
Paper 236-25

Pseudo-Random Numbers: Out of Uniform
Robert E. Johnson, Virginia Commonwealth University, Richmond, Virginia

Hui Liu, Westat Inc., Rockville, Maryland

ABSTRACT
Pseudo-random numbers – both uniform and non-uniform – are
used in random sampling, simulation, and Monte-Carlo
estimation. Base SAS software contains numerous random
number, quantile, and probability functions allowing the user to
generate a selection of nominal, discrete, and continuous random
variates. Other variates may be generated with a data step, often
making use of SAS functions. We will present an overview of
pseudo-random numbers and the functions of Base SAS.
Applications will include simple random sampling from a data set
and estimation of probabilities. The audience should have
intermediate knowledge of data step coding, SAS functions, and
the fundamentals of probability and statistics.

INTRODUCTION
Pseudo-random numbers appear random, but are generated
using a deterministic algorithm. Good generators have properties
that allow the user to treat its stream of numbers as if it were a
random stream drawn from the distribution associated with the
generator. This facilitates probability sampling, allows simulation
of a process, and provides means for estimating probabilities
associated with complex functions of random variables or
processes. In this paper we will review the concepts of uniform
random number generators, in particular, the function RANUNI
found in SAS software. Other random number generators will
be presented and discussed. These include the RANxxx,
quantile (inverse probability), and probability (cumulative
distribution) functions.
Selected applications out of uniform random numbers are
presented. These include the generation of non-uniform random
variates, random sampling, and simulation.

UNIFORM GENERATORS
Several forms of random number generators have been proposed
in the literature. These include linear, power {xn+1=(xn)

d (mod N)},
and discrete exponential {xn+1=g^(xn) (mod N)} to name a few.
All are deterministic functions that produce streams of
nonnegative integers. Some generators are rather difficult to
study. Lagarias (1993) notes this in stating the Unpredictability
Paradox: “If a deterministic function is unpredictable, then it is
difficult to prove anything about it; in particular, it is difficult to
prove that it is unpredictable.” Major focus has been placed on
linear congruential generators, mainly because much is known
about their properties and they are relatively easy to implement
on p-bit machines.
A linear congruential generator is a deterministic function that
produces a stream of nonnegative integers:

Z = {Z0, Zi = AZi−1 + C (mod M); i = 1, 2, …},
given a seed Z0, positive integers A and M, and nonnegative
integer C. This stream of integers may then be scaled to the
interval (0,1):

U = {Ui = Zi /(M−1); i = 1, 2, …}
to produce a source of pseudo-random values that – it is hoped –
mimics a standard uniform distribution.
Lehmer (1951) proposed setting C to zero thus forming a class of
multiplicative generators. These are the most commonly used
generators in modern software. It is desirable for such
generators to run through the entire stream {1, 2,…, M} before
repeating any values. This property, full-period, is achieved for
prime values of M when A is a primitive root of M [Fishman and
Moore (1982)], e.g., AM−1 (mod M) ≡ 1 and Ap (mod M) ^≡ 1 for all
1<p<M−1.
SAS software – Version 6 – uses a multiplicative generator with
prime modulus M=231−1 and multiplier A=397204094 [SAS
Institute Inc., 1990]. Older versions also provided a generator

