
1

Update HTML Formatted SAS Output Within Web Browser

James Sun, Constat Systems, Monmouth Junction, New Jersey

ABSTRACT

In order to get most recent information, SAS
programmers are frequently asked by end users to
rerun some existed programs. This paper presents a
step-by-step method to setup a light-weight SAS and
intranet application, allowing end users to update SAS
output within their browser. The author highlights the
mechanism of such applications. Techniques discussed
include setting up personal web server, selecting proper
CGI script, and modifying existed SAS program in
order to successfully deploy the application. Three
examples covered illustrate different ways to use such
an approach.

INTRODUCTION

SAS outputs are often presented in hard copy. To view
outputs on screen, such as in AF or EIS application,
requires SAS running. It is natural to ask this
question: Can we take advantage of versatile HTML
format to deliver the information SAS generated in a
timely fashion?

With some basic knowledge of HTML format, we can
translate a regular SAS output into HTML document.
But a converted SAS output is just a static document.
It only reflects the data when you submitted the SAS
job. When asking for latest report, SAS program
should be rerun with updated data. It is inefficient to
have programmers to handle all update requests. To
relief the burden on SAS programmers, end users
should be able to rerun the SAS code themselves. In
some situations, those end users are not in a SAS
installed environment.

On the other hand, it is complicate to develop a
traditional client-server application without install SAS
at client site. To overcome this problem, we can utilize
the network facility to set up a light-weight intranet.
An ‘update’ button could be placed within SAS output
file. Whenever end users want to access updated
information, all they need to do is click the “Update’
button. A personal web server resided at
programmer’s desktop will invoke a batch job running
the SAS program.

Three examples covered in this paper are mostly
experimental. They were designed to assist in
monitoring the progress of data processing. The
levels of difficulty are ranging from simple, only
requiring minimal setup and changes, to sophisticate
which produced integrated report. The last example
goes beyond the simple ‘update’ function. It is
actually a multilevel SAS intranet application.

HTML FILE AND SAS OUTPUT

A HTML file looks like contents of document, plus
some HTML tags that indicate document elements,
structure, formatting, and hypertext links.

A straight forward method to put SAS output into a
web browser is using PUT statements in DATA steps.
The output includes all necessary HTML tags mixed
with main contents.

The macros %OUT2HTM, %DS2HTM and
%TAB2HTM introduced by SAS Institute (SI) put all
necessary HTML tags into the output. Those handy
tools simplify the process of delivery SAS output
through intranet.

SAS WORKS WITH WEB

Two parts are needed to run a SAS program in an
intranet environment. At end user side, the only
requirement is a web browser. The purpose of using a
browser is twofold. It acts as a SAS output reader, as
well as a user front end. It let user to issue rerun
command.

The second part is installed in the programmer’s
desktop. It includes three components:

� Web server. It should be able to accept CGI
script. Because the application illustrated here
assumed works in an environment which no
formal intranet was previously installed. Most of
personal web servers meet this requirement.

� CGI script. Common Gateway Interface is a
piece of executable program which reside inside

Internet, Intranets, and The WebInternet, Intranets, and The Web

2

web server. It response to the request received by
server to executive certain system tasks. In this
application, the CGI will be responsible for
starting SAS and then running a designated
program.

� SAS system and program. The center piece of this
application is the SAS program which creates the
output. Adapting to this setting, the original
program should be modified accordingly.

The diagram below is the setup and data flow.

Web
Brow ser

Web Server

SAS

CGI

'DWD 6RXUFHV

(QG 8VHU

3URJUDPPHU
V

'HVNWRS

Figure 1 Setup and Data Flow

First of all, SAS programmers need to generate the
HTML formatted report. This output is physically
stored in a shared network storage, which can be
access by end users. It can be viewed with a browser.
When comes to update, the end users just need to click
the button embedded in the report. After the request
reach the web server, a batch SAS session then
executes the SAS program. End users will r eceive the
update output in browser as the rerun completed.

SET UP APPLICATION

The requirement at site of end user is minimum. Only
web browser is need. Most of setup work will be at site
of SAS programmers, who are previously responsible
for carrying out the update tasks.

