DATA _NULL_;
 FILE PRINT;
 PUT "THE DATASET &DSN DOES NOT EXIST";
 %END;
 RUN;
%MEND;

%CHECKIT(CYLIB.JUNK);

Result:

THE DATASET CYLIB.JUNK DOES NOT EXIST

Many attributes of a data set besides its existence can be
retrieved by the %SYSFUNC. For instance, the ATTRN
function returns the value of numeric attributes of a data
set. Some of the attributes are:

CRDTE - Creation date
MODTE - Modification date
NOBS - Number of physical observations (includes

 observations marked for deletion.
NLOBS - Number of logical observations (excludes

 observations marked for deletion.
NVARS - Number of variables in the data set.

The ATTRN function requires that the data set has been
opened with the OPEN function; The OPEN function
returns a unique numeric identifier for a data set. Many
functions use this assigned identifier as an argument
instead of the data set name.

Any data set that is opened with the OPEN function
should be closed with the CLOSE function. The close
function returns a return code. A non zero return code on
the on the CLOSE function is an error condition.

Syntax
%LET dsid = %SYSFUNC(OPEN(data set name));
 %IF &dsid = 0 %THEN
 %PUT %SYSFUNC(SYSMSG());
%LET nvar = %SYSFUNC(ATTRN(&dsid,attribute);
%LET rc = %SYSFUNC(CLOSE(&dsid));
 %IF &rc NE 0 %THEN
 %PUT %SYSFUNC(SYSMSG());

In this syntax, DSID is the numeric identifier associated
with the data set opened with the OPEN function. If this
identifier is 0, an error occurred opening the data set. We
can use SYSMSG() to write the error to the LOG.

Example 4

Determine if a data set has been modified by FSEDIT or
an AF application since its creation (this will not work on
data sets that have been recreated).

PROC FSEDIT DATA=CYLIB.EMPLOY;
RUN;

%MACRO DSMOD(DSNAME);
 %LET DSID = %SYSFUNC(OPEN(&DSNAME));
 %IF (&DSID = 0) %THEN
 %PUT MSG = %SYSFUNC(SYSMSG());
 %ELSE %DO;
 %LET CDATE =
 %SYSFUNC(ATTRN(&DSID,CRDTE));
 %LET MDATE =
 %SYSFUNC(ATTRN(&DSID,MODTE));
 %LET RC = %SYSFUNC(CLOSE(&DSID));
 %IF &CDATE NE &MDATE %THEN
 %PUT The data set has been modified;
 %END;
%MEND;

%DSMOD(CYLIB.EMPLOY);

Result:
The data set has been modified.

Advanced TutorialsAdvanced Tutorials

4

Example 5

Another common task is to generate a report whether or
not a SAS data set exists or has 0 observations. This I
useful when a user defined selection criteria does not
select any observations to be written out to the resulting
data set and the programmer wants a report returned
stating this.

To accomplish this we will start with the macro created in
example 3. We also need to check for 0 observations in
a data set. The NLOBS argument to the ATRN function
will return the number of logical observations in a data set
(not counting those marked for deletion).

DATA TEMP;
 SET CYLIB.EMPLOY;
 WHERE DEPT = 'ZZ'; * NO SUCH DEPARTMENT;
RUN;

%MACRO GENRPT(DSN);
 %IF %SYSFUNC(EXIST(&DSN)) = 1 %THEN %DO;
 %LET DSID = %SYSFUNC(OPEN(&DSN));
 %LET NUMOBS =
 %SYSFUNC(ATTRN(&DSID,NLOBS));
 %IF &NUMOBS GT 0 %THEN %DO;
 PROC PRINT DATA=&DSN;
 %END;
 %ELSE %DO;
 DATA _NULL_;
 FILE PRINT;
 PUT "NO OBSERVATIONS IN &DSN";
 %END;
 %LET RC = %SYSFUNC(CLOSE(&DSID));
 %END;
 %ELSE %DO;
 DATA _NULL_;
 FILE PRINT;
 PUT "THE DATASET &DSN DOES NOT EXIST";
 %END;
 RUN;
%MEND;

%GENRPT(TEMP);

Result:
NO OBSERVATIONS IN TEMP.

The ATTRC function can be used to return a variety of
character attributes of a data set. Some of the attributes
are:

LABEL - The label assigned to the data set
SORTEDBY - The names of the BY variables in order

 (empty if the data set is not sorted).

As with the ATTRN function, the ATTRC function requires
that the data set has been opened with the OPEN
function. Data sets that are opened should be closed with
the CLOSE function.

Syntax
%LET dsid = %SYSFUNC(OPEN(data set name));
%LET cvar = %SYSFUNC(ATTRC(&dsid,attribute);
%LET rc = %SYSFUNC(CLOSE(&dsid));

Example 6

Sorting a data set that has previously been sorted
according to the same criteria requires redundant
overhead. We can use ATTRC to check and see if a data
set has already been sorted according to the specified
criteria. To accomplish this we provide the BY statement
sort string and compare this to the SORTEDBY attribute.
Blanks are COMPRESSed out to avoid syntax confusion.

