Posters

Paper 235

Programming Idioms Using the SET Statment

Jack E. Fuller, Trilogy Consulting Corporation, Kalamazoo, M|

ABSTRACT

While virtually every programmer of base
SAS uses the SET statement, surprisingly few
programmers know what it actually does. Even
fewer programmers use the full range of its
potential at bath compile and execution times.
This paper provides bath a basic introduction to
the SET statement and a series of programming
idioms for solving common and not so common
problems using the SET statement.

INTRODUCTION

At first glance the SET statement may appear to
be a smpligic programmng statement and
quite unworthy of further analysis. However, |
have found in the course of my carea that many
SAS pogrammers do not understand exactly
what this command does. Additionally, many
programners do not possess within their
repertoire a set of programmig idioms that wse
the SET datement for solving reaurring
problems. A programming idiom “describe(]
how to solve implementation-specific problems
in a pogrammig languag’ (see Buschmann,
et. al, p. 346).

This papr explores the SET satement by
providing idioms that can be used in the course
of problem solving: first, it provides an
introduction to the basic SET statement; second,
it provides a set of basic idioms for using the
features of the SETstatement; third, it provides
several more advanced idioms for using the SET
statement to solve spedfic problems.

THE SET STATMENT

Undestanding the Pogram Data Vector
(PDV)

The key to understanding how the SET
statement works is to first understand what the
PDV is and how it works. While a complete
examination of the PDV is beyond the sope of
this pager, anexcelent primer can be found in
"The SAS System Supevisor -- A Version 6

Update" by Henderson, et al. which contains the
following definiti on of the PDV:

The Logical Program Data Vector
(PDV) is a set of buffes that includes
all variables refeenced either
explicitly a implicitly in the DATA
step. It screated atcompile time, then
used at execution tie & the location
where the working value of vaiables
are stored as they are processed by the
DATA step program.

In the course of their paper, Henderson, et. al
malke several additional points which diredly
impact the techniques we will be using:

e The SAS gstem supevisor adds avariable
to the PDV as it first occus in the source
code

e Thislogica PDV itsdf is broken into four
logical areas asfoll ows:

| Retaned Unretained
Numeric X X
Character X X

e All SAS speml variables (including
variables from the SET statement options:
NOBS=, END=, POINT=) are daced into
the appopriate retained area of the PDV;
these variables are not written to output
datasets

¢ Variables that ae addd by SET, MERGE,
and UPDATE statements are placed into the
appopriate retained area of the PDV

Understanding SET Statement Exeaution
In order to demonstrate what the SET statement

does during execution, consider what will be
written by the following exampk to the SAS

log:

Understanding theBasic SET Statenent

DATA whatever;
DO some_var=1TO 3;
OUTPUT;
END;
RUN;

DATA _null_;
PUT some_var=;
SET whatever;
PUT some_var=;
RUN;

demonstrates how to add variable definitions
from one dataset to another.

AddVariables from a Master Dataset

Log of “The Basic SET Statenent”

DATA whatever;

1 IF (0) THEN

2 SET master;
SET whatever;

RUN;

1 SOME_VAR=.
2 SOME_VAR=1
3 SOME_VAR=1
4 SOME_VAR =2
5 SOME_VAR =2
6 SOME_VAR =3
7 SOME_VAR =3

1. Whilethe PDVhasbeen ceated by the time
this output s generated, no observations
have yet beenloadedinto the PDV from the
dataset WHATEVER.

2. Thefirst observation has been loaded.

3. Beausevariables pacedinto the PDVfrom
a SET statement are placed into a retained
area, the PDV ¢ill contains the value of
SOME_VAR from the first obsevation in
WHATEVER.

4. The second observation has now been
|oadked.

5. The PDV 4ill contains the values from the
seaond observation.

6. The third and final observation has now
beenloaded.

7. The PDV ¢ill contains the values from the
third observation. Additionally, a datatep
that contains a SET statement which is not
using arandom access option (i.e. PONT=,
KEY=) ends when the SET statement is
called and there are no more observations to
be readfrom the dataset.

BASIC IDI OMS

Using Unexeated SET Statements

Just as the last exampk demonstrated what
occurs during execution, the following examples
show what occurs during the compile phase of a
datestep. By placing statements such that they
are compiled but never executed, this example

1. Thisstatement will always evaluae to false.

2. Since this statement will never execute, its
only influence upon the datatep occurs
during the compile phase of the datastep.
In this case, it will add all of the variables
in MASTER to WHATEVER. It will also
override the attributes of variables in bath
datasets with the attributes from MASTER.

