
Programming Idioms Using the SET Statement

Jack E. Fuller, Trilogy Consulting Corporation, Kalamazoo, MI

ABSTRACT

While virtually every programmer of base
SAS uses the SET statement, surprisingly few
programmers know what it actually does. Even
fewer programmers use the full range of its
potential at both compile and execution times.
This paper provides both a basic introduction to
the SET statement and a series of programming
idioms for solving common and not so common
problems using the SET statement.

INTRODUCTION

At first glance, the SET statement may appear to
be a simplistic programming statement and
quite unworthy of further analysis. However, I
have found in the course of my career that many
SAS programmers do not understand exactly
what this command does. Additionally, many
programmers do not possess within their
repertoire a set of programming idioms that use
the SET statement for solving recurring
problems. A programming idiom “describe[s]
how to solve implementation-specific problems
in a programming language” (see Buschmann,
et. al., p. 346).

This paper explores the SET statement by
providing idioms that can be used in the course
of problem solving: first, it provides an
introduction to the basic SET statement; second,
it provides a set of basic idioms for using the
features of the SETstatement; third, it provides
several more advanced idioms for using the SET
statement to solve specific problems.

THE SET STATMENT

Understanding the Program Data Vector
(PDV)

The key to understanding how the SET
statement works is to first understand what the
PDV is and how it works. While a complete
examination of the PDV is beyond the scope of
this paper, an excellent primer can be found in
"The SAS System Supervisor -- A Version 6

Update" by Henderson, et al. which contains the
following definition of the PDV:

The Logical Program Data Vector
(PDV) is a set of buffers that includes
all variables referenced either
explicitly or implicitly in the DATA
step. It is created at compile time, then
used at execution time as the location
where the working values of variables
are stored as they are processed by the
DATA step program.

In the course of their paper, Henderson, et. al.
make several additional points which directly
impact the techniques we will be using:

• The SAS system supervisor adds a variable
to the PDV as it first occurs in the source
code

• This logical PDV itself is broken into four
logical areas as follows:

Retained Unretained
Numeric X X
Character X X

• All SAS special variables (including
variables from the SET statement options:
NOBS=, END=, POINT=) are placed into
the appropriate retained area of the PDV;
these variables are not written to output
datasets

• Variables that are added by SET, MERGE,
and UPDATE statements are placed into the
appropriate retained area of the PDV

Understanding SET Statement Execution

In order to demonstrate what the SET statement
does during execution, consider what will be
written by the following example to the SAS
log:

Understanding the Basic SET Statement
DATA whatever;
 DO some_var=1 TO 3;
 OUTPUT;
 END;
RUN;

Posters

DATA _null_;
 PUT some_var=;
 SET whatever;
 PUT some_var=;
RUN;

Log of “The Basic SET Statement”
1 SOME_VAR = .
2 SOME_VAR = 1
3 SOME_VAR = 1
4 SOME_VAR = 2
5 SOME_VAR = 2
6 SOME_VAR = 3
7 SOME_VAR = 3

1. While the PDV has been created by the time
this output is generated, no observations
have yet been loaded into the PDV from the
dataset WHATEVER.

2. The first observation has been loaded.

3. Because variables placed into the PDV from
a SET statement are placed into a retained
area, the PDV still contains the value of
SOME_VAR from the first observation in
WHATEVER.

4. The second observation has now been
loaded.

5. The PDV still contains the values from the
second observation.

6. The third and final observation has now
been loaded.

7. The PDV still contains the values from the
third observation. Additionally, a datastep
that contains a SET statement which is not
using a random access option (i.e. POINT=,
KEY=) ends when the SET statement is
called and there are no more observations to
be read from the dataset.

BASIC IDI OMS

Using Unexecuted SET Statements

Just as the last example demonstrated what
occurs during execution, the following examples
show what occurs during the compile phase of a
datastep. By placing statements such that they
are compiled but never executed, this example

demonstrates how to add variable definitions
from one dataset to another.

Add Variables from a Master Dataset
DATA whatever;
1 IF (0) THEN
2 SET master;
 SET whatever;
RUN;

1. This statement will always evaluate to false.

2. Since this statement will never execute, its
only influence upon the datastep occurs
during the compile phase of the datastep.
In this case, it will add all of the variables
in MASTER to WHATEVER. It wil l also
override the attributes of variables in both
datasets with the attributes from MASTER.

