
1

PROGRAMMING FOR JOB SECURITY REVISITED:

EVEN MORE TIPS AND TECHNIQUES TO MAXIMIZE YOUR INDISPENSABILITY

Arthur L. Carpenter
California Occidental Consultants

Tony Payne
Software Product Services, Ltd.

KEY WORDS

STYLE, TECHNIQUE, SECURITY, NAMING
CONVENTIONS

ABSTRACT

A great deal has been said about programming techniques
for efficiency and maintainability of SAS programs. We are®

taught to write code that minimizes machine and
programmer resources. Unfortunately, easily maintained
code requires fewer programmers, and fewer programmers
means pink slips and less job security. In these troubled
times, programmers need to be able to maximize their
indispensability.

Programmers can increase their job security and thereby
protect themselves and their families by applying the tips
and techniques discussed within this paper. The
programmer will be advised when to apply the techniques,
and whether the use of the techniques should be subtle or
gross.

Techniques will cover programming style, editing style,
statements to use and avoid, and naming conventions. You
will learn to blur data steps, make non-assigning assignment
statements, and in general write code that not even you will
be able to figure out how or why it works.

All the techniques discussed in this paper have been field
tested by the authors and other SAS programming
professionals. Portions of this paper are based on a similar
"Best Contributed Paper" presented at SUGI 18 (Carpenter,
1993), SUGI 21 (Carpenter, 1996), and SEUGI 15. It has
also been presented at WUSS, SUGISA (South Africa) and
Views (UK).

INTRODUCTION

"Don't be irreplaceable, if you can't be replaced, you can't
be promoted." Dilbert's Laws of Work

General rules for writing SAS programs have been
suggested and promoted for a number of years. When
followed, the suggested rules create efficient programs that
are easily maintained by either the author or by other
programmers. Obviously, the primary beneficiaries of well

written code are the stockholders of the company that runs
and maintains the programs. In a well ordered and polite
society the programmer also receives benefits such as an
hourly wage, self satisfaction and an occasional pat on the
back.

Since well written code is easy to maintain, flaws in the logic
or bugs in the code can be easily ferreted out using the
documentation and by understanding the appropriate
section of the program. Unfortunately this means that the
original programmer may not even be necessary to the
process; indeed the original programmer can be freed to
work on other tasks that require the special talents of a
programmer. However as you carefully code your
programs, keep in mind that in general, easily maintained
programs require fewer programmers and one of the fewer
programmers could be you.

Fortunately it is possible to write programs that no one else
could possibly maintain. Programs can be written that
produce results that cannot be predicted from either a quick
or even fairly careful inspection of the code. Once you
know these techniques and have learned to properly apply
them, your job will be secure for as long as your programs
are in use.

Although it is possible to use the described techniques to
write a totally indecipherable program that works, often the
subtle application of only one or two techniques in an
otherwise ordinary program, will achieve the same results.
The selection of a technique and its application to the
program is an art form that can be achieved with practice
and perseverance.

PROGRAMMING STYLE

"Eat one live toad first thing in the morning and nothing
worse will happen to you the rest of the day." Dilbert's Laws
of Work

Programming style refers to the general approach that a
programmer takes when designing and coding programs.
Although most programmers develop their own unique
programming style, specific guidelines are often imposed by
the employer or the client. In the absence of specific
guidelines, consider incorporating some of the following.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

2

r DESIGNING THE CODING DESIGN rewritten.

U Avoid the logical separation of tasks, e.g. separate tasks
only if it is logical to keep them together.

U Avoid structured programming approaches.

U Nest function calls whenever possible. Exceeding a
depth of three provides added complexity. The following
statement only nests three deep and therefore lacks
necessary complexity.

depth2 = input(substr(station,
index(station,'-')+1),3.);

U Use functions when they are not required.

* DATE is a SAS date;
date=
mdy(month(date), day(date),
year(date));

* NAME never contains a comma;
name=
substr(name,index(name,',')+1,

length(name));

U Write code to replace functions entirely. The ABS
function becomes:

if a < 0 then b = a*-1;
else b = a;

U Use non-standard statement structures. A statement to
average two positive numbers could be written as:

ab = (a*(a>0) +
b*(b>0))/((a>0)+(b>0));

U Nest macro calls and definitions. The addition of macros
that call macros that define macros that call macros will
always add a nice touch.