Ancther example of using anon-executing SET
statement occurs when there is a nead for one
variable to hold the value of another.

Create aVariable That Has the Carect
Dimersions to Hold InteemediateValues

1DATA whatever (DROP=_2);
IF (0) THEN
2 SET whatever (KEEP=some_var
RENAME=(some_var=_temp));
SET whatever;
[* Place code here usin g _TEMP
*

_temp = some_var;
RUN;

1. Since we will be using the convention of
prefixing intermediate variables with an
underscore, the statement DROP=_: will
drop all intermediate variables in one step.
This naming convention ako helps to
prevent naming colli sions between different
datasets.

2. Sincethevariable TEMP comesfrom a SET
statement, it will be placed in a retained
area of the PDV. There is no needfor a
RETAIN statement. Also, if SOME_VAR
is a character variable, TEMP will inherit
the correa length so that no bytes are
truncated.

Using the NOBS= Ofion

The NOBS= option is used to place the number
of observations in the dataset into the referenced

Posters

variable. Similar to previous exampks in that
SET statements are situated so that they are not
actually executed, retrieving the number of
observations in a dataet does not require that
the SET gatement actually execute. This is
becawse the number of observations is placed
into the appropriate variable at compile time.

Retieve the Nmber of Observatiorsinto a
Macro Variable

place the code which processthe END= prior to
the SET statement in order to handle the case
when the dataset is empty.

Place END= Operations Befode SH Statenents

DATA _null _;

1 CALL SYMPUT ('nobs’,
COMPRESS (PUT (n_obs,
best.)));

2 SET whatever (drop=_all obs=0)
NOBS=n_obs;

RUN

DATA whatever;
1 IF (at_end) then do;
/* Place code here */
END;
SET whatever END=at_end;
RUN;

1. Before execution of the SET statement, the
variable N_OBS has already been st to the
carrect \alue.

2. The statement OBS=0 will cawse this
statement to never actually read ay data
into the PDV.

Another useful exampke using the NOBS=
option in a SET statement occurs when the
number of observations is required from a
dataset other than he one which being currently
processd.

Retieve the Nmber of Observatiors from
Ancther Dataset

1. Even with anempty dataet, this code will
always execute.

Using the POINT= Option

The SET dstatement contains two mutually
exclusive options for random access: the
POINT= and the KEY= options. The POINT=
option allows a dataet to be accessedby
observation number based upon the current
value of the referenced variable. It is not so
much poorly used &s it is rardy used. One
exampk of its use is when the neal aises to
reverse the observations in a dataet without the
aid of using aPROC SORT.

Revese theObservatiors in a Dataset

DATA whatever;
IF (0) THEN
1 SET other_ds (DROP=_all_)
NOBS=n_obs;
SET whatever;
/* Place code here using N_OBS
*/

RUN;

DATA whatever;
1 DO point=nobs TO 1 BY -1;
2 SET whatever POINT=point
NOBS=nobs;
3 OUTPUT;
END;
4 STOP;
RUN;

1. This SET datement does not add any
variables to WHATEVER due to the
DROP=_ALL_ statement. However, it does
corredly return the number of observations
in OTHER _DS.

Using the END= Ogtion

The END= option is used to set a flag when the
last observation has been read from the dataset.
A common mistake when uwsing the END=
option is to misplace its use to the end of the
datastep; on the contrary, the normal case is to

1. Loop through he observations in the dataset
from the end to the beginning.

2. Retrieve the next observation by using the
random access POIN= option.

3. Writeoutthe PDV.

4. Sincethis exampk is using random instead
of sequential access the datatep must be
explicitly stopped.

Using the KEY= Option

The KEY= option is used to perform table
lookup on a dataet using the current values of
the variables specified in the referenced index.
For exampk, the following code example
assumes a $mple indexon NAME is attached to

Posters

the LOOK _UP dateset. At the time of the SET
statement's execution, the NAME variable
determines which observation is read from
LOOK UP. This example peforms table
lookup based upn the name of the numeric
variable.

