
Introduction

In recent years, the use of mixed models in fitting data in
the biomedical sciences, social sciences, economics, and
business, has become more widespread.  Part of the
increase in the use of such models, apart from their
inherent utility, is because software to fit such models has
become increasingly available.  SAS Institute’s
contribution to the mixed model software is PROC MIXED.
However, because mixed models are more complex and
more flexible than the general linear model, the potential
for confusion and errors is higher.  This paper outlines
some confusion that may occur when data analysts
experienced in the use PROC GLM to analyze data for
both the fixed-effects and mixed-effects models use
PROC MIXED to analyze data.  Littell, Milliken, Stroup,
and Wolfinger (1996) is a very good reference on mixed
models in the context of using PROC MIXED, and Milliken
and Johnson (1992, 1989, and in press) are good general
references on experimental design, including mixed
models.

Mixed Models

In this section, we define both the general linear model
and the mixed general linear model (called hereafter the
mixed model).  We then give several examples, and
demonstrate the use of both PROC GLM and PROC
MIXED in the analysis of such data.

The General Linear Model consists of

Y=Xββββ+εεεε

Where Y is the n-by-1 matrix of response variables, X is
the n-by-k design or model matrix, ββββ is the k-by-1 matrix of
parameters, and εεεε is the n-by-1 error matrix.  We assume,
for consistency with the mixed model, that p, the number
of columns in Y and ββββ equals 1; that is, this is a univariate
general linear model.

In this model, all effects, which are represented by
columns of X, are assumed to be fixed effects.; that is, we
assume that the levels of the factors represent either
levels we manipulate, or are measured without error, and
are the only levels in which we are interested.  This is the
model that PROC GLM fits.  When we use PROC GLM,

the CLASS and MODEL statements jointly specify the
columns of Y and X, which imply the contents of  ββββ and εεεε.

Effects or factors for which we cannot make these
assumptions are called random effects.  Randomized
blocks designs are typically mixed models, because the
blocks are typically considered to have been a random
sample of all possible blocks which we might have
considered, and thus we are interested in generalizing
beyond these particular blocks.  Repeated measures
designs are typically mixed models because usually we
have at least one within-subjects or repeated factor, and
we wish to generalize beyond the particular subjects we
have used.

When we fit a mixed model with PROC GLM, we are
taking advantage of the fact that for parameter estimation,
for many models, the parameter estimates obtained when
a factor is fixed have the same values as those obtained
when a factor is random.  However, it is frequently the
case that the standard errors of those estimates are wrong
(which we cannot fix in PROC GLM), and that hypothesis
tests involving these factors often require that their F-
statistics use something other than the mean square for
error in the denominator.  PROC GLM has facilities for
controlling the choice of denominator in an F-statistic.

The Mixed Model consists of

Y=Xββββ+Zγγγγ+εεεε

where y, X, ββββ, and εεεε have the same meanings as in the
general linear model, but for the fixed effects only (and
therefore have different dimensions), Z is an n-by-m
design or model matrix for the random effects, and γγγγ is an
m-by-1 matrix of parameters for the random effects
(although the meaning of the parameters for the random
effects differs slightly from the meaning of parameters for
fixed effects).

There are two things to remember here:

1. For a given mixed design (e.g., a design with one
between-subjects factor and one within-subjects
factor) the columns that PROC MIXED places in X
and Z are exactly the same columns that PROC GLM
would place in ( fixed effects ) X.  It is just that in
PROC MIXED these columns are distributed between
two matrices, and hence, parameter estimates are
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proc glm data=one;
  class a b;
  model y=a b a*b;
  lsmeans a b a*b;
  run;
proc mixed data=one;
  class a b;
  model y=a b a*b;
  lsmeans a b a*b;
  run;

distributed correspondingly between two matrices.
(There is actually a small technical exception to this
statement, but we will pretend here that this exception
does not exist.)

2. If you use PROC MIXED to fit a fixed effects design of
the type that is appropriate to fit with PROC GLM, you
should get the same results, within rounding error, if
you have balanced data.

Choice of Procedure:  GLM or MIXED

Why would we be interested in using PROC MIXED for
mixed effect models, rather than using PROC GLM?
When we have random factors in a model, the following
occurs when we use PROC GLM to analyze the data:

1. GLM may frequently get the standard errors of the
parameter estimates wrong, as a consequence of not
really knowing that a factor is random, rather than
fixed.  This in turn means that some of the standard
errors of the least squares means may be wrong.
This may have implications for hypothesis testing, for
estimation of differences between least squares
means, and placing confidence intervals on estimates
of least squares means.  PROC MIXED gets the
standard errors right.