U When using macro variables the use of %LOCAL and
%GLOBAL definitions allows you create symbolic variables
that have more than one definition at any given time. The
following macros print two different values for &AA.
Resetting &AA in the macro %INSIDE does not change its
value in the macro %OUTSIDE.

%macro inside(aa);
 %put inside &aa;
%mend inside;

%macro outside;
 %let aa = 5;
 %inside(3)
 %put outside &aa;
%mend outside;
%outside

This prints:

inside 3
outside 5

U Maximize the number of steps and lines of code. The
following PROC SQL is too compact and should be

proc sql;
create table report as
select * from sales
having saleprce gt mean(saleprce)
group by region;

Fortunately the single step PROC SQL can be replaced
with:

proc sort data=sales;
by region;

proc summary data=sales nway;
by region;
var saleprce;
output out=stats mean=meansale;

data report;
merge stats sales;
by region;
if saleprce gt meansale;

r ASSUME THE ASSUMPTIONS OF OTHERS

Most programmers make assumptions about the code they
are reading; the objective is to key in on those assumptions.

U Use LENGTH to assign the same variable different
lengths in different data sets. This is especially useful if that
variable is used in the BY statement during a MERGE.

More subtle is to define the length of the variables without
using the LENGTH statement.

U Variables with the same names could be numeric in one
data set and character in another. This is most useful when
the variables are flags that take on the values of numbers.

r ELIMINATE, HIDE (LOSE) SOURCE CODE

Code that is compiled no longer depends on the original
source code (except when modifications are required) and
this give us an opportunity to hide the source code.

U After compilation eliminate, rename, or change:

the SCL source code used with AF or FSP
applications

compiled DATA steps

compiled stored macros

DATA step views

SQL views (although the source can still be
recovered by using the DESCRIBE option).

U When editing SCL for SAS/AF or SAS/FSP® ®

applications change the color of the code to match the
background color of the editor.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

3

r USE THE DATA STEP EFFECTIVELY U When turning off debugging aids, prevent full discovery

The DATA step offers a number of opportunities to make
our programs more effective. U When using macros, the use of the macro debugging

U Use multiple steps when one would suffice. avoided.

The data set TWO could have been created in a single step. U Some options remove your ability to do things that we

data one;
set master;
actual=saleprce+tax;
data two;
set one;
profit = actual-budget;

The following PROC SORT should be rewritten using a
completely unnecessary DATA step.

proc sort data=old out=new;
by date;

With the DATA step this becomes:

data new;
set old;
proc sort data=new;
by date;

U Create data sets that are never used or are used
unnecessarily.

U Use implicit naming rules for data sets. This type of code
is also very susceptible to minor problems that can cause
major crashes.

data;set master; ended.
actual=saleprce+tax;
proc print;
data;set;
profit=actual-budget;
proc means noprint;
output;
proc print;
run;

U Data set names can be reused thus preventing another
programmer from getting overly familiar with the variables
that they contain. The previous example becomes:

data temp;set master;
actual=saleprce+tax;
proc print data=temp;
data temp;set temp;
profit=actual-budget;
proc means data=temp noprint;
output out=temp;
proc print data=temp;
run;

r USING SYSTEM OPTIONS

Several of the system options provide special programming
opportunities.

U Debugging aids can be turned off by using NOSOURCE,
NOSOURCE2, NONOTES, and NOLABEL.

by turning them off in several places.

options MPRINT, MLOGIC, SYMBOLGEN should be

take for granted e.g. NOMACRO.

U You can control the both the number of observations in a
data set using the OBS= option. The FIRSTOBS= and
LASTOBS=options tell SAS when to start and stop
processing SAS data sets. Change these options and don't
tell.

U Reroute the WORK or temporary data sets to another
location by using the USER= option. In the following DATA
step NEW is actually SASUSER.NEW.

options user=sasuser;
data new;
set project.master;

As an added bonus NEW will not be erased at the end of
the SAS job. This can cause disk and clutter problems.

Changing the USER= option several times within a
program, makes "WORK" files a bit tough to find.