Install Web Server

Installing personal web server is straight forward. You
only need to provide information about your network,
such as your IP address.

There are many commercial web software as well as
shareware available for different operation systems.

Some of them allow you to download directly from
Internet .

Select CGI script

For the purpose of illustrating how it looks like, a
very basic example of CGI written in a Windows
batch file is following.

@echo off
 echo HTTP/1.0 200 OK>> %3
 echo Content-type: text/html>> %3
 echo.>> %3
 type %2 > c:\test\stdin
 c:
 cd c:\sas612
 start /w sas.exe -sysin c:\test\update1.sas -nologo -icon
 type c:\test\jump.htm >> %3

CODE 1 Example of a Simple CGI

The CGI example above is too primitive to use in
practical situation. Some CGI scripts have many
enhanced functions. They are capable of better
communication between server and SAS system. If
you choose CGI script written in Perl, an interpreter
for Perl should be installed first.

Modify SAS program

For simple tabulate report, such as printout of dataset,
you can choose macros included in SI’s Web Publish
Tools package. For the program using SAS/GRAPH
procedures, GIF or JPEG device driver is required.
In order to create composite (text mix with graphic)
output, HTML knowledge is essential.

The embedded clickable ‘Update’ button is
accomplished with HTML‘s FORM. You can place
the button anywhere you want. It is much simple to
use TITLE or FOOTNOTE statement to place the
button on top or bottom respectively. It is important
to put the date indicating when the output generated.
If prefer better integration of button and output, you
can use PUT to insert those HTML code. The next
SAS code example would place the button beneath the
output titles (TITLE1-TITLE4).

TITLE5 ‘<CENTER><FORM ACTION=”http://129.129.
129.129/Cgi-bin /runsas.pl” METHOD=”post”>’;
 TITLE6 ‘<INPUT TYPE=”hidden” NAME=”pgm”
VALUE=”sugi23.sas”>’;
 TITLE7 ‘<INPUT TYPE=”SUBMIT” VALUE=”Update Now”
></FORM></CENTER>’;

Internet, Intranets, and The WebInternet, Intranets, and The Web

3

CODE 2 SAS Code for a "Update" Button

Within the code, ‘129.129.129.129’ is the IP address of
programmer’s desktop. ‘Cgi-bin’ is the name of
directory CGI stayed. ‘runsas.pl’ is the CGI script I
used. Obviously, you need to adjust them base on your
IP address and server setup. Some of CGI scripts will
allow you to use extra input to specify the program
name. It avoids clogging the ‘Cgi-bin’ subdirectory
with all sorts of different CGI scripts in case of
running different SAS programs. TITLE6 provides the
name of program.

The HTML formatted output will be stored in a shared
network driver. Hence, end users can access the SAS
results any time they want. After an update completed,
a jump page will then automatically load the new
output after a short pause.

DATA _NULL_;
 FILE PRINT NOTITLE;
 PUT 'Content-type: text/HTML';
 PUT ;
 PUT '<HTML>’;
 PUT ‘<META HTTP-EQUIV=”Refresh” CONTENT=
”5;URL=file:///G|\sasout\output1.html” ’;
 PUT '<BODY ><H1> Update Finished! </H1>’;
 PUT '</BODY></HTML>';
RUN;

CODE 3. SAS Code for a "Jump" Page

CODE3 creates a jump page. It will keep this page for
5 seconds before display the new output, assuming G
is the shared driver, and output1.html is the updated
output.

If rewrite CODE2 and CODE3 into SAS macros,
“output1.html” and “sugi23.sas” can be represented by
macro parameters.

EXAMPLES

Ex1. Simple Data Output

This output is a progress report of a tracking
application. In clinical trial, data are collected on
each patient’s clinical report form (CRF). During an
on-going trial, CRFs filled at each visit are sent to a
data center for processing. The SAS report presents
date when CRF received and other status.

The data source is from a SAS/FSP application
running at different group. It is accessed through
SAS/SHARE allowing concurrent usage.