2. The estimation process that PROC GLM uses is least
squares.  We have to calculate variance components
for random effects by hand, using estimates produced
by PROC GLM.  Under some circumstances, these
estimates may be negative.  PROC MIXED gets these
variance component estimates right.

3. Since PROC GLM does not really understand random
effects and mixed models, it tests all hypotheses by
using an F statistic formed by dividing the mean
square for an effect by the mean square error.  In
mixed models, the resulting F tests often do not test
the hypothesis that one wants to test.  One must
examine expected mean squares in order to
determine which mean square to use in the
denominator to test a particular effect.  Sometimes,
there is no appropriate mean square to use in a
denominator, and one must synthesize one as a
function of several mean squares (if one can).  PROC
MIXED does not construct its tests in this manner,
and does not encounter this problem.

4. The basic model that PROC GLM fits assumes that
the errors are all independently and identically
distributed.  When we use PROC GLM to fit mixed
models, we assume that all variance components are
independently and (within each variance component)
identically distributed.  We can in a sense finesse the
independence portion by assuming a very simple
structure of dependence among errors, but that very
simple structure is often wrong, especially with
repeated measures data.  PROC MIXED does not
assume that the errors or variance components are
independently and (within variance components)
identically distributed.  PROC MIXED does not need
to make this assumption because it incorporates the

structure and relationships among the errors and
variance components into the model.  This opens new
potential in our modeling. We no longer need to
assume something about the errors (that they are all
independently and identically distributed); we can
model them, estimate parameters for them, test
hypotheses about them, and place confidence
intervals on them.

Example 1

Consider a two-factor, fixed effects, between-subjects
design, of the type appropriate to analyze using PROC
GLM.  Suppose the two factors are called (imaginatively)
“A” and “B”.  In this example, we have 2 levels of A, 3
levels of B, and 10 observations per cell.  We have:

(Remark:  in this example, and in all following examples,
we use Type III tests, which are appropriate in most
circumstances.  This choice has been the subject of many
presentations and publications and is not without some
controversy.)

Using some fictional data, we obtain the following output
from PROC GLM:

With the same data, PROC MIXED gives us:

Note that for a balanced fixed effects design, although the
methods used to solve for parameter estimates and test
hypotheses are different, the estimates and tests are the
same.  The standard errors of the parameter estimates
are identical, and thus, the estimates for least squares

Source             F Value    Pr > F

a                     0.85    0.3601
b                     3.66    0.0322
a*b                   0.22    0.8010

      Num    Den
Effect DF     DF       F Value Pr > F

a      1      54       0.85    0.3601
b      2      54       3.66    0.0322
a*b    2      54       0.22    0.8010
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means, and standard errors of the least squares means
are identical.

Comment 1:  When the data are unbalanced, it cannot be
guaranteed, even for entirely fixed effects designs, that
the estimates and hypothesis tests will be the same.  This
is due to the differences in estimation methods.

Example 2

Consider a two-factor, mixed effects, repeated measures
design, with one between-subjects factor (called GROUP),
and one within-subjects factor (called TIME).  This is a
split-plot type structure, with subjects playing the role of
whole plots, and the levels of time playing the role of the
subplots. In a real split plot design, we would randomly
assign treatments to subplots, thus ensuring that  except
for treatment effects, the subplots (corresponding to the
levels of the factor we are calling TIME) are all
independent of each other. In a repeated measures
design, even without considering the effects of the within-
subjects treatments, the occasions, or levels of TIME, are
probably not independent of each other.  If our
experimental units are living organisms, for example, it is
usually the case that things measured closely together in
time correlate more highly than things measured farther
apart in time.  More generally, repeated measurements
made on the same subjects are nearly always correlated
in some way.

Remark:  In this dataset, all the effects of interest are
assumed to be fixed effects.  That is, the two groups we
have are assumed to be the only groups to which we wish
to generalize from our samples, and the four time points
are the only time points to which we wish to generalize.
The only random effect is the SUBJECT(GROUP) effect.

There are several ways we can analyze these data with
PROC GLM, and several ways we can analyze them with
PROC MIXED.  (For this example, GROUP has 2 levels,
and TIME has 4 levels.)