PROC SORT DATA=CYLIB.EMPLOY;
 BY DEPT SALARY;
RUN;

%LET SRTSTRNG = DEPT SALARY;

%MACRO ISSORT(DSNAME);
 %LET DSID = %SYSFUNC(OPEN(&DSNAME));
 %IF (&DSID = 0) %THEN
 %PUT MSG = %SYSFUNC(SYSMSG());
 %ELSE %DO;
 %LET SEQ =
 %SYSFUNC(ATTRC(&DSID,SORTEDBY));
 %LET RC = %SYSFUNC(CLOSE(&DSID));
 %IF %SYSFUNC(COMPRESS(&SRTSTRNG)) NE
 %SYSFUNC(COMPRESS(&SEQ)) %THEN %DO;
 PROC SORT DATA=&DSNAME;
 BY &SRTSTRNG;
 RUN;
 %END;
 %ELSE %PUT A sort was not required;
 %END;
%MEND;

%ISSORT(CYLIB.EMPLOY);

Result:
A sort was not required.

READING SAS CATALOGS

The previous examples focused on SAS data sets.
%SYSFUNC can also read various attributes of SAS
catalogs. The CEXISTS function is used to check for the
existence of a SAS catalog or catalog entry.

Advanced TutorialsAdvanced Tutorials

5

Syntax
 rc = %SYSFUNC(CEXIST(catalog entry))

Example 7

If a SAS data set is to be moved to a different
platform or server, it may be useful to know if that
data set uses any user written formats that may need
to be copied as well. To accomplish this we can
check every variable for any required formats. We
then compare these formats with any from the
LIBRARY (or other format library) library.

LIBNAME LIBRARY 'C:\CYDATA\';

PROC FORMAT LIBRARY = LIBRARY;
 VALUE $DPTFMT 'GIO' = 'GROUP INSURANCE'
 'GPO' = 'GROUP PENSION'
 'IIO' = 'INDIVIDUAL INS'
 'RIO' = 'REINSURANCE';

DATA EMPLOY;
 SET CYLIB.EMPLOY;
 FORMAT DEPT $DPTFMT.;

RUN;

%MACRO CHECKFMT(DSNAME);
 %LET DSID = %SYSFUNC(OPEN(&DSNAME));
 %LET NUMVARS =
%SYSFUNC(ATTRN(&DSID,NVARS));
 %DO I = 1 %TO &NUMVARS;
 %LET FMT = %SYSFUNC(VARFMT(&DSID,&I));
 %IF &FMT NE %THEN %DO;
 %LET TYPE = %SYSFUNC(VARTYPE(&DSID,&I));
 %LET FMT = %SYSFUNC(COMPRESS(&FMT,'$'));
 %LET CATENTRY=
 LIBRARY.FORMATS.&FMT.FORMAT&TYPE;
 %IF %SYSFUNC(CEXIST(&CATENTRY)) %THEN
 %PUT &FMT IS A USER WRITTEN FORMAT
 USED BY &DSNAME;
 %END;
 %END;
 %LET RC = %SYSFUNC(CLOSE(&DSID));
%MEND;

%CHECKFMT(EMPLOY);

Result:
DPTFMT. IS A USER WRITTEN FORMAT USED BY
EMPLOY.

MANIPULATING EXTERNAL FILES

%SYSFUNC also allows you to access and manipulate
external files without the use of a data step. Files can be
read and modified with the macro processor. In addition
we can also access directories.

Values read from external sources are placed in a file
buffer. Values in that buffer can be modified and the
result can be written back to the file or to a different file.
Files manipulated in this fashion are referenced by a
unique id assigned with the FOPEN function, not by their
fileref or name.

File and directory functions discussed in this paper:
DOPEN - Opens a directory.
DCLOSE - Closes a directory.
DNUM - Number of members in a directory.
DREAD - Returns the name of a directory member.
FOPEN - Opens a file.
FCLOSE - Closes a file.
FILEEXIST - Checks for the existence of a file.
FILENAME - Assigns a fileref.
FPUT - Puts a value to the file buffer
FWRITE - Writes a value from the file buffer to the

 file.

Like SAS data sets, all files and directories opened with
the DOPEN or FOPEN function should be closed with the
DCLOSE or FCLOSE function.

Example 8

Previously we tested for the existence of a SAS data set.
%SYSFUNC also allows us to test for the existence of an
external file. To accomplish this we use the FILEEXIST
function.

Syntax
 rc = %SYSFUNC(FILEEXIST(file name));

The values of the return code are:

0 - The file does not exist
1 - The file does exist

%MACRO FEXISTS(FILENM);
 %LET FILEFLAG =
 %SYSFUNC(FILEEXIST(&FILENM));
 %IF (&FILEFLAG = 1) %THEN
 %PUT THE FILE &FILENM EXISTS;
 %ELSE %PUT THE FILE &FILENM DOES NOT EXIST;
%MEND;

%FEXISTS(C:\JUNK\XXX.TXT);

Advanced TutorialsAdvanced Tutorials

6

Result
THE FILE C:\JUNK\XXX.TXT DOES NOT EXIST

Here the return code is returned to the macro variable
FILEFLAG. We could have also used RC, as was used in
the previous examples.