Performing Table Look-Up Based on the Names

of Numeric Variables

DATA whatever (DROP=_:);
SET whatever;
1 ARRAY _nums {*} _numeric_;
2 IF (0) THEN
SET look_up (KEEP=name);
END;
3 DO _index=1 TO DIM {_nums);
4 CALL VNAME (_nums {_index},
name);
5 SET look_up (KEEP=name value)
KEY=NAME / UNIQUE;
6 IF (_iorc_=0) THEN DO;
[* Place code using */
[* VALUE here */
END;
7 ELSEDO;
iorc=0;
error=0;
END;
END;
RUN;

1. Create an aray with all of the numeric
variables. If there were no numeric
variables in WHATEVER, this statement
would generate aruntime exception.

2. Ensuethat the variable _NAME is ddined
with corred type and length.

3. Loop through the numeric variables.

4. Place the name of the variable referred to by
_NUMS {_INDEX) into the variable
NAME.

5. Based upon the value of the variable
NAME, retrieve the next obsevation from
the dataset LOOK_UP. The UNIQUE
options is ugd to ensure that lookup always
begns at the top of the LOOK UP dhateset.

6. If the lookup was secesdil, exeate the
appopriate code.

7. In this exampk, an wsuccesgul lookup is
not deemed to be a failure and the error
conditions are simple reset

ADVANCED IDIOMS

Using the Interleaving BY Statement

Two statements diredly affed the manner in
which aSET statement exeautes. the BY and the
WHERE statements. The BY satement
interleaves datasets similarly to shuffling a deck
of cards. One of the most useful applications of
the interleaving SET statement is to merge
datesets when the key values do not math
exactly (i.e. a"fuzzy merge").

| first learned of this technique from the SUGI
paper "Techniques for Interreating and
Reducing Data Bases Using SAS" by Davis, et.
al.. Ther exampk consisted of merging
highway segment data é.g. Highway 101 from
marker 31 b maker 40) with acddent dat (e.g.
highway 101 at meker 35). Highway dat was
keyed by highway name and starting marker
number. Acddent datawas keyed by highway
name and maker number. The following is an
adaptaibn of their approach and joins segment
data leyed by the start of the segment to point
data.

A Data-DrivenFuzzy Merge

DATA whatever (DROP=_:);
1 SET segment (KEEP=key IN=in_seq)
point;
BY key;
2 IF (in_seg) THEN
_seg_ptr + 1,
3 ELSE DO;
4 IF (_seg_ptr) THEN
SET segment (DROP=key)
POINT=_seg_ptr;
/* Place code here */
OUTPUT,;
END;

RUN;

1. Interleave the segment and the point data.
As with a MERGE <atement, the only
variables in common should be the key
variables.

2. If the current observation originates in the
segment data,simply remember the current
segment observation number.

3. If the current observation originates in the
point data,write out the data.

4. Before writing out the data, addhe current
segment databack into the PDV.

Posters

Using Metadatalteratively

Metadat consists of data #&out data. For
instance, the SAS view SASUSER.VTABLE
contains information about dataets and views in
the SAS §stemld. The following code provides
a data dven appoach (using the SET
statement, of course) to taking action based upon
metadata.

Looping Through Metadata

%DO i=1 %TO &n_obs;

DATA _null_;
1 _point = &i;
SET metadata POINT=_point;
2 [* Set macro variables here
*/
/¥ with CALL SYMPUTSs */
STOP;
RUN;

/* Place code here that uses */
/* the metadata variables */
%END;

define the SQL vew of the form where
sone_val = symget (‘'sorme_val') and then
set the value of SOME_VAL prior to
opening the view with a call symput
('some_val', Whateve'). In one instance, |
was able to employ this technique to
decrease the time nealed to access a sees
of views(SQL view - ... - datastep view)
by over a éctor often.

e This technique can ako be used to vary the
dataset that is being accessed. & instance,
the dataset to open could be found using
table lookup with the KEY= option.

