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Abstract

There are many applications of limited dependent
variable and discrete choice models in a wide vari-
ety of areas, including economics, finance, marketing,
political science, and sociology, to name a few. This
paper introduces multinomial discrete choice and si-
multaneous equations models and presents how to
estimate these models using PROC QLIM. Three data
sets are used for illustration.

Introduction

It is not uncommon to encounter econometric mod-
els where dependent variables are limited or quali-
tative. These discrete choice and limited dependent
variable models need to be analyzed using more com-
plicated methods than usual continuous models. The
SAS/ETS QLIM procedure is developed to analyze
mainly cross-sectional data, though you can use the
QLIM procedure for panel or time-series data. PROC
QLIM can analyze the following models:

� binary probit and logit

� ordinal probit

� binary probit and logit with heteroskedasticity

� multinomial logit

� nested logit

� mixed multinomial logit

� univariate and bivariate poisson regression

� negative binomial regression

� tobit (censored and truncated regression)

� simultaneous equations model

� endogenous switching regression

Introductory Example

For multinomial data analysis, it is important to orga-
nize data series in an appropriate way. Here is a sim-
ple binary data set that illustrates how you can esti-
mate the multinomial logit model using PROC QLIM.
The first five observations of a simulated data set
(Ben-Akiva and Lerman 1985, p. 88) are shown as
follows:

Example of Binary Choice Data

id auto transit ttdif cchoice alt

1 52.9 4.4 48.5 Transit 0
2 4.1 28.5 -24.4 Transit 0
3 4.1 86.9 -82.8 Auto 1
4 56.2 31.6 24.6 Transit 0
5 51.8 20.2 31.6 Transit 0

The two travel alternatives in the data set are auto
and transit. The attribute of travel time is recorded as
AUTO for automobile travel and TRANSIT for transit
travel. The binary choice data can be estimated using
the conditional logit model. For conditional logit esti-
mation, we created the new data set and the first ten
observations are shown in the following table:

Rearranged Binary Data

id autodum ttime cchoice mode choice

1 1 52.9 Transit 1 0
1 0 4.4 Transit 2 1
2 1 4.1 Transit 1 0
2 0 28.5 Transit 2 1
3 1 4.1 Auto 1 1
3 0 86.9 Auto 2 0
4 1 56.2 Transit 1 0
4 0 31.6 Transit 2 1
5 1 51.8 Transit 1 0
5 0 20.2 Transit 2 1

The new variable (TTIME) takes the value of automo-
bile travel time (AUTO) for the first record of each indi-
vidual while it contains transit travel time (TRANSIT)
for the second record. We use an alternative-specific
constant (AUTODUM) for conditional logit estimation.
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The probability of choosing the auto mode (MODE=1)
is

P (yi = 1) =
exp(�1AUTODUM+ �2TTIME)

1 + exp(�1AUTODUM+ �2TTIME)

PROC QLIM estimates the conditional logit model
with the TYPE=CLOGIT option. Maximum likeli-
hood estimation uses the Newton-Raphson optimiza-
tion technique (OPTMETHOD=NR), and the stan-
dard errors are calculated from the Hessian metrix
(COVEST=HESS).

proc qlim data=travel2;
model mode = autodum ttime / noint type=clogit id=id

choice=choice covest=hess optmethod=nr;
endogenous discrete=(mode 1 2);

run;

Binary Choice Modeling Using Multinomial Logit
Variable Parameter Standard
Name Estimate Error t statistic

AUTODUM -0.2376 0.7505 -0.32
TTIME -0.0531 0.0206 -2.57

Summary Table
Log L -6.166
# Observations 21
# Records 42
AIC 16.3321

As explained in the next section, the binary choice
logit can estimate the binomial choice model using the
following specification:

log

�
P (yi = 1)

1� P (yi = 1)

�
= (xiA � xiT )� = xiD�

where xiA = (1, AUTO), xiT = (0, TRANSIT), and
xiD = (1, TTDIF). The explanatory variables, xiA
and xiT , are stored in the separate line with the vari-
able TTIME when multinomial modeling is used. For
binomial logit estimation, one observation per per-
son is needed since the probability of transit choice,
P (yi = 0), can be calculated from the probability of
automobile choice, P (yi = 1).