with non-prime modulus 231 and multiplier 16807 [SAS Institute
Inc., 1982]. In order to improve the properties of the latter one, a
64-bit shuffle was employed [Westlake, 1967; Kennedy and
Gentle, 1980]. Basically, two sequences of values are generated.
Certain bits of the value in one sequence are used to determine
the extent to which the bits of the corresponding value in the
other sequence are shifted (lower bits are shifted to the left and
the displaced higher bits are put in their place). This is a prime
example of the unpredictability paradox. SAS Version 6 software
no longer supports the latter generator (the functions RANUNI
and UNIFORM now perform the same way).
The SAS Version 6 generator – referred to hereafter as SASMG
– is one of the four from a selected group of generators studied
by Fishman and Moore (1982) that passes all of their tests
(independence, uniform on the unit interval, uniform on the unit
square, uniform on the unit cube, and the simultaneous holding of
all four tests). SASMG is listed first among the four and has the
smallest multiplier, though it is not the clear-cut best of the four.
They also evaluate the multiplier 16807, but with modulus 231−1
rather than 231. In a later paper, Fishman and Moore (1986)
looked at 414 multipliers meeting a stringent criterion (concerning
the distance between adjacent parallel hyperplanes). Five
generators stood out, SASMG is not among them. They
conclude that “If one feels compelled to rank the multipliers, one
might regard A=950706376 as first…”
Implementing SASMG on a computer requires integer
computations, shift operations, and sign checks. One cannot
simply use the code X=MOD(A*X,2**31-1) and get the same
sequence as RANUNI. Instead, the MG1 Procedure proposed by
Payne, Rabung, and Bogyo (1969) is used. This procedure,
summarized in Fishman and Moore (1982), takes advantage of
binary computations by first using the modulus 231 then, with a
series of corrections, converts the value to that resulting from the
modulus 231−1.
The SAS function RANUNI is an implementation of the MG1
procedure and allows the specification of an explicit seed (ex.:
RANUNI(443243) yields 0.36433564562552) or a seed generated
by the computer’s clock. There is a third option – implemented
by inserting a negative value as the function parameter – that
queries the clock for a new seed each time RANUNI is
encountered, then returns the next value in the stream. This
option is not recommended, as it is yet another candidate for the
unpredictability paradox.

NON-UNIFORM GENERATORS
Uniform generators may be used to create streams of pseudo-
random numbers that have other distributions. The basic
techniques include the (1) inverse probability transform and other
transformations, (2) composition method, and (3) acceptance-
rejection methods. These are nicely summarized in Rubinstein
(1981). We will focus on technique (1).

Inverse Probability Transform
This technique is simple in concept and often is simple to
implement as well. Suppose X is a continuous random variable
and F(x) is its corresponding cdf (cumulative distribution
function). That is, F(x) describes the probability that X is less
than or equal to x. Then it is well known that U=F(X) has a
uniform distribution on (0,1). Since F(x) is a monotonically
increasing function, it will have a unique inverse function F−1(u).
Thus if U is uniform on (0,1), X= F−1(U) will be a random variable
with the desired function.
A similar technique is used for finite discrete or even nominal
variables. In this case, F(x) is a step function and F−1(u) maps
successive, disjoint segments of the unit interval to the discrete
or nominal values. This method is essentially a table look-up

Posters

method, which is exactly the concept behind the SAS function
RANTBL.
Several SAS functions (Table 1) use the inverse transform
method. Basically, each generates a stream of uniform values
using SASMG, then converts these using an algorithm that
implements the method.

TABLE 1: SAS FUNCTIONS OF THE FORM RANXXX

SAS Function Technique Distribution
RANBINa ITb, Tc Binomial (user: # trials and

success probability)
RANCAU ARd Cauchy (location=0, scale=1)
RANEXP IT Exponential (λ=1)
RANGAM AR Gamma (user: shape

parameter, scale=1)
RANNORe T Standard Normal
RANPOIf IT, T Poisson (user: mean)
RANTBL IT Finite Discrete or Nominal

(user specifies all probabilities)
RANTRI IT Triangular on (0,1)

(user: mode)
a. The normal approximation is used when the number of trials is large.
b. IT = Inverse (probability) transform
c. T = Other transformation
d. AR = Acceptance-rejection method
e. Box-Muller transformation [Kennedy and Gentle, 1980]
f. The normal approximation is used when the mean is large.

If the desired distribution is not covered by the RANxxx functions,
and either the cumulative or the inverse cumulative distribution
function is known, then, with a little programming, the inverse
transform method may still be used. It is simple if the inverse cdf
is known and is easily programmed. The SAS quantile functions,
inverse cdf, are given in Table 2.

TABLE 2: SAS QUANTILE (INVERSE CDF) FUNCTIONS

Inverse CDF Distribution
BETAINV Beta (user: two shape parameters)
CINV Chi-squared (user: dfa and ncpb)
FINV F (user: numerator & denominator df and ncp)
GAMINV Gamma distribution (user: shape parameter,

scale=1)
PROBIT Standard normal
TINV Student’s t (user: df and ncp)

a. Degrees of freedom
b. Noncentrality parameter

A chi-squared random variable may be generated using
RANGAM from Table 1. A gamma variable with shape parameter
equal to k/2 and scale parameter equal to 0.5 is distributed as a
chi-squared random variable with k degrees of freedom. The
following code will generate a stream of 10 chi-square pseudo-
random numbers with 3 degrees of freedom.