A Simulated SH Statenent

1. Asdgn the curent obsevation number to
the variable referenced by the PONT=
option.

2. Set macro variables using the current row of
metadata.

Using SCL to Simulate aSET Statement

Finally, instead of presenting another technique
for using a SET statement to solve a certain
problem, the following code smulates a SET
statement. In fact, using a SET statement in its
traditiona role would smplify the code to the
following:

DATA whatever / VIEW=whatever;
SET whatever;
RUN;

The benefit of this added complexity comes from
the fact that the timing of when the SAS §stem
performs certain ations is now more rigorously
defined. Actions can be taken before the SET
statement actually begins its work. | have
currently found two places to apply a smulated
SET statement:

e Thistednique @n be usedto achievepush-
down of a WHERE clause between a SAS
datastep view and an SQL view. Simply

DATA whatever (DROP=_:)
/ VIEW=whatever;
1 IF (0) then
SET whatever;
2 LENGTH _char $1 _num 4;
3 ARRAY chars {*} _CHARACTER_;
4 ARRAY nums {*} _NUMERIC_;

/* Place code here */
_dsid = OPEN ("

if (_dsid LE 0) then
STOP;

whatever ', '');

[e20¢)]

/* Loop thru the dataset */
_rc =FETCH (_dsid);
DO WHILE (_rc=0);

o~

[* Write character vars */
9 DO _i=1 TO DIM (_chars) - 1;
10 CALL VNAME (_chars {_i},
_hame);
11 chars {_i} =
GETVARC (_dsid,
VARNUM (_dsid,
_hame));
END;

[* Write numeric vars */
12 DO i=1TO DIM (_nums) - 1;
CALL VNAME (_nums {_i},
_hame);
nums { i} =
GETVARN (_dsid,
VARNUM (_dsid,
_hame));
END;

/* Write the obs */
13 OUTPUT,;

14 _rc =FETCH (_dsid);

END;

15 _rc = CLOSE (_dsid);
RUN;

Posters

1. Duplicatethe PDVof the original dataset.

2. Ensure that there is at least one character
and one numeric variable so that anattempt
will not be mack to define an array with
zero dements.

3. Define _NUMS: an aray with all of the
character variables from WHATEVER.

4. Define _CHARS: an aray with all of the
numeric variables from WHATEVER.

5. Open the datset WHATEVER in input
mode. This creates a Data Set Data Vector
(DSDV) for WHATEVER which mntains
all of the variables from WHATEVER.

6. Ensurethe OFEN worked caredly.

7. Fetch the first observation. This will move
one row of datafrom the DSDV to the SCL
DataVedor (SDV).

8. Loop through WHATEVER until there are
no more observations to read.

9. Loop through all of the character variables
from the WHATEVER dataset. Notice that
thevariable _CHAR (the last variable in the
array) is excluded.

10. Retrieve the name of the character variable.

11. Move the character variable from the SDV
tothe PDV.

12. Repeat the process of moving variables fom
the SDVtothe PDV. Thistime for numeric
variables.

13. Writethe PDVto WHATEVER.

14. Fetch the next observation from
WHATEVER.

15. Close WHATEVER.

CONCLUSON

The SET statement can frequently be used to
solve problems in a data-diven manner and
thus reli eve programners from having to modify
code when datachanges. Whenever posshle,

Posters

use programming idioms to avoid having to
solve reaurring problems each time they occur.

REFERENCES

Buschmann, Frank, Regine Meunier, Hans

Rohnert, Peter Sommerlad, Michael Stal (1996)

Pattern-Oriented Softare Architectue: A

System of Patterns, Chicheger, West Sussex,
England: John Wiley & Sons Ltd.

Davis, James W, Steven Flint, Robet U.
Anderson, "Tedniques for Interrelating and
Reducing Data Bases Using SAS" Proceedings
of the Seventh Annual SAUsers Group
International Conference, pfl8-423.

Henderson, Donald J.,, Merry G. Rabb, Jdfrey
A. Polzin (1991),“The SAS §stem Supevisor -
A Vesion 6 Updak” Proceeding of the
Sixteenth Annual SAS Users Group
International Conference, pp. 249-257

SAS Ingtitute Inc (19995, SAS Language:
Refeence,Version 6, First Edition, Cary, NC:
SAS Ingtitute Inc.

ACKNOWLEDGEMENTS

SAS and SASAF are regstered trademarks of
SAS Ingitute, Inc. O indicates USA
registration.

Other brand and product names are registered
trademarks or trademaks of ther respective
companies.

The author may be contacted at:

Jack E. Fuller

Lead Software Engineg

Trilogy Consulting Corporation
5278Lovers Lane, Kalamapo, M1 49002
jefull er@sprynet.com

	Main TOC
	Section Contents

	p: Paper 235