U The ERRORABEND option is designed for batch
programming and when an error occurs the job immediately
will abend. When used in an interactive session, the
slightest error causes the end of the session and the LOG
will not even be available to help determine why the session

U In preparation for the millennium set
YEARCUTOFF=1800. The variable YEAR in the following
step will have a value of 1897.

* Hide this option statement;
options yearcutoff=1800;
data a;
date = '23mar98'd;
year = year(date);

U The S= option limits the number of columns read from
the program source. Only the first 10 columns are used in
the following DATA step.

options s=10;
data new;
set olddata
 master
 adj;
profit =
 sales + tax;
cnt+1;

The LOG will show (unless you use NOSOURCE) that the
data set OLDDAT was used instead of OLDDATA and that
the variable TAX is never used. Also the SUM statement
(CNT+1) becomes part of the assignment statement that is
used to create PROFIT.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

4

options s=10; @36 BMOTHR
data new; @41 BMTOTL ;
set olddat format date date7.;
 master label BMCRUS = 'CRUSTACEAN BIOMASS'
 adj; BMMOL = 'MOLLUSC BIOMASS'
profit = BMOTHR = 'OTHER BIOMASS'
 sales + BMPOLY = 'POLYCHAETE BIOMASS'
cnt+1; BMTOTL = 'TOTAL BIOMASS'

U The CAPS option can be used to change how literals are
compared. The data set NEW will have zero observations.

options nocaps;
data old;
 x='a';
 run;
options caps;
data new;
 set old;
 if x='a';
 run;

EDITING STYLE

"If you can't get your work done in the first 24 hours, work
nights." Dilbert's Laws of Work

Most programmers will develop a style that they use to code
their programs. Although there is merit to the argument that
no style is the best style, there are also specific techniques As an added bonus notice that the LABEL assignments
that you should consider. look a bit like assignment statements.

r CODE LAYOUT U Reform your code using the TextFlow program editor

The layout of the program as seen by the programmer is
determined by the programmer's editing style. Once again,
in the absence of specified guidelines, consider these to
improve the unreadableness of your code. The following
DATA step can be fixed using several different techniques.

data sasclass.biomass;
infile rawdat missover;
input @1 STATION $
 @12 DATE DATE7.
 @20 BMPOLY
 @25 BMCRUS
 @31 BMMOL
 @36 BMOTHR
 @41 BMTOTL ;
format date date7.;
label BMCRUS = 'CRUSTACEAN BIOMASS'
 BMMOL = 'MOLLUSC BIOMASS'
 BMOTHR = 'OTHER BIOMASS'
 BMPOLY = 'POLYCHAETE BIOMASS'
 BMTOTL = 'TOTAL BIOMASS'
 DATE = 'DATE'
 STATION = 'STATION ID';
run;

U Never indent.

data sasclass.biomass;
infile rawdat missover;
input @1 STATION $
@12 DATE DATE7.
@20 BMPOLY
@25 BMCRUS
@31 BMMOL

DATE = 'DATE'
STATION = 'STATION ID';
run;

U Use multiple statements per logical line.

U Break statements in the middle.

data sasclass.biomass;infile rawdat
missover;
input @1 STATION $ @12 DATE DATE7.
@20 BMPOLY @25 BMCRUS @31 BMMOL @36
BMOTHR @41 BMTOTL ; format date
date7.;label
BMCRUS = 'CRUSTACEAN BIOMASS'
BMMOL = 'MOLLUSC BIOMASS'
BMOTHR = 'OTHER BIOMASS'
BMPOLY = 'POLYCHAETE BIOMASS'
BMTOTL = 'TOTAL BIOMASS'
DATE = 'DATE'
STATION = 'STATION ID';
run;

prefix option.

data sasclass.biomass;infile rawdat
missover; input @1 STATION $ @12
DATE DATE7. @20 BMPOLY @25 BMCRUS
@31 BMMOL @36 BMOTHR @41 BMTOTL
; format date date7.;label BMCRUS =
 'CRUSTACEAN BIOMASS' BMMOL =
'MOLLUSC BIOMASS' BMOTHR =
'OTHER BIOMASS' BMPOLY = 'POLYCHAETE
BIOMASS' BMTOTL = 'TOTAL BIOMASS'
DATE = 'DATE' STATION = 'STATION ID'
; run;

U Form your code to make pictures. The company logo
would be a logical choice.