*** Generating Chi-Squared Values ***;
data ChiSqV;
 do i=1 to 100;
 ChiSqV = RanGam(200025,3/2)/(0.5);
 Output;
 end;

Alternatively, CINV may be used to general similar – though a
different stream of – values as follows.

*** Generating Chi-Squared Values ***;
data ChiSqV;
 do i=1 to 100;
 ChiSqV = CInv(RanUni(200025),3);
 Output;
 end;

When the inverse cdf is not available and it is computationally
infeasible to compute it directly, numerical methods may be used.
If the cdf and the probability density function (pdf) are available,
the method of false position can be used. The pdf is the
derivative of the cdf and may be approximated from the cdf if not
available. Alternatively, the cdf may be approximated from the
pdf using a numerical method to find integrals under the curve
(such as quadrature or the trapezoidal method [Kennedy and
Gentle, 1980]).
The method of false position involves applying Newton’s method
[Kennedy and Gentle, 1980] to the function h(x) = F(x)−u, where u
is a value between 0 and 1. Here we are assuming F(x) is
continuous. The object is to find the value of x such that h(x) is
zero (it will be unique). This is equivalent to finding x such that
F(x) = u. The method is thus: generate a value of U using
SASMG and find the value X such that F(X)=U. Then X has the
distribution associated with F(X).
The example below generates chi-squared (3 degrees of
freedom) pseudo-random values using the method of false
position and the functions PROBCHI (cdf), PDF (pdf for the
named distribution).

*** Generating Chi-Squared Values ***;
data _null_;
/* Specify the degrees of freedom */
 df=3 ;
do i=1 to 100;
/* Generate a Uniform random value */
 u=ranuni(200025);
/* Null value to compare to x. */
 x0=0;
/* Initialize the value of x. */
 x1=1;
 /* Stopping rule */
 do while(abs(x1-x0)>.000005);
/* Count the number of iterations. */
 count+1;
/* Save the current value of x. */
 x0=x1;
/* Newton's Formula */
 x1=x1 -
 (ProbChi(x1,df)-u)
 /PDF('CHISQUARED',x1,df);
 end;
/* Use SAS's inverse Chi-Sq function */
/* for comparison. */
 real=CInv(u,df);

 file print;
 put "estimated value= " x1 @32 count=
 @45 """real value""= " real;
end;

Other Transformations
Random variables may be generated by using functions of other
random variables. For example, the method used to implement
RANNOR is a function of two independent uniform variables, the
Box-Muller method [Kennedy and Gentle, 1980]. If (U1,U2) is a
pair of independent standard uniform random variables, then
(X1,X2) is a pair of independent standard normal random
variables where

X1 = [−2 ln(U1)]
1/2 cos(2πU2) and

X2 = [−2 ln(U1)]
1/2 sin(2πU2).

[The proof of this is a nice exercise in a first semester
mathematical statistics course.]
The sum of squares of k independent standard normal random
variables is known to have a chi-squared distribution with k
degrees of freedom. While this is not a very efficient method to
generate a chi-squared variable, it serves as another example.
(See SIMULATION OF PROBABILITIES below.)

Posters

SIMPLE RANDOM SAMPLING
An obvious application of uniform random numbers is simple
random sampling from a data set. We learned in our introductory
statistics class how to select a random sample using a random
number table found in the back of our textbook. This
cumbersome technique used tabulated numbers that were
produced using a pseudo-random number generator. The same
basic technique can be programmed with a simple data step.
SAS software comes with a sample library of programs. The
example program shown below is a variation on one taken from
the sample library. Suppose we wish to select 15 records from a
data set with 500 (more or less). Once a record is selected, it is
removed from the pool and cannot be selected again (sampling
without replacement). One method is to pass through the data
once and assign each record a uniform random value. Then sort
the data on the assigned values and skim from the top the first 15
records. While this will work, it is not efficient, especially if the
data set is very large.
Instead we will pass through the data once, deciding at each
record if this one should be selected. If n is the total number of
records and k is the desired sample size, then the probability the
first record is in the final sample is k/n. We sample the record if a
uniform random value is less than k/n. Else, we pass that record
by. If the first record is selected, then the next record is selected
with probability (k−1)/(n−1), else it is selected with probability
k/(n−1). We proceed in this manner – decreasing n by 1 each
time and decreasing k by one only if the current record is
selected – until k reaches zero. The following code provides an
example of this technique.