The oldest way to fit this model is the classic univariate
approach to repeated measures, in which we fit it as a
split plot type design, with subjects playing the role of the
whole plots, the subjects randomly assigned to levels of
GROUP, the levels of time playing the role of the
subplots.To fit this with PROC GLM we use:

This analysis assumes that the correlations among the
levels of time are a constant (sphericity).  It was necessary

to use a TEST statement, because the default test of the
GROUP effect uses the mean square error as the
denominator of the F statistic, and examination of
expected mean squares would show that that is the wrong
mean square to use.  This analysis is not capable of
testing whether the sphericity assumption is met, and not
capable of performing either of the common corrections
for violations of the sphericity assumption.

We can obtain the same analysis using PROC GLM with
the repeated statement:

Note several differences between the SAS code in this
example and the previous one:

1. In the original example, which used data in the SAS
dataset called “twob,”  the data were stored with one
observation per subject-occasion, and there was a
variable called TIME which distinguished for which
level of time a particular value for the dependent
variable, RESPONSE.  In other words, for these data,
which had 2 groups, 20 subjects per group, and 4
time points per subject, the SAS dataset “twoa” had
2×20×4=160 observations.

2. In the second example, using the REPEATED
statement, the same data were stored differently in
the “twoa” dataset, with one observation per subject,
and the values for the 4 time points stored as
separate variables, TIME1-TIME4.  The REPEATED
statement produces exactly the same split plot type
analysis, with exactly the same results as did the
earlier analysis, and additionally produces other
analyses and output.  Most notable are that it
produces a multivariate approach to repeated
measures, a partial correlation matrix among the
levels of the within-subject factors, from which it
constructs a test of whether the sphericity assumption
is met, and a multivariate approach to repeated
measures.  We will not discuss the multivariate
approach here, except to note that it may be a
reasonable approach to some repeated measures
analyses.

We can also analyze the same data with PROC MIXED.
Again, this is an analysis in which the only random effect
is the SUBJECT(GROUP) effect.  It turns out that several
specifications for PROC MIXED will produce identical
analyses:

proc glm data=twob;
class group time subject;
model response = group time group*time

subject(group);
test h=group e=subject(group);

proc glm data=twoa;
class group;
model time1-time4=group;
repeated time / printe;
run;
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The first program is the closest specification to that using
PROC GLM using a split plot type approach.  In PROC
GLM, the MODEL statement generates a model matrix, X,
with appropriate columns for a constant, group, time, the
interaction, and subjects(group).  In the first PROC
MIXED, we are generating exactly the same columns with
the MODEL and RANDOM statements; it is just that
generating the subjects(group) columns using the
RANDOM statement places those columns in the Z matrix.
The results are identical to those produced by PROC GLM
for balanced data, except possibly for differences due to
the estimation methods used in the two procedures.  That
should rarely occur.

The second program is identical to the first, except for the
use of the type=cs option on the RANDOM statement.
This produces identical results to those obtained by PROC
GLM and by the first PROC MIXED program with two
exceptions:

1. By using the type=cs option on the random
statement, we told PROC MIXED to fit an extra
parameter, corresponding to the variance component
for subjects(group).  Because this extra parameter
corresponds exactly to a parameter we are already
fitting, the estimate was exactly zero, with no degrees
of freedom.

2. This produced an error message both in the PROC
MIXED output and in the SAS log, stating that the

This message occurred because we attempted to fit the
same parameter twice.  PROC MIXED set the second
parameter estimate to zero, proceeded normally, and

arrived at the correct answers.  Thus, the mere fact that a
message about a non-positive-definite hessian is
generated might not mean that you have a problem.  We
will see later that this message can occur on other
occasions.

Comment 2:  A message about a non-positive-definite
hessian is not necessarily indicative of something about
which you should worry.  This message may arise
because you have overspecified the model in a way that
PROC MIXED can handle.

Comment 3:  Take care in specifying a covariance
structure among the random effects.  It may not be
necessary, because you may already have a parameter
for it.

The third program uses a different PROC MIXED
statement, the REPEATED statement.