 data
 sasclass.biomass;
 infile cards missover;
 input @1 STATION $
 @12 DATE DATE7.
 @20 BMPOLY
@25 BMCRUS @31 BMMOL
@36 BMOTHR @41 BMTOTL
; format
 date date7.
 ;label BMCRUS=
 'CRUSTACEAN BIOMASS'
 BMMOL=
'MOLLUSC BIOMASS' BMOTHR='OTHER BIOMASS'
BMPOLY= 'POLYCHAETE BIOMASS' BMTOTL=
 'TOTAL BIOMASS'
 DATE='DATE'
 STATION
 =
 'STATION ID';

 run;

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

5

r USE EDITOR COLUMNS > 80

Occasionally use columns > 80 in the editor (these columns
are not usually visible while editing e.g. PROGRAM
WINDOW in the DISPLAY MANAGER).

U Place key variables out of sight.
 80

data newdata;
set olddata (drop=name | fname

 address city state); |

U Use the asterisk to comment out key formulas or
statements.

data new; set old; | *
 wt = wt/2.2; | Some statements when used properly have the capacity to

U Place special equations entirely out of sight.

data new; set old; | x=x+5;

U Place special equations partially out of sight.

data new; set old; |
degc = (degf | +5

 -32)*5/9; |

r JUDICIOUS USE OF COMMENTS

Comments are only useful when they are used correctly and
with discretion.

U The following comments contain an executable PROC
MEANS.

* The comments in this section do more ;
* than it seems ;
* ;
* modify data to prep for; proc means ;
* after adjusting the data using ;
* the; var for weight ;

U The /* ... */ style comments can be used to mask or
unmask code by taking advantage of the fact that this style
of comment cannot be nested.

The first comment is accidentally not completed, thus
commenting out the DATA step.

/* *****************
* Apply the
* ***very ***
* important adjustment;
data yearly;
set yearly;
income = income*adjust;
run;

/* Plot the adjusted income */
proc gplot data=yearly......
..... code not shown

An embedded comment can be used to cause a portion of
the "removed" code to be executed.

/* *****************
REMOVE FOR PRODUCTION
proc print data=big obs=25;

title1 'Test print of BIG';
var company dept mgr /*clerk*/;
data big;
set big;
if name='me' then salary=salary+5;
*END OF REMOVED SECTION;
****************** */
* Next production step;
..... code not shown

CHOICE OF STATEMENTS

"To err is human, to forgive is not our policy." Dilbert's Laws
of Work

add several layers of complexity to a SAS program. Others
should be avoided as they tend to reduce confusion.

r STATEMENTS TO AVOID

Avoid statements that tend to allow the programmer to
retain less mental information.

U Always maintain extra variables in the Program Data
Vector (PDV). Avoid the use of the KEEP and DROP
statements.

U When variables must be eliminated from the PDV use the
DROP statement. The KEEP statement lets the
programmer know what variables remain in the PDV, while
the DROP statement only reveals what was eliminated.

U Comments are to be avoided unless used in the ways
mentioned above.

U RUN and QUIT statements are rarely required, and
usually only serve to reduce program complexity by
separating steps.

r STATEMENTS TO USE

Several statements and combinations of statements can be
used to advantage.

U Statement style macros can be used to redefine variable
relationships.

* hide this definition;
%macro sat (name) / stmt;
 set &name;
 wt = wt + 5;
%mend sat;

* Why is the value of WT always 6 in
* the data set NEW?;
data old;wt=1;output;
data new;sat old;

U Implicit arrays are preferred to explicit arrays.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

6

U Define arrays using the names of other arrays. This that no naming conventions or the random selection of
technique was used on purpose prior to the advent of multi- names will create the most secure program. In actuality
dimensioned explicit arrays. Consider the following three there are a number of subtle and not so subtle techniques
implicit arrays. which can be applied by the sophisticated programmer.

array a (I) wt ht;
array b (I) xwt xht;
array c (j) a b;
x = c;

For I=1 and J=2 the variable X will be assigned the value
contained in XWT.

U The GOTO statement can be used to breakup program
structure; use it liberally.

U The label statement can be disguised.

SAS statement key words make excellent labels.

do: I=1;

Labels can be hidden in comments.