The binary logit and probit models are estimated us-
ing the maximum likelihood method. Parameter es-
timates are summarized in the following table. The
predicted probabilities are generated by the OUTPUT
statement using the formula

P (yi = 1) =
exp(�̂1 + �̂2TTDIF)

1 + exp(�̂1 + �̂2TTDIF)
(logit)

P (yi = 1) = �(�̂1 + �̂2TTDIF) (probit)

where �(�) is the distribution function of standard nor-
mal variables and �̂1 and �̂2 are maximum likelihood
estimates.

proc qlim data=travel1;
model alt = ttdif /

type=blogit covest=hess optmethod=nr;
endogenous discrete=(alt 0 1);
output out=blg p=p_lo;
model alt = ttdif /

type=bprobit covest=hess optmethod=nr;
endogenous discrete=(alt 0 1);
output out=bpr p=p_pr;

run;

Binary Choice Modeling Using Logit & Probit
Variable Parameter Standard
Name Estimate Error t statistic

Logit Estimates
INTERCEPT -0.2376 0.7505 -0.32
TTDIF -0.0531 0.0206 -2.57

Summary Table
Log L -6.166
# Observations 21
# Records 21
AIC 16.3321

Probit Estimates
INTERCEPT -0.0644 0.3992 -0.16
TTDIF -0.0300 0.0103 -2.92

Summary Table
Log L -6.1652
# Observations 21
# Records 21
AIC 16.3303

The binomial logit estimates are exactly the same
as the preceding multinomial logit estimates, as ex-
pected. The probit estimates are different, since the
error variance of probit is normalized as 1. The pre-
diction probabilities are displayed. The plot indicates
that auto mode would be chosen if the travel by au-
tomobile takes less time than the travel by transit
(TTDIF < 0).
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Discrete Choice Modeling

Binary choice modeling is used to analyze binary re-
sponse variable models. The regression model with
binary responses can be written as

y�i = x
0

i� + �i

where only the sign of the dependent variable is ob-
served as follows:

yi = 1 if y�i > 0

= 0 otherwise

�i � standardnormalwithCDF :

�(x) =

Z x

�1

1p
2�

exp(�t2=2)dt (probit)

or

logisticwithCDF :

�(x) =
exp(x)

1 + exp(x)
(logit)

For the binary logit model, the probability of one
choice is denoted

P (yi = 1) =
exp(x0i�)

1 + exp(x0i�)

The probability of an alternative choice can be derived
easily as P (yi = 0) = 1� P (yi = 1).

When the dependent variable takes multiple discrete
values, the multinomial logit model can be used to
analyze unordered categorical response variables.
Standard multinomial (or conditional) logit models can

be used to calculate a probability of choice j among
J + 1 alternatives.

P (yi = j) =
exp(x0ij�)

1 +
PJ

k=1 exp(x
0

ik�)

The conditional logit model can also be derived from
utility maximization. Let the random utility function be
defined as

Uij = Vij + �ij

where Vij is a non-stochastic utility function. If we as-
sume linear utility function, then Vij = x

0

ij�. The error
disturbances are assumed to have iid Gumbel (log
Weibull or type I extreme value) distribution with dis-
tribution function, exp(� exp(��ij)). Then the event
fyi = jg can be expressed using a random utility func-
tion as follows:

Uij �maxk2Ci;k 6=jUik

Using properties of the Gumbel distribution, the prob-
ability of choosing an alternative j from ni choices of
individual i can be derived from utility maximization:

Pi(j) = P [x0ij� + �ij �maxk2Ci(x
0

ik� + �ik)]

=
exp(x0ij�)P

k2Ci
exp(x0ik�)

When explanatory variables contain only individual
characteristics, the multinomial logit model is some-
times defined by

P (yi = j) =
exp(x0i�j)

1 +
PJ

k=1 exp(x
0

i�k)
; j � 2

P (yi = 1) =
1

1 +
PJ

k=1 exp(x
0

i�k)

This type of multinomial choice modeling has a couple
of weaknesses: it has too many parameters and it is
difficult to interpret.