Figure 1 CRF Tracking Information

To schedule a rerun in advance is impractical. Since
CRF status tracking data was updated irregularly. It
is an example of using this approach to enable end
users control the timing of update.

/*----- prepare dataset ‘OUT’ ------*/

/*----- generate HTML output ------*/
OPTIONS PS=1000;

TITLE1 ‘<HTML><HEAD><TITLE>CRF TRACKING
</TITLE></HEAD><BODY BACKGROUND=back1.jpg>';
 TITLE2 '<CENTER><H1> CRF STATUS
TRACKING INFORMATION </H1> </CENTER>';
 TITLE3 “<CENTER><H3> Generated at
: &sysdate</H3></CENTER>”;

%UPDATE(sugi23);

FILENAME NEWOUT ‘G:\SASOUT\CRF_TRK.HTML’;

%HTMOUT(DATA=OUT,
 BY=INV,
 VAR=PAT PGNO DATENT,
 COLWIDTH=20 65 25
 LABCOL=EEDDEE EEEEAA EEAABB
 ROWCOL1=99CC99 CCCCCC CCCCCC
 ROWCOL2=CCFFCC EEEEEE);

/*----- create jump page ---*/

FILENAME webout "&outfl";

%JUMP(OUT=webout,

Internet, Intranets, and The WebInternet, Intranets, and The Web

4

 URL=%NRSTR(file:///G|\sasout\crf_trk.html),);

CODE 4 SAS code for Case 1

The purpose of large page size in OPTIONS statement
is to make sure that only one appearance of title section
within the whole output. The first 3 titles include
HTML header information and output title.

The macros %UPDATE and %JUMP contain the code
shown in CODE2 and CODE3. The macro named as
%HTMOUT, similar to SI’s %DS2HTM, translates
SAS dataset into HTML table. “&outfl” is required by
the CGI script. The figure 1 is the result.

Ex2. Data and Graphic Composite Output

The next example is an output containing not only the
main graphic plot, but some precise data results as
well.

To display graphical result in a web browser,
SAS/GRAPH procedure should run first. The
converted GIF or JPEG file is saved in network storage
waiting to be called upon.

To produce this composite report, the SAS program
first creates the plot named ‘graph1.gif’. Then PUT
statements are used to generate the output file based on
the layout design. Figure 2 shown the design and basic
HTML file. This file will be the major structure
generated by PUT statements.

Cell1 Cell2

Cell3 Cell4

Cell5

 <TABLE>
 <TR><TD>Cell1</TD><TD>Cell2</TD></TR>
 <TR><TD>Cell2</TD><TD>Cell3</TD></TR>
 <TR><TD COLSPAN=”2”>Cell5</TD></TR>
 </TABLE>

Figure 2 Basic Layout and HTML Code

In this example, Cell3 was designed for the plot, so
tags of ‘’
replaces cell3 in the output. With the update button is

placed inside Cell5, instead of using TITLE or
FOOTNOTE, the PUT statements will lay those
HTML code (for the button) into the place occupied
by cell5.

Figure 3 Medication Consumption

To deal with dynamic contents inside other cells,
macro variables are employed. For an example, the
dynamic content - current average consumption
number in Cell 2 will be represented by a designated
macro variable. This macro variable is generated
with CALL SYMPUT in an appropriate data step.
When the PUT statement try to put the macro varible
into the output file, it will automatically render its
resolved value.

After first two parts of SAS program, one generates
graphic another produces the HTML output, the last
part of the program is for a jump page. A filename
statement required by the specific CGI script and
macro %jump conclude the whole SAS program.

One benefit of preparing graphics for web browser, is
able to avoid tedious ANNOTATE or DSGI coding in
creating composite output. Another advantage is the
capability of creating animation graphic with special
SAS device driver of GIFANIM.

Ex3. Patient Count Information

Compare to the previous examples, this one is more
complex. Not only allows end users control the
timing of rerun, it also provides ways to further
investigate the completeness of data.