* did you notice that, this comment
* contains a; label:

U Data steps with multiple SET statements or better yet
SET and MERGE statements add complexity quickly, but
not quietly.

U Macro quoting functions can be used to prevent the
resolution of macro variables resulting in FALSE
comparisons that are obviously TRUE. The macro %DOIT
quotes &CITY so that it can not be resolved.

%macro doit(city);
 %put &city; Z & 2 QWRTZXQR QWRT2XQR
 %* Hide the following statement;
 %let city=%nrstr(&city);
 %put &city;
 %if &city = LA %then
 %put CITY is LOS ANGELES;
 %else %put city is not LA;
%mend doit;

When the macro is called with LA as the parameter:

%doit(LA)

The LOG will show:

LA
&city
city is not LA

&CITY is not resolved so it will NEVER be equal to LA.

NAMING CONVENTIONS

"You can go anywhere you want if you look serious and
carry a clipboard." Dilbert's Laws of Work

Naming conventions are perhaps the most useful tool in the
arsenal of the Job Security specialist. A novice may think

These rules can be applied to both variables and data sets,
and come from the schools of confusion, misdirection, and
inconsistency.

r CONFUSION

Create names that have no mental references or that make
memorization difficult.

U Use meaningful names during the debugging process,
then when the program is working use the editor CHANGE
command to convert variable names:

===> c 'age' 'qwrtxzqr' all

U Use 8 digit names when possible.

U Avoid the use of vowels, include subtle variations.

QWRTXZQR, QWRTZXQR, QWRZTXQR

U Some letters go well together.

H & I HHHIIHIH HHIHIHIH

V & W WVWVWVVW WVWWVWVW

l & 1 testnum1 testnuml
(number 1 and lower case L)

0 & O test0001 testOOO1
(number zero and letter O)

U SAS statement keywords are not reserved. The following
DATA step does NOT contain a DO loop.

DATA SET; SET DATA;
DO = 5+ TO -15;

U SAS Version 7 will lift the 8 character restriction on
names - this will give the Job Security expert additional
opportunities to utilize confusion.

rMISDIRECTION

When the name or use of a variable or data set has an
obvious (implied) meaning and is then used for something
else entirely the reader may be caught unawares.

U Obvious names work well for other purposes.

SEX ===> number of fish caught

WEIGHT ===> height of patient

INCHES ===> height in centimeters

U Placement of observations and data set names.

IF SEX = 'MALES' THEN OUTPUT FEMALES;

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

7

U The LABEL statement can be used to provide information
to the user. For instance consider the variable SEX which
contains the number of fish caught, then:

LABEL sex = 'Sex of the Patient';

U Users of WINDOWS may wish to start SAS sessions
using a WORD icon.

r INCONSISTENCY

Subtle inconsistencies are very difficult to detect and can be
very useful, especially in a program that has what seem to
be clearly defined parameters.

U YES/NO variables should take on the values of YES=0
and NO=1 (of course never Y & N), except somewhere for
some variable that has YES=1 and NO=0.

A useful variation has ANSWER='N' when the response is
YES and ANSWER='Y' when the response is NO.

U Variable and data set names should not have unique
definitions throughout the program.

U Variables should on occasion disappear and reappear
later with different definitions.

BLURRING THE DATA STEP

"If you are good, you will be assigned all the work. If you
are really good, you will get out of it." Dilbert's Laws of
Work

The SAS supervisor recognizes the end of steps by
detecting a RUN, QUIT, or the start of the next step. We
already know not to use the RUN or QUIT, so all we need to
do to blur two steps into one is to hide the start of the
second step.

r USING COMMENTS

Once in a great while the use of comments can be forgiven.

U The data set NEW in this example will have the variable
x=zzstuff as read from the data set GUDSTUFF. Notice
that the second comment has no semicolon, hence the data
set SECOND is never replaced. In the single DATA step
below the value of Y in OLD is effectively never used.

* start of the step; 'features' that can be exploited. An example might be the
data new ; set old;
x = 5* y;

* this starts the second step
data second; set gudstuff;
x= zzstuff;

This data step has two SET statements which is usually
good for a few laughs all by itself.