The odds of success or failure is an important concept
in binary and multinomial modeling. The log-odds ra-
tio is defined

log

�
P (yi = j)

P (yi = k)

�
= (xij � xik)

0�

This expression also shows that the multinomial logit
has the property of the independence of irrelevant al-
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ternatives (IIA). In other words, the log-odds ratio is
only affected by choice j and k.

Multidimensional Discrete Choice Model-
ing

Suppose a decision maker has a multidimensional
choice Ci, where Ci = C1 � C2 � � � �CL � C�i and
C�i is defined as the set of infeasible elements in
C1 � C2 � � � �CL for the decision maker i. When
elements in Ci share unobserved and observed at-
tributes, utilities of these elements are not indepen-
dent. In this case, nested logit modeling is appropri-
ate for the multinomial choice data analysis. Multi-
nomial probit modeling can be another approach. It
is convenient to introduce several notations to explain
nested logit modeling. Assume that there are L levels,
with 1 representing the lowest branch of the tree and
L denoting the stem of the tree. The index of a node
at level h is represented by (jh; � � � ; jL). Let �h de-
note a node at level h+ 1, where �h = (jh+1; � � � ; jL).
The choice set C�h contains choices that belong to
branches below the node �h. The notation C�h can
also be used to express a set of indices below �h.
Note that C�0 is a set with a single element, while C�L
represents a choice set containing all possible alter-
natives. The probability of choice at level h is written

Pi(jhj�h) =

exp[(xhi;jh�h)
0�h +

P
k2Cjh�h

=k;jh�h ]P
j2C�h

exp[(xhi;j�h )
0�h +

P
k2Cjh�h

=k;j�h ]

where xhi;�h�1 is the vector of variables for observation
i related with the node �h�1 and

=k;jh�h = Ik;jh�h�k;jh�h

The inclusive value of the level h+ 1 is written

I�h = ln
X

j2C�h

exp[(xhi;j�h )
0�h +

X
k2Cjh�h

Ik;j�h�k;j�h ]

0 � �k;�1 � � � � � �k;�L�1 � 1

When the decision level is at 1, there are no inclu-
sive values. Therefore, the conditional probability is
defined as

Pi(j1j�1) =
exp[(xhi;j1�1)

0�1]P
j2C�1

exp[(x1i;j�1 )
0�1]

The utility function of a decision maker can be speci-
fied as

Uij = x
0

ij� + �ij + �ij

where the error component, �ij , is correlated among
alternatives and heteroskedastic and another error
component, �ij , independently and identically dis-
tributed. When we assume that �ij = z

0

ij, random
coefficients, , have the mixing distribution with the
probability density function f(j�). The choice prob-
ability of an alternative j is

Pi(j) =

Z
Qi(jj)f(j�)d

where

Qi(jj) =
exp(x0ij� + z

0

ij)P
k2Ci

exp(x0ik� + z
0

ik)

Mixed multinomial logit models are estimated by
simulation-based methods (simulated maximum like-
lihood or method of simulated moments). The simu-
lated probability is written

~Pi(j) =
1

S

SX
s=1

Qi(jjs)

where S is the number of simulation replications
drawn from density f(�) and s is a simulated value.
The simulated log-likelihood function is calculated as
log ~L =

PN

i=1 log(
~Pi(j)). The simulated probability

is an unbiased estimate of Pi(j), and its variance
decreases as replications (S) increase. Therefore,
it is critical to find out the most efficient method of
simulation. Train (1999) argues that quasi-random
numbers (Halton sequences) can provide much bet-
ter simulation-based estimation method than pseudo
random numbers. His finding is that 100 Halton draws
have smaller simulation variance than 1000 random
draws. However, the properties of Halton sequences
have not been fully investigated.