Another example of using a non-executing SET
statement occurs when there is a need for one
variable to hold the value of another.

Create a Variable That Has the Correct
Dimensions to Hold Intermediate Values

1DATA whatever (DROP=_:);
 IF (0) THEN
2 SET whatever (KEEP=some_var
 RENAME=(some_var=_temp));
 SET whatever;
 /* Place code here usin g _TEMP
*/

 _temp = some_var;
RUN;

1. Since we wil l be using the convention of
prefixing intermediate variables with an
underscore, the statement DROP=_: will
drop all intermediate variables in one step.
This naming convention also helps to
prevent naming colli sions between different
datasets.

2. Since the variable TEMP comes from a SET
statement, it wil l be placed in a retained
area of the PDV. There is no need for a
RETAIN statement. Also, if SOME_VAR
is a character variable, TEMP wil l inherit
the correct length so that no bytes are
truncated.

Using the NOBS= Option

The NOBS= option is used to place the number
of observations in the dataset into the referenced

Posters

variable. Similar to previous examples in that
SET statements are situated so that they are not
actually executed, retrieving the number of
observations in a dataset does not require that
the SET statement actually execute. This is
because the number of observations is placed
into the appropriate variable at compile time.

Retrieve the Number of Observations into a
Macro Variable

DATA _null _;
1 CALL SYMPUT ('nobs',
 COMPRESS (PUT (n_obs,
 best.)));
2 SET whatever (drop=_all obs=0)
 NOBS=n_obs;
RUN;

1. Before execution of the SET statement, the
variable N_OBS has already been set to the
correct value.

2. The statement OBS=0 will cause this
statement to never actually read any data
into the PDV.

Another useful example using the NOBS=
option in a SET statement occurs when the
number of observations is required from a
dataset other than the one which being currently
processed.

Retrieve the Number of Observations from
Another Dataset

DATA whatever;
 IF (0) THEN
1 SET other_ds (DROP=_all_)
 NOBS=n_obs;
 SET whatever;
 /* Place code here using N_OBS
*/

RUN;

1. This SET statement does not add any
variables to WHATEVER due to the
DROP=_ALL_ statement. However, it does
correctly return the number of observations
in OTHER_DS.

Using the END= Option

The END= option is used to set a flag when the
last observation has been read from the dataset.
A common mistake when using the END=
option is to misplace its use to the end of the
datastep; on the contrary, the normal case is to

place the code which process the END= prior to
the SET statement in order to handle the case
when the dataset is empty.

Place END= Operations Before SET Statements
DATA whatever;
1 IF (at_end) then do;
 /* Place code here */
 END;
 SET whatever END=at_end;
RUN;

1. Even with an empty dataset, this code will
always execute.

Using the POINT= Option

The SET statement contains two mutually
exclusive options for random access: the
POINT= and the KEY= options. The POINT=
option allows a dataset to be accessed by
observation number based upon the current
value of the referenced variable. It is not so
much poorly used as it is rarely used. One
example of its use is when the need arises to
reverse the observations in a dataset without the
aid of using a PROC SORT.

Reverse the Observations in a Dataset
DATA whatever;
1 DO point=nobs TO 1 BY -1;
2 SET whatever POINT=point
 NOBS=nobs;
3 OUTPUT;
 END;
4 STOP;
RUN;

1. Loop through the observations in the dataset
from the end to the beginning.

2. Retrieve the next observation by using the
random access POINT= option.

3. Write out the PDV.

4. Since this example is using random instead
of sequential access, the datastep must be
explicitl y stopped.

Using the KEY= Option

The KEY= option is used to perform table
lookup on a dataset using the current values of
the variables specified in the referenced index.
For example, the following code example
assumes a simple index on NAME is attached to

Posters

the LOOK_UP dataset. At the time of the SET
statement's execution, the NAME variable
determines which observation is read from
LOOK_UP. This example performs table
lookup based upon the name of the numeric
variable.