Adding a colon instead of a semicolon to close the
comment is even harder to find. The second comment in
the above example becomes:

* this starts the second step:
data second; set gudstuff;

r USING UNBALANCED QUOTES LEGALLY

Usually unbalanced quotes cause syntax errors, but when
two strings close together both have missing quotes they
can cancel each other out. This can leave interesting and
syntactically correct code.

U The unbalanced quote for the variable NAME completely
masks the creation of the data set SECOND and the use of
the data set GUDSTUFF.

* start of the step;
data new;y=5;frankwt=0;x=5*y;
length name $6;
name='weight;
data second;set gudstuff;
*for weight use Franks';
x=frankwt;
proc print;run;

In this example the variable X in NEW will always be zero
(not 25). Since GUDSTUFF is never read the value of
FRANKWT in GUDSTUFF makes no difference.

U Unbalanced quotes can also be used in LABEL
statements and to mask the end and beginning of macro
definitions.

ON THE ROUGH SIDE

"It doesn't matter what you do, it only matters what you say
you've done and what you say you're going to do." Dilbert's
Laws of Work

This section contains an eclectic set of what may be rather
extreme measures and should not be used by those with
gentle dispositions or a sense of professional integrity.

r LEARNING MORE (than the next guy)

Keeping current in the Job Security industry is difficult.
Consider these additional sources of informtion.

U Virgile (1996) discusses the behavior of SAS under
interesting conditions. All you need is some imagination.

U You may want to use the SASNOTES to find system

SORT options NODUPKEY and NODUPLICATES which
under some circumstances do not create the data sets with
the anticipated subset of the observations.

r IN THE DATA STEP

U Assignment statements that change the values of BY
variables in a merge can be used to promote interesting
combinations of the resulting data.

U When merging data sets, variables that are in both
incoming data sets (but not on the BY statement) can have
interesting properties especially if the number of

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

8

observations within the BY group is different for each data U In the section on using comments we showed how to use
set. the /* to inadvertently hide code. If the last line of the
 AUTOEXEC.SAS is a /* all of the submitted code will be
U The POINT and NOBS options on the SET statement do commented out until the end of the first /* ...*/ style
not perform as you might expect when the incoming data comment.
set contains deleted observations.

data a;
do i = 1 to 5;
output;
end;
run;

* Use FSEDIT to delete ;
* the second obs;
* (I=2);
proc fsedit data=a;
run;

data b;
do point=1 to nobs;
 set a point=point nobs=nobs;
 output;
end;
stop;
run;

proc print data=b;
title 'Obs = 2 was deleted';
run;

The OUTPUT window shows:

Obs = 2 was deleted

OBS I
 1 1
 2 1
 3 3
 4 4
 5 5

Notice that OBS 2 was still in the data set A and is read into
the data set B. When this happens the variable I is
incorrectly assigned a value of 1.

r USING AUTOEXEC.SAS AND CONFIG.SAS

Since many programmers do not use (or even know about)
the AUTOEXEC.SAS and CONFIG.SAS programs, any
options and code fragments that they contain may remain
undetected for some time.

These may range in severity from what are merely irritants,
such as the use of the ERRORABEND option which was
mentioned above, to extreme measures that will halt further
processing. A couple of the latter are shown below.
Remember subtle is often most powerful. Folks must by
necessity look harder when things are completely broken.

U The most hidden place to set the ERRORABEND option
is in CONFIG.SAS.

U If the ENDSAS or ABORT statements appear in
AUTOEXEC.SAS, SAS execution will terminate before the
user's program even starts.

A similar result can be achieved by placing the statement
%MACRO DUMMY; in the AUTOEXEC.SAS. This will
exclude all code until either a %MEND; or %MEND DUMMY; is
encountered.

U The AUTOEXEC.SAS can also be used to house
%INCLUDE statements that bring in and execute code that
twists things a bit. Remember to use the NOSOURCE and
NOSOURCE2 system options.

r OPERATING SYSTEM SPECIFICS

Each operation system has a few commands and options
that are specific to that OS. These are found in the
Companion for that system and are usually less well known.

U GENERAL

Write your own procedures using SAS/TOOLKIT . ®

Remember no documentation!

Use operating specific printer control characters to reset
fonts or other printer characteristics.