Internet, Intranets, and The WebInternet, Intranets, and The Web

5

In clinical trial, it is a common practice to separate
patient data into different data sets. Often some patient
data are missing in certain datasets. The purpose of
this example is to detect those missing cases based
upon the discrepancy among the datasets.

Figure 4 List of Available Tables

The application was designed to work for all studies
which follow a common data structure. At first, end
users are asked to setup the application by filling a
form with their browsers. The application then
generates a set of tables to check following:

1. Patient’s existence among all SAS datasets
2. Patient’s existence at all visits within each

SAS dataset

Figure 4 is the master list. It indicates all available
tables. An update button is placed on the list. End
users can rerun all the tables when they feel necessary.

Figure 5 is one of those tables. It provides patient
counts in all dataset or patient counts at different visits
for a particular dataset. The counts are sorted by
investigator sites. Beneath the table, a drill-down list
generated by SAS code is essential to further detect
which patient is actually missing.

Figure 5 Patient Count in One Dataset

The drill-down list was constructed with <SELECT>,
<OPTION> and realeted HTML tags. All the
available choices inside the drill down list are created
by SAS code based upon the column values. By the
side of drill down list there is another submit button.
It will invoke a different SAS program which produce
the discrepancy list.

Once user select an anchor dataset or visit with the
drill-down list, the application can produce a listing
of patient IDs. Those IDs indicate who are missing
comparing to the anchor dataset or visit. Figure 6.is
the listing which provides patient missing information
at different visits when compare to the situation at
Visit20.

Figure 6 Discrepancy Patient List

Other than the chosen anchor dataset name or visit
number, the batch SAS program still need to know
project parameters and even dataset user wants to
further investigate. To overcome shortfall in this

Internet, Intranets, and The WebInternet, Intranets, and The Web

6

typical ‘stateless processing’, additional macro
variables are provided with <INPUT TYPE=”hidden”
… > HTML code. Therefore, SAS programs are able
to execute accordingly.

DISCUSSION

The technique illustrated here leverages TCP/IP
network to facilitate an alternative information deliver
method. The network environment grants the
possibility of extending the reach of SAS outputs. By
enable end users to update SAS result, the application
lessen the needs of SAS programmer in maintaining
programs. Also such applications can be easily
integrated into department-wide intranet.

Because of the experiment nature of these examples,
there are limitations in this approach. The use of
personal web server is only suitable for small scale
deployment. Heavy use of applications such as OLAP
or Data Warehouse application demands commercial
grade server together with SAS/IntrNet.

SAS/IntNet uses different working model comparing to
that of CGI script. Instead of launching SAS every
time, it keeps a special SAS session running waiting
for the coming requests. Using application server
method alone can greatly shorten the response time.

Currently, the lack of utilities for quickly generating
GUI components still is a main obstacle in
development of multilevel SAS intranet application.
Building those utility macros can speed up develop
process in certain degrees, but non-visual SCL object
combined with SAS/AF Frame entry alike visual
construction tool are necessary for rapidly develop full
scale SAS based intranet application.

RERFENCES

Tom Savola and Mark Brown, Using Html: Special
Edition, Que Corp., 1996

Mohammed Kabir, CGI Primer Plus for Windows,
Waite Group Press, 1996

SAS Institute Staffs, Web Tools Developed by SAS
Institute, http://www.sas.com/rnd/web/intro
.html, SAS Institute, 1997

David Shinn and John Hansen, SAS Software and the
Web: Creating a Common Gateway Interface,
Observations 1Q/97, SAS Institute, 1997

Michael Friendly, sascgi: A SAS - WWW Gateway,
http://www.math.yorku.ca/SCS/Online/sascgi/index
.html, 1997

SAS Institute Staffs, Running SAS Graphics
Procedures and other SAS Procedures on the Web,
http://www.sas.com/techsup/download/
web/misc/sample5/read.txt, SAS Institute, 1997

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.
 indicates USA registration.

CONTACT

James Sun
Constat Systems
83 Regal Drive
Monmouth Junction, NJ 08852
internet: SUNJ@PFIZER.COM

Internet, Intranets, and The WebInternet, Intranets, and The Web

	Main TOC