Performing Table Look-Up Based on the Names
of Numeric Variables

DATA whatever (DROP=_:);
 SET whatever;
1 ARRAY _nums {*} _numeric_;
2 IF (0) THEN
 SET look_up (KEEP=name);
 END;
3 DO _index=1 TO DIM {_nums);
4 CALL VNAME (_nums {_index},
 name);
5 SET look_up (KEEP=name value)
 KEY=NAME / UNIQUE;
6 IF (_iorc_=0) THEN DO;
 /* Place code using */
 /* VALUE here */
 END;
7 ELSE DO;
 iorc = 0;
 error = 0;
 END;
 END;
RUN;

1. Create an array with all of the numeric
variables. If there were no numeric
variables in WHATEVER, this statement
would generate a runtime exception.

2. Ensure that the variable _NAME is defined
with correct type and length.

3. Loop through the numeric variables.

4. Place the name of the variable referred to by
_NUMS { _INDEX) into the variable
NAME.

5. Based upon the value of the variable
NAME, retrieve the next observation from
the dataset LOOK_UP. The UNIQUE
options is used to ensure that lookup always
begins at the top of the LOOK_UP dataset.

6. If the lookup was successful, execute the
appropriate code.

7. In this example, an unsuccessful lookup is
not deemed to be a failure and the error
conditions are simple reset

ADVANCED IDIOMS

Using the Interleaving BY Statement

Two statements directly affect the manner in
which a SET statement executes: the BY and the
WHERE statements. The BY statement
interleaves datasets similarly to shuffling a deck
of cards. One of the most useful applications of
the interleaving SET statement is to merge
datasets when the key values do not match
exactly (i.e. a "fuzzy merge").

I first learned of this technique from the SUGI
paper "Techniques for Interrelating and
Reducing Data Bases Using SAS" by Davis, et.
al.. Their example consisted of merging
highway segment data (e.g. Highway 101 from
marker 31 to marker 40) with accident data (e.g.
highway 101 at marker 35). Highway data was
keyed by highway name and starting marker
number. Accident data was keyed by highway
name and marker number. The following is an
adaptation of their approach and joins segment
data keyed by the start of the segment to point
data.

A Data-Driven Fuzzy Merge
DATA whatever (DROP=_:);
1 SET segment (KEEP=key IN=in_seg)
 point;
 BY key;
2 IF (in_seg) THEN
 _seg_ptr + 1;
3 ELSE DO;
4 IF (_seg_ptr) THEN
 SET segment (DROP=key)
 POINT=_seg_ptr;
 /* Place code here */
 OUTPUT;
 END;
RUN;

1. Interleave the segment and the point data.
As with a MERGE statement, the only
variables in common should be the key
variables.

2. If the current observation originates in the
segment data, simply remember the current
segment observation number.

3. If the current observation originates in the
point data, write out the data.

4. Before writing out the data, add the current
segment data back into the PDV.

Posters

Using Metadata I teratively

Metadata consists of data about data. For
instance, the SAS view SASUSER.VTABLE
contains information about datasets and views in
the SAS System. The following code provides
a data driven approach (using the SET
statement, of course) to taking action based upon
metadata.

Looping Through Metadata
%DO i=1 %TO &n_obs;

 DATA _null_;
1 _point = &i;
 SET metadata POINT=_point;
2 /* Set macro variables here
*/
 /* with CALL SYMPUTs */
 STOP;
 RUN;

 /* Place code here that uses */
 /* the metadata variables */
%END;

1. Assign the current observation number to
the variable referenced by the POINT=
option.

2. Set macro variables using the current row of
metadata.

Using SCL to Simulate a SET Statement

Finally, instead of presenting another technique
for using a SET statement to solve a certain
problem, the following code simulates a SET
statement. In fact, using a SET statement in its
traditional role would simplify the code to the
following:

DATA whatever / VIEW=whatever;
 SET whatever;
RUN;

The benefit of this added complexity comes from
the fact that the timing of when the SAS System
performs certain actions is now more rigorously
defined. Actions can be taken before the SET
statement actually begins its work. I have
currently found two places to apply a simulated
SET statement:

• This technique can be used to achieve push-
down of a WHERE clause between a SAS
datastep view and an SQL view. Simply

define the SQL view of the form where
some_val = symget ('some_val') and then
set the value of SOME_VAL prior to
opening the view with a call symput
('some_val', 'whatever'). In one instance, I
was able to employ this technique to
decrease the time needed to access a series
of views (SQL view → ... → datastep view)
by over a factor of ten.