Multinomial Logit Example

Hensher and Greene analyze travel mode choice for
travel between Sydney and Melbourne. They used
data on four travel modes: airplane, train, bus, and
car. The data set contains 210 observations. Re-
fer to Greene (2000) for more detailed data descrip-
tions. In this example, we assume that the choice of
transportation mode is a function of terminal waiting
time (TTIME), in-vehicle time (INVT), in-vehicle cost
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(INVC), generalized cost measure (GC), and income
(INCOME). The variable INCOME contains zero value
if the choice is not airplane. Original data is rescaled
dividing by 100. The multinomial choice models are
estimated using the conditional logit, nested logit, and
mixed multinomial logit log-likelihood functions. The
log-likelihood function of the mixed multinomial logit is
calculated using simulation with 125 Halton sequence
draws. All coefficients are assumed to be random
with normal distribution when the mixed logit is esti-
mated. In the following table, the mean and standard
deviation of random coefficients are shown while the
conditional and nested logit models estimate fixed pa-
rameters. It is interesting to observe that parameter
estimates of conditional logit and mixed logit models
are almost identical when we assume that the random
parameters have the normal distribution. Asymptotic
standard errors are reported in parentheses.

Multinomial Logit Modeling
Conditional Nested Mixed

Parameter Logit Logit Logit
TTIME -3.5606 -2.4540 -3.5606

(0.4725) (0.4253) (0.4725)
TTIME� 0.0213

(0.6408)
INVC -2.6820 -0.4933 -2.6820

(1.4694) (3.7622) (1.4695)
INVC� 0.0093

(1.0168)
INVT -0.6202 -1.6618 -0.6202

(0.1857) (0.5769) (0.1857)
INVT� -0.0001

(0.0506)
GC 3.4269 2.4142 3.4269

(1.3884) (3.6993) (1.3885)
GC� -0.0046

(0.7071)
INCOME 1.2462 3.7627 1.2464

(0.6637) (0.9876) (0.6637)
INCOME� 0.0201

(0.8404)
INCLUDE–1 2.1817

(0.4304)
INCLUDE–2 0.1273

(0.0946)
logL -242.394 -193.666 -242.393

The QLIM statement is given as follows:

proc qlim data=travel id=id;
/*-- conditional logit --*/
model mode = ttime invc invt gc income /

noint type=clogit choice=decision;
endogenous discrete=(mode 1 2 3 4);
/*-- nested logit --*/

model upmode mode = ttime invc invt gc income /
type=nestedlogit choice=decision;

utility u(1, 2 3 4 @ 2) = ttime invc invt gc,
u(2, 1 2) = income;

endogenous discrete=(mode 1 2 3 4, upmode 1 2);
/*-- mixed logit --*/
model mode = ttime invc invt gc income /

type=mixedlogit choice=decision
mixed=(normalvar=ttime invc invt gc income,

randnum=halton);
endogenous discrete=(mode 1 2 3 4);

run;

Heckman’s Two-Equation Model Example

Heckman’s two-equation simultaneous system is de-
fined

y1i = y�2i�1 + x
0

1i1 + Æ1di + u1i

y�2i = y1i�2 + x
0

2i2 + Æ2di + u2i

di =

�
1 if y�2i > 0
0 otherwise

Æ2 = ��2Æ1

where x1i and x2i are K1 � 1 and K2 � 1 exogenous
variable vectors, and (u1i; u2i) are iid bivariate nor-
mal variables. The reduced form of this system of two
equations can be written

y1 = Æ1d+X�1 + e1

y
�

2 = X�2 + e2

where X consists of all distinct column vectors of

X1 and X2 and (e1i; e2i) � N

�
0;

�
�21 �12
�12 1

��
.

