
Paper 60-26

PROC SQL - Is it a Required Tool for Good SAS Programming?
Ian Whitlock, Westat

Abstract

No one SAS tool can be the answer to all problems.
However, it should be hard to consider a SAS
programmer well versed in SAS, who does not use DATA
steps. SQL should be classified with the DATA step
rather than procedures because it is really a
programming language in itself.

In the past many good SAS programmers have resisted
learning PROC SQL on the basis that it is a database tool
and that they can get along without it. It is time (or past
time) to reconsider the question and change that belief.

SQL has dramatically changed the nature of what good
SAS macro code looks like. It can simplify and
standardize a number of common SAS programming
patterns involving combinations of the DATA step, PROC
SUMMARY, PROC SORT, and PROC PRINT.

This tutorial will focus on problem examples with code
where PROC SQL has a distinct advantage in terms of
code simplicity over use of the more traditional SAS tools
mentioned above.

Introduction

The typical SAS programmer needs PROC SQL because:

1. It is superb at accessing data stored in
multiple data sets at different levels.

2. It can easily produce a Cartesian product.

3. It can perform matching where the condition of
a match is not equality.

4. It is good at summarization.

5. With the introduction of 6.11, it can make
arrays of macro variables or do away with the
need for these arrays by assigning a whole
column of values to one macro variable.

6. Macro - SQL interaction enhances both macro
and SQL.

In addition to the direct values listed above, one should
not underestimate the value of SQL training in teaching
one data organization. An example of how SQL can
teach data organization is given at the end of the
summarizing section.

Matching multiple data sets at different levels

PROC SQL provides a powerful tool when extracting data
from different data sets at several different levels. It not
only provides simpler code, it provides a new way of
looking at these problems.

Suppose we have data at the state, county and city level
stored in three data sets.

State (state, region,...)
county (cntyid, state, cnty, area,
...)
city (city, cntyid, area, pop,...)

Prepare a report of all cities in the midwest with
populations over 100,000 with the ratio of the city area to
the enclosing county area.

A SAS procedural solution demands that we decide
whether to start with states or cities, specify all sorts
needed for the various DATA step merges, and specify
those merges in detail ending up with a PROC PRINT.

In contrast, SQL asks the fundamental questions:

1. What are the data sets?
2. What are the subsetting conditions?
3. What are the linking conditions?
4. What columns should appear?

proc sql ;
 select st.state ,
 cn.cnty ,
 ct.city ,
 ct.area / cn.area as
 arearato
 from state as st ,
 county as cn ,
 city as ct
 where ct.pop > 100000 and
 st.region = 'MW' and
 st.state = cn.state and
 cn.cntyid = ct.cntyid
 ;
quit ;

Beginning Tutorials

In all the remaining example code the PROC statement
and the QUIT will be omitted.

Cartesian Product

Cartesian product matches are far more common than
one-to-one matches, but the MERGE statement assumes
one-to-one within BY-groups. To find a Cartesian product
match, let's look at a codebook example. I have three
data sets:

specs (variable , format)
freq (variable, format, value,
 count)
fmts (format, value, label)

The report might look something like this.

first variable using fmt1name
format

 value label count
 1 first 500
 2 sec 0
 3 rem 300

second variable using fmt2name
format

 etc.

Before tackling the problem let's look at the code for
joining SPECS and FMTS. The problem involves a
Cartesian product because a format may be associated
with more than one variable in SPECS, and formats
typically have more than one value. Thus FORMAT does
not determine a single record in either data set; hence a
merge by FORMAT will not work. Note that
accomplishing this sort of combining records in a DATA
step involves using sophisticated SAS techniques when
SQL is not used.

create view sfm as
select s.variable ,
 s.format ,
 fm.value ,
 fm.label
 from specs as s , fmts as fm
 where s.format = fm.format
;

It is easy to see how to produce the report with a DATA
NULL step when the right information is in a data set (
VARIABLE, FORMAT, VALUE, LABEL, and COUNT).
Here is the SQL code to produce the file.

create table report as
select
 coalesce (sfm.variable,
 fq.variable)
 as variable ,
 coalesce (sfm.format,
 fq.format)
 as format ,
 coalesce (sfm.value, fq.value)
 as value ,
 sfm.label ,
 coalesce (fq.count , 0) as
count

 from sfm full join freq as fq
 on sfm.variable = fq.variable
 and sfm.format = fq.format
 and sfm.value = fq.value
 order by variable, format,
 value
;

Note that in two SQL statements we have done a lot of
the work toward creating a codebook. If one could
produce SPECS, FREQ, and FMTS easily, then one
could produce a codebook for any properly formatted
SAS data set. The FMTS file is trivially produced with the
FMTLIB option of PROC FORMAT. The FREQ file
requires some macro code. We will postpone discussion
of the SPECS file to a later section.

Fuzzy Matching

Fuzzy matching comes in two varieties. In date (or time)
line matches one file holds a specific date (or time) and
one wants the corresponding record which holds a range
of dates (or time). For SAS dates DATE, BEGDATE, and
ENDDATE the WHERE clause might be

where date is
 between begdate and enddate

For efficiency reasons it is important to add an equi-
condition whenever possible. In date (or time) matches
one often has an ID that must also match, hence the
equi-join condition becomes

where a.id = b.id and
 date is between begdate and
enddate

In the other kind of fuzzy matching one cannot trust the
identifying variables. Suppose we want to match on
social security numbers, SSN, but expect transposition
errors and single digit mutations. Now the WHERE
clause might be

Beginning Tutorials

where sum (substr(a.SSN,1,1) =
 substr(b.SSN,1,1) ,
 substr(a.SSN,2,1) =
 substr(b.SSN,2,1) ,

 substr(a.SSN,9,1) =
 substr(b.SSN,9,1)
) >= 7

To make this an equi-join we might add

 and substr(a.zip,1,3) =
 substr(b.zip,1,3)

or some other relatively safe blocking variable.

Summarizing

One PROC SQL step can do the job of a PROC
SUMMARY followed by merging of the results with the
original data. For example, suppose we have a weighted
student sample including many different schools. We
want the percentage weight of each student in a school.
Then we might have:

select school , student , wght ,
 100*wght/sum(wght) as
pctwt
 from studsamp
 group by school
;

In this case one gets a message that summary data was
remerged with the original data, but that is precisely what
we wanted.

Now suppose we want to look at all the students from any
school which has some student contributing more than
20% of the weight. The code might be

select stu.*
 from studsamp as stu ,
 (select distinct school
 from studsamp
 group by school
 having wght/sum(wght) > .2
) as want
 where stu.school = want.school
order by stu.school, stu.wght desc
;

The technique is important because there are many times
one wants to view every one in a group if anyone in the
group has some property. SQL provides a natural idiom
for producing the report.

Knowing SQL should make one more sensitive to bad
patterns of storing data. For example, a common
question on SAS-L is how to array data. Given the data

ID DATE COUNT

1 5jun1993 50
1 16oct1993 25
1 21dec1993 8

2 14may1990 16
2 27jan1991 3

how do you produce one record per ID with as many date
and count fields as needed, say ID, DATE1 - DATE32
and COUNT1 - COUNT32? Another common question is
how to work with the arrayed