data select;
/* k= required sample size */
 k=15;
/* n=population size, */
/* k remains to be selected,*/
/* n_remain remaining pool */
 do n_remain=n to 1 by -1 while (k>0);
/* k/n_select is condition probability */
/* of selecting the next record */
 if ranuni(0) < k/n_remain then do;
 /* Pick the next sample obs */
 set sdl.manpower(keep=ssn) nobs=n;
 output;
 /* One less to choose */
 k=k-1;
 end;
 end;
 stop;

SIMULATION OF PROBABILITIES
The cdf provides the means to find the probability that a random
variable is less than or equal to a given value. For example, the
probability that a chi-squared random variable with 3 degrees of
freedom is less than 3 is given by PROBCHI(3,3). In cases
where the cdf is not available, the probability may be simulated if
a mechanism for producing random values of the desired variable
is possible.
The example below shows how to simulate the above mentioned
probability using the fact that the sum of three standard normal
random variables has a chi-squared distribution with 3 degrees of
freedom.

data empiric;
/* Estimation confidence level */
 Delta=.95;
/* Max. error in estimate, */
/* with 100*delta% confidence */
 Error=0.01;
/* Simulation Size */
 SimSize=ceil((probit((1+delta)/2)
 /(2*Error))**2);
 do i=1 to SimSize;
 y=0;
 /* Sum of squares of three */

 /* standard normal values */
 do j=1 to 3;
 y+rannor(88372)**2;
 end;
 /* How often did y<3 occur */
 event+(y<=3);
 end;
 probevnt=event/Simsize;
 realval=probchi(3,3);
 file print;
 put SimSize= probevnt= realval=;

CONCLUSION
Many useful applications arise out of uniform pseudo-random
variables. Only a few are mentioned here. While SASMG
provides a good stream of uniform values, other generators in the
literature have been shown to be better (how much better is open
to interpretation). However, this generator provides a valuable
means for producing non-uniform variates, sampling from data
sets, and simulation of processes and probabilities.
__
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.  indicates USA registration.

REFERENCES
Fishman, G.S. and L.R. Moore (1982), “A Statistical Evaluation of
Multiplicative Congruential Random Number Generators With
Modulus 231−1,” J. Amer. Stat. Assoc., 77(377), 129-136.

 (1986), “An Exhaustive Analysis of Multiplicative
Congruential Random Number Generators with Modulus 231−1,”
SIAM J. Sci. Stat. Comput., 7(1) 24-45.

Kennedy, W.J. and J.E. Gentle (1980), Statistical Computing,
Marcel Dekker, Inc., New York.

Lehmer, D.H. (1951), “Mathematical Methods in Large Scale
Computing Units,” Ann. Comp. Labs., Harvard Univ., 26, 141-146.

Lagarias, J.C. (1993), “Pseudorandom Numbers,” Statistical
Science, 8(1), 31-39.

Payne, W.J., Rabung, J.R. and T.P. Bogyo (1969), “Coding the
Lehmer Pseudo-Random Number Generator,” Comm. Assoc.
Comp. Mach., 12(2), 85-86.

Rubinstein, R.Y. (1981), Simulation and the Monte Carlo Method,
John Wiley & Sons, Inc., New York.

SAS Institute Inc., (1982), SAS User’s Guide: Basics, 1982
Edition, SAS Institute Inc., Cary, NC.

SAS Institute Inc., (1990), SAS Language: Reference, Version 6,
First Edition, SAS Institute Inc., Cary, NC.

Westlake, W.J. (1967), “A Uniform Random Number Generator
Based on the Combination of Two Congruential Generators,” J.
Assoc. Comp. Mach., 14, 337-340.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Robert E. Johnson
Department of Mathematical Sciences
Division of Operations Research and Statistics
Virginia Commonwealth University
Richmond, VA 23284-2084
Phone: (804) 828-1301 x125
Fax: (804) 828-8785
Email: rjohnson@vcu.edu
WEB: http://saturn.vcu.edu/~rjohnson

Posters

	CD Table of Contents