Comment 4:  There is a REPEATED statement available
in PROC GLM, in PROC MIXED, (and in PROC
CATMOD, although we don’t discuss PROC CATMOD
here).  These REPEATED statements are three
different statements.  They have different syntaxes,
they specify different things, they are used in different
procedures, and they have, in general,  different
effects.  Do not confuse them.  They work differently
from each other.  What they do have in common is that
they all tell their procedures how to fit repeated measures
models.

Finally, we have a fourth PROC MIXED program:

This program produces a different set of answers than did
the other three PROC MIXED programs.  This program
did not fit a variance component for the subjects (group),
but treated it as the residual.  This changed all the other
tests.

Comment 5:  In a split plot type repeated measures
design, the default covariance structure that PROC
MIXED fits when you use the RANDOM statement to
specify the within-subjects factor is compound symmetry,
while the default covariance structure that PROC MIXED
uses when you use the REPEATED statement to specify
the subjects factor, within which the repeated measures
occur, is not, but rather is the variance component
structure, which assumes that the repeated measures are
independent of one another.

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
random subject(group);
run;

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
random subject(group) / type=cs;
run;

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
repeated / subject=subject(group)

type=cs;
run;

Convergence criteria met but final
hessian is not positive definite.

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
repeated / subject=subject(group);
run;

Advanced TutorialsAdvanced Tutorials



What is Sphericity, Anyway?

When analyzing a repeated measures design using a
split-plot type approach, it is often desirable to test
whether the assumptions of the analysis are met; that is,
whether the covariance structure is plausibly that which
you assume.  There are at least five ways in which the
literature states the assumption you must make:
compound symmetry, sphericity, circularity, a Huynh-Feldt
(H-F) covariance structure, and a Type H covariance
structure.  Type H, H-F, and circularity are the same
condition, and sphericity of an orthogonal decomposition
of the covariance matrix follows if the covariance matrix is
circular, so these four names are really the four names for
the same assumption.  Compound symmetry is a stronger
condition, a special case of H-F.  So we only need to
define two forms for the covariance matrix to cover the
common possibilities. If we assume, for example, four
repeated measures, we have:
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As stated, H-F, circularity, Type H, and sphericity on an
orthogonal decomposition are the same.

Comment 5:  PROC GLM tests for sphericity of an
orthogonal decomposition of the covariance matrix when
you use the PRINTE option.  The null hypothesis is that
the covariance structure fits the sphericity structure, and
the alternative is that it fails to fit.  Thus, rejection of the
null hypothesis is rejection of the assumption that the data
meet the sphericity assumption.  However, the model
that GLM fits actually assumes compound symmetry,
a slightly different although very similar assumption.
It is often impossible to differentiate between them in
a set of real data.

Comment 6:  To make things more complex, the
corrected p-values presented by GLM are based on

changes to the degrees of freedom, and do not actually
change the model fit, whether one chooses to consider
the Greenhouse-Geisser corrected p-value, which deflates
the df for the extent to which compound symmetry is
violated, or the Huynh-Feldt corrected p-value, which
deflates the df for the extent to which the H-F conditions
are violated.

When using PROC GLM to analysis such a design, the
test of sphericity is done using the PRINTE option on the
REPEATED statement.  This tests whether restricting the
covariance structure to the Huynh-Feldt structure above
fits significantly worse than an unrestricted covariance
structure, that is, allowing arbitrary correlations among the
repeated measures:

Among the information that the PRINTE option causes to
be printed is Mauchly’s test of sphericity.

Comment 7:  If the transformation you specify (or, by not
specifying a transformation, allow to default) on the
REPEATED statement is not an orthogonal
transformation, PROC GLM gives you two tests.  The test
that in fact tests whether the covariance matrix of
interest meets the H-F conditions is the test of
sphericity on orthogonal components of the
transformed variates.

You can obtain an equivalent test using PROC MIXED.
However, there are several caveats about doing this.
First, you must remember that the sphericity test that
PROC GLM performs tests the H-F conditions.  Therefore,
if you wish to test the same conditions using PROC
MIXED, you must test whether the covariance matrix
among the repeated measures meets the H-F conditions.
Second, you must do this using some hand calculations or
SAS programming outside of PROC MIXED.  The way to
test whether the data meet the H-F criteria is to test, using
a likelihood ratio test, whether the fit of a model in which
the covariance matrix is constrained to the H-F conditions,
is significantly worse than the fit of a model in which the
covariance matrix is unconstrained.  You must do this
using two runs of PROC MIXED, take the difference
between the two -2 log likelihoods you obtain, and
compare that difference to a Chi-Square with df equal to
the difference between the two df in the two competing
models:

proc glm data=twoa;
class group;
model time1-time4=group;
repeated time / printe;
title 'Repeated Measures with