U WINDOWS

The icons used to start SAS have associated properties that
can be used to assign system options and to select specific
AUTOEXEC.SAS and CONFIG.SAS files. In addition, any
SAS options may be overridden in icon parameters where
they are well hidden from casual observers.

The option -ARCH=BIT16 forces WIN3.1 to work in 16 bit
mode (for improved performance or rival programmer's
programs).

Access and use external DLLs.

U VMS

The CONCUR engine allows shared access to data sets

r SPECIAL OPTIONS

As a final thought for this section, the Job Security expert
might like to consider using some other less well known
system options - we'll leave it as an exercise for the reader
to decide how best to apply them.

U DKRICOND=NOWARN
Suppresses error message when variables on DROP,
KEEP, and RENAME statements are missing from an input
data set.

U NOREPLACE
Prevents any permanent data set from being replaced.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

9

U NOWORKINIT/NOWORKTERM California SAS User's Group, SoCalSUG, and the San
Applied at invocation, these options can be used to Diego SAS Users Group, SANDS; a conference cochair of
suppress cleanup of the WORK library on the the Western Users of SAS Software regional conference,
initialization/termination of SAS session. WUSS; and Section Chair at the SAS User’s Group

SUMMARY

"People who go to conferences are the ones that
shouldn't." Dilbert's Laws of Work

In reality there is a constant demand for SAS programmers.
Just knowing how to write good, clean, and tight SAS code
provides a high level of job security. Obviously, the
techniques discussed in this paper are to be avoided;
however, they have all been encountered in actual
programs. Usually they were the result of accidents and
ignorance, but no matter the source, they still caused
problems. Being aware of the potential of these types of
problems is a major step in the direction of writing better
code.

ACKNOWLEDGMENTS

Since this paper was first presented in 1993, a number of
SAS users have made suggestions and contributions to this
topic. Many of these tips have been included in this
extended paper. For some reason many of these
contributors have asked to remain anonymous. Those who
were prepared to be named include Peter Crawford, John
Nicholls, and Dave Smith. The authors welcome further
contributions on Job Security concepts.

REFERENCES

Carpenter, Arthur L., 1993, "Programming For Job Security:
Tips and techniques to Maximize Your Indispensability",
presented at the Eighteenth Annual SAS Users Group
International Conference and published in the conference
proceedings.

Carpenter, Arthur L., 1996, "Programming For Job Security:
Tips and techniques to Maximize Your Indispensability",
presented at the Twenty-first Annual SAS Users Group
International Conference and published in the conference
proceedings.

Virgile, Robert, 1996, An Array of Challenges - Test Your
SAS Skills, Cary, NC:,SAS Institute Inc., 174 pp.®

ABOUT THE AUTHORS

ARTHUR L. CARPENTER

Art Carpenter’s publications list includes two chapters in
Reporting from the Field, two books Quick Results with
SAS/GRAPH Software and Carpenter's Complete Guide®

to the SAS Macro Language, and over two dozen papers®

and posters presented at SUGI, WUSS, and PharmaSUG.
Art has been using SAS since 1976 and has served as a
steering committee chairperson of both the Southern

International conference, SUGI.

Art is a SAS Quality Partner and through CALOXY heTM

teaches SAS courses and provides contract SAS
programming support nationwide.

TONY PAYNE

Tony Payne has worked as a SAS developer, project
manager and course instructor for Software Product
Services since 1986. His main area of specialization is in
applications development. Tony has written six papers
presented at SEUGI and other conferences. He is yet to
write a book or chair a conference. SPS is a Quality Partner
of SAS Institute, UK.

AUTHOR CONTACT

Art Carpenter
California Occidental Consultants
PO Box 6199
Oceanside, CA 92058-6199

(760) 945-0613

art@caloxy.com
http://www.caloxy.com

Tony Payne
Software Products Services Ltd.
19-20 The Broadway
Woking, Surrey, GU21 5AP
United Kingdom

+44 1483 730771

tpayne@sps-uk.co.uk
http://www.sps-uk.co.uk

TRADEMARK INFORMATION

SAS, SAS/AF, SAS/FSP, SAS/TOOLKIT, and SAS Quality
Partner are registered trademarks of SAS Institute, Inc. in
the USA and other countries.
® indicates USA registration.

Training and User Support ServicesTraining and User Support ServicesTraining and User Support Services

	Main TOC