Amemiya (1978) suggested the two-stage estimation
method using the following equations:

�1 = J11 + �2�1

�2 = J22 + �1�2

where J1 and J2 are selection matrices for X1 and X2,
respectively.

Copley et al. (1994) studied the relation of quality of
audit services (QUALINDX) with audit fees (LNFEE)
using Heckman’s two-equation simultaneous equa-
tions model with Æ1 = 0. They find that the audit fee
is positively related with quality of service in the audit
supply equation, while there is a negative relationship
between the demand for audit quality and audit ser-
vice fees. However, single equation modeling does
not reveal this relationship because of simultaneous
equations bias. Their specification of simultaneous
equations system is the following:

QUALINDX = f1(LNSIZE;FINOFFCL;

GOVT; LNFEE)
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LNFEE = f2(LNSIZE; LNBIDS;COSTWGHT;

TENURE;QUALINDX)

Refer to Copley et al. for more details on data and
variable definition. We randomly selected 70% of the
data set (sample size = 118) that was used by Cop-
ley et al. and reported two-stage OLS and GLS esti-
mates. The estimates in the demand equation show
sizable difference when we compare with those of
Copley et al. The OLS coefficient estimate of LNFEE
is not significant though the sign is the same as the
GLS. Deis and Hill (1998) carried out bootstrapping.
Their finding is that some asymptotic t-statistics of the
Amemiya’s GLS estimates are inflated by 55% when
they use Copley et al.’s data set with sample size 118.

proc qlim data=account system;
model qualindx = lnsize finoffcl govt lnfee;
model lnfee = lnsize lnbids costwght tenure qualindx;
endogenous lnfee discrete=(qualindx 0 1);
instruments lnsize lnbids finoffcl

govt costwght tenure;
run;

Simultaneous Equations Estimates of Demand
Function for Audit Quality

Variable Parameter Standard
Name Estimate Error t statistic

GLS Estimates (sample size = 77)
INTERCEPT 1.9326 2.4245 0.80
LNSIZE 0.7934 0.4924 1.61
FINOFFCL 0.5279 0.5911 0.89
GOVT 2.2846 1.0190 2.24
LNFEE -1.5916 1.0341 -1.54

OLS Estimates (sample size = 77)
INTERCEPT 0.8625 2.0647 0.42
LNSIZE 0.4248 0.5008 0.85
FINOFFCL 0.4851 0.3270 1.48
GOVT 1.7400 0.8290 2.10
LNFEE -0.8607 1.0715 -0.80

Simultaneous Equations Estimates of Supply
Function for Audit Quality

Variable Parameter Standard
Name Estimate Error t statistic

GLS Estimates (sample size = 77)
INTERCEPT 2.5884 1.0489 2.47
LNSIZE 0.4208 0.0730 5.76
LNBIDS -0.1123 0.2235 -0.50
COSTWGHT -0.4687 0.3584 -1.31
TENURE 0.0887 0.0428 2.07
QUALINDX 0.4944 0.3188 1.55

OLS Estimates (sample size = 77)
INTERCEPT 2.5543 1.0514 2.43
LNSIZE 0.4292 0.0752 5.70
LNBIDS -0.1209 0.2243 -0.54
COSTWGHT -0.4626 0.3586 -1.29
TENURE 0.0892 0.0428 2.09
QUALINDX 0.5021 0.3192 1.57

Conclusion

In this paper, three examples are given to introduce
how the QLIM procedure can be used to solve real
problems. However, there are many other interesting
features. For example, you can use PROC QLIM for
count data and limited dependent variable modeling.
Predicted values and marginal effects are calculated
with the OUTPUT statement in the QLIM procedure.
You can also use PROC QLIM to fit switching regres-
sion models.
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