Repeated Statement';
run;
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When PROC GLM perfomed Mauchly’s test on an
orthogonal decomposition of the covariance matrix on our
example data, it obtained a χ2 = 5.74, with 5 df
(nonsignificant).  When we ran the above two PROC
MIXED procedures, we obtain the following -2 log
likelihoods:  450.3234 (with 5  parameters) and 444.3780
(with 10 parameters).  The difference between them is
5.9415 (distributed under the null hypothesis as a χ2  with
10-5=5 df; nonsignificant).

Comment 8:  When attempting to construct a test of
sphericity using PROC MIXED, parallel to the one
constructed by PROC GLM, remember to compare an H-F
covariance structure to an unrestricted covariance
structure.

Comment 9:  These tests that GLM and MIXED produce
will not be exactly numerically the same, but will be close.

Comment 10:  You can use exactly this procedure to test
the difference between any two covariance structures.
For example, suppose you wanted to know if H-F fit
significantly better than CS.  You would fit the model
twice, once with TYPE=CS, once with TYPE=HF, take the
difference between the two -2 log likelihoods, and
compare it to a  χ2  with df equal to the difference in the
numbers of parameters.

Comment 11:  Fitting different covariance structures.  If
your experience with repeated measures designs is
constrained to traditional split-plot-type approaches, or to
use of a multivariate approach, the idea of fitting different
covariance structures may be new.  When you used a
multivariate approach, you actually fit an unrestricted
covariance structure.  That is, the correlation matrix
among the repeated measures was not constrained to any
particular form; each correlation was estimated.  When
you use PROC MIXED, the methodology exists to
constrain the covariance matrix in many ways, that is, to fit
parameters for the correlations among the repeated
measures.  The more parameters you fit, the more
degrees of freedom you use up, and the less powerful

your other tests become. The correlation structure needs
to be considered a priori.
Comment 12:  There are many other covariance
structures you may fit.  Most of them are probably not very
appropriate to most repeated measures designs.  The
structures we think are reasonable for most repeated
measures designs are the following:

1. Variance Components:  Use this structure when you
feel, except for treatment effects, that the repeated
measures are all of equal variance and are
uncorrelated.

2. Compound Symmetry:  Use this structure when you
feel that, except for treatment effects, all the repeated
measures are equally correlated, and have equal
variance.  Recall that sphericity of the correlation
matrix implies compound symmetry of the covariance
matrix, and that it is sphericity of the correlation matrix
that GLM tests.

3. Huynh-Feldt:  Use this structure when you feel that,
except for the treatment effects, the repeated
measures may have different variances, and the
correlations may be proportional to the averages of
the two variances.  The Huynh-Feldt structure is more
flexible than compound symmetry, and although it fits
a few more parameters, it does not fit an excessive
number.  Compound Symmetry is a special case of
the Huynh-Feldt structure.

4. Auto-Regressive Lag 1:  Use this structure when you
feel that, except for treatment effects, the repeated
measures may have equal variances, but the
correlation between the repeated measures, except
for treatment effects, may be proportional to the
distance between the repeated measures.  This is not
an unusual situation to have occur in repeated
measures, over time, on living organisms.  In that
case, this would be saying that the farther apart in
time two measures are taken, the lower their
correlation.  In such repeated measures designs, this
structure should probably be considered.

Comment 13:  Examining different covariance structures.
There are at least two popular strategies to fitting and
examining statistical models, and subject areas differ with
respect to commonly used strategies.  One strategy,
commonly used in the analysis of designed experiments,
is to decide at the time you design the experiment the
model you will fit and the analysis you will perform.  The
other is to fit and refit many models to the same data, with
the goal of finding the best-fitting model (in some sense).
Since the mixed model allows you to fit a new class of
parameters (the covariance structure parameters), this
model offers the opportunity for even more iterative model
fitting.  You should not blindly fit all possible covariance
structures, and chose the one that appears to fit best.
This greatly risks incorporating chance into the model
parameter estimates.  On the other hand, if you fit the
wrong covariance structure, your tests of fixed effects are
wrong.  In general, you should allow your knowledge of
the experiment, experimental units, and repeated

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
repeated / subject = subject(group)

type=hf;
title 'Mixed with Random statement

with HF conditions';
run;

proc mixed data=twob;
class group time subject;
model response = group time

group*time;
repeated / subject = subject(group)

type=un;
title 'Mixed with Random Statement

with UN conditions';
run;
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measures to lead you to judicious modeling of the
covariance structures.