Information about a file including the record length and
record type can be accessed with the FINFO function.
FINFO requires that a file first be opened with the FOPEN
function.

Syntax
 file id = %SYSFUNC(FOPEN(file ref));
 value = %SYSFUNC(FINFO(file id, info item));
 rc = %SYSFUNC(FCLOSE(file id));

Example 9

We may find it useful to know the logical record length of
an existing file. To accomplish this we use the FINFO
function with the LRECL attribute.

FILENAME XFILE 'C:\JUNK\MYFILE.TXT';

%MACRO FILELEN(FILEREF);
 %LET FID = %SYSFUNC(FOPEN(&FILEREF));
 %LET VALUE = %SYSFUNC(FINFO(&FID,LRECL));
 %PUT LRECL = &VALUE;
 %LET FID = %SYSFUNC(FCLOSE(&FID));
%MEND;

%FILELEN(XFILE);

Returns
LRECL = 256

Example 10

Create a file that contains the names of all files in a sub-
directory.

This requires that we first open a directory and retrieve
the number of files in the directory (DOPEN and DNUM).
At that point we can read the names of the files
(DREAD). We then need to open a file and put the name
of each file to the file buffer (FOPEN, FPUT). Once the
name of a file is n the file buffer, we can write the name
to the file (FWRITE). Finally, we close the directory and
the file (DCLOSE, FCLOSE)

Syntax
dir id = %SYSFUNC(DOPEN(file dir ref));

 file id = %SYSFUNC(FOPEN(file ref));

value = %SYSFUNC(DREAD(file id, item));
rc = %SYSFUNC(FPUT(file id, value));

 rc = %SYSFUNC(FWRITE(file id));

rc = %SYSFUNC(FCLOSE(file ref));
rc = %SYSFUNC(DCLOSE(file dir ref));

%MACRO GETNAMES(FILEDIR,OUTFILE);

 %LET FREF=X;

 %LET RC=%SYSFUNC(FILENAME(FREF,&FILEDIR));

 %IF &RC NE 0 %THEN
 %PUT %SYSFUNC(SYSMSG());

 %LET DIRID=%SYSFUNC(DOPEN(&FREF));

 %LET NEWFILE = NEWFILE;

 %LET RC =
 %SYSFUNC(FILENAME(NEWFILE,&OUTFILE));
 %IF &RC NE 0 %THEN
 %PUT %SYSFUNC(SYSMSG());
 %LET FILEID = %SYSFUNC(FOPEN(&NEWFILE,A));
 %IF &FILEID EQ 0 %THEN
 %PUT %SYSFUNC(SYSMSG());

 %LET NUMFILES = %SYSFUNC(DNUM(&DIRID));

 %DO I = 1 %TO &NUMFILES;

 %LET FILENM = %SYSFUNC(DREAD(&DIRID,&I));
 %LET RC = %SYSFUNC(FPUT(&FILEID,&FILENM));
 %LET RC = %SYSFUNC(FWRITE(&FILEID));
 %IF &RC NE 0 %THEN %PUT
 %SYSFUNC(SYSMSG());
 %END;

 %LET RC=%SYSFUNC(DCLOSE(&DIRID));
 %LET RC=%SYSFUNC(FCLOSE(&FILEID));
 %LET RC=%SYSFUNC(FILENAME(FREF));
%MEND;

%GETNAMES(C:\SAMPDATA\,C:\JUNK\ALLFILES.TXT);

Results in a file containing all item names in the directory.

CONCLUSION

The introduction of %SYSFUNC into the macro language
gives the macro programmer a wide range of new tools to
access and manipulate SAS libraries and external files.

Advanced TutorialsAdvanced Tutorials

7

The macro language’s ability to create flexible code
based on static, user, and system supplied parameters
has been greatly enhanced. This paper has presented a
small subset of the capabilities of %SYSFUNC and I
encourage the reader to explore additional capabilities.
Online documentation for %SYSFUNC on the
WINDOWS® operating system can be found by selecting

HELP
ONLINE DOCUMENTATION
WHATS NEW IN RELEASE 6.12
WHATS NEW IN BASE SAS
FUNCTIONS

Questions, comments, and suggestions are welcome at:

Chris Yindra
C. Y. Training Associates, Inc
80 West Mountain Road
Canton Center, CT 06020
800-563-9484
chris@cyassociates.com
http://www.cyassociates.com

REFERENCES

SAS Institute, Inc., SAS release 6.12 Online
Documentation.

SAS is a registered trademark or trademark of of SAS
Institute, Inc., in the US and other counries. Other brand
and product names are registered trademarks and
trademarks of their respective companies.

Advanced TutorialsAdvanced Tutorials

	Main TOC