• This technique can also be used to vary the
dataset that is being accessed. For instance,
the dataset to open could be found using
table lookup with the KEY= option.

A Simulated SET Statement
DATA whatever (DROP=_:)
 / VIEW=whatever;
1 IF (0) then
 SET whatever;
2 LENGTH _char $1 _num 4;
3 ARRAY chars {*} _CHARACTER_;
4 ARRAY nums {*} _NUMERIC_;

 /* Place code here */

5 _dsid = OPEN (‘ whatever ’, ‘i’);
6 if (_dsid LE 0) then
 STOP;

 /* Loop thru the dataset */
7 _rc = FETCH (_dsid);
8 DO WHILE (_rc=0);

 /* Write character vars */
9 DO _i=1 TO DIM (_chars) - 1;
10 CALL VNAME (_chars {_i},
 _name);
11 chars {_i} =
 GETVARC (_dsid,
 VARNUM (_dsid,
 _name));
 END;

 /* Write numeric vars */
12 DO i=1 TO DIM (_nums) - 1;
 CALL VNAME (_nums {_i},
 _name);
 nums {_i} =
 GETVARN (_dsid,
 VARNUM (_dsid,
 _name));
 END;

 /* Write the obs */
13 OUTPUT;

14 _rc = FETCH (_dsid);
 END;

15 _rc = CLOSE (_dsid);
RUN;

Posters

1. Duplicate the PDV of the original dataset.

2. Ensure that there is at least one character
and one numeric variable so that an attempt
will not be made to define an array with
zero elements.

3. Define _NUMS: an array with all of the
character variables from WHATEVER.

4. Define _CHARS: an array with all of the
numeric variables from WHATEVER.

5. Open the dataset WHATEVER in input
mode. This creates a Data Set Data Vector
(DSDV) for WHATEVER which contains
all of the variables from WHATEVER.

6. Ensure the OPEN worked correctly.

7. Fetch the first observation. This wil l move
one row of data from the DSDV to the SCL
Data Vector (SDV).

8. Loop through WHATEVER until there are
no more observations to read.

9. Loop through all of the character variables
from the WHATEVER dataset. Notice that
the variable _CHAR (the last variable in the
array) is excluded.

10. Retrieve the name of the character variable.

11. Move the character variable from the SDV
to the PDV.

12. Repeat the process of moving variables from
the SDV to the PDV. This time for numeric
variables.

13. Write the PDV to WHATEVER.

14. Fetch the next observation from
WHATEVER.

15. Close WHATEVER.

CONCLUSION

The SET statement can frequently be used to
solve problems in a data-driven manner and
thus relieve programmers from having to modify
code when data changes. Whenever possible,

use programming idioms to avoid having to
solve recurring problems each time they occur.

REFERENCES

Buschmann, Frank, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stal (1996)
Pattern-Oriented Software Architecture: A
System of Patterns, Chichester, West Sussex,
England: John Wiley & Sons Ltd.

Davis, James W., Steven Flint, Robert U.
Anderson, "Techniques for Interrelating and
Reducing Data Bases Using SAS," Proceedings
of the Seventh Annual SAS Users Group
International Conference, pp.418-423.

Henderson, Donald J., Merry G. Rabb, Jeffrey
A. Polzin (1991), “The SAS System Supervisor -
A Version 6 Update,” Proceedings of the
Sixteenth Annual SAS Users Group
International Conference, pp. 249-257.

SAS Institute Inc (1995), SAS Language:
Reference, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

ACKNOWLEDGEMENTS

SAS and SAS/AF are registered trademarks of
SAS Institute, Inc.  indicates USA
registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

The author may be contacted at:

Jack E. Fuller
Lead Software Engineer
Trilogy Consulting Corporation
5278 Lovers Lane, Kalamazoo, MI 49002
jefuller@sprynet.com

Posters

	Main TOC
	Section Contents

	p: Paper 235