Comment 14:  There are closely related heterogeneous
and banded versions of many of these structures.
Heterogeneous means that the variances of the repeated
measures may not be constrained to be equal, and
banded means that after a specified distance between two
repeated measures, the correlations drop to zero.  These
may be reasonable.

Covariates in Mixed Models

Frequently in both fixed effect and mixed models, one may
have covariates.  For example, in a repeated measures
design, with one between-subjects factor, and one within-
subjects factor (just the example we have used in the last
section), we might have a covariate.  We use the term
covariate in the same sense as it is often used in linear
models discussions, that is, a continuous predictor
variable, often viewed as a nuisance variable, for which
we would like to control by putting it in the model when we
examine the variables in which we’re interested.

In a repeated measures design, there are two common
types of covariates, called subject-dependent covariates
and time-dependent covariates.  Subject-dependent
covariates are measured once per subject, and are thus
constant over the repeated measures.  Time-dependent
covariates are measured at of the repeated measure
occasions.  Further, we assume without loss of generality,
and for simplicity, that there are no ties; that each subject
has a unique value for the covariate.

For example, if we measured the weight of each subject at
the beginning of a clinical trial, and wished to use weight
as a covariate in a repeated measures analysis, weight
would be a subject-dependent covariate.  On the other
hand, if we measured weight on each occasion for each
subject, then weight would be a time-dependent covariate.

We discuss subject-dependent covariates only.

If we attempt to simply add a covariate to the analysis we
ran earlier using GLM we have the following program:

This program produces an problematic result.  In the GLM
ANOVA table, the covariate WEIGHT is labeled as having
0 df, and the sums of squares, mean squares, and F
statistics are missing for this covariate.  This occurs
because PROC GLM parameterizes the SUGJ(GROUP)
effect with a one column indicator variable for each
subject in the study.  In other words, there are as many

columns for the SUBJ(GROUP) effect as there are
subjects, each with a 1 in the row in X corresponding each
unique subject, and a 0 in the other rows.  When you
include a covariate, the covariate column becomes
calculable as an exact linear combination of the columns
corresponding to the SUBJ(GROUP) effect and is thus
redundant.  When GLM finds redundant columns, it
assigns them 0 df and no variation.  The parameter
estimates and hypothesis tests are identical to those
produced by GLM when there is no covariate.

PROC MIXED behaves differently.  The following program
produces an analysis for the same data using PROC
MIXED.

Note that in this program, the covariate, WEIGHT, is used
in the MODEL statement thus, considered a fixed effect,
while the SUBJ(GROUP) effect is used in the RANDOM
statement, thus considered a random effect.  The columns
corresponding to the SUBJ(GROUP) effect are thus
placed in the X matrix, while the columns corresponding to
the covariate, WEIGHT, are placed in the Z matrix.  The
redundancy is avoided.

If we decided to consider WEIGHT to be a random effect,
and thus moved it to the RANDOM statement in MIXED,
we obtain the same results as we did using GLM:  the
covariate has 0 df, no SS, and the parameter estimates
MIXED produces are identical to those produced by GLM.

Discussion:

The MIXED procedure is extraordinarily flexible, and a
useful addition to the toolbox for the design and analysis
of  linear models studies (useful for design because it is
silly to design a study for which the tools to analyze the
resulting data properly are not available).  However, the
model that it fits is a more complex model than the
univariate general linear model that PROC GLM fits, and
the procedure is correspondingly more complex.  To use
this procedure properly requires training and caution.

Contact Information

Robert M. Hamer, Ph.D.
Department of Psychiatry
UMDNJ Robert Wood Johnson Medical School
675 Hoes Lane
Piscataway NJ 08854
732 235 4218
hamer@umdnj.edu

proc glm data=nontime;
class group time subj;
model y=group time group*time

subj(group) weight;
test h=group e=subj(group);
title 'GLM with covariate';
run;

proc mixed data=nontime;
class group time subj;
model y=group time group*time

weight;
random subj(group);
title 'MIXED with covariate (in

model statement)';
run;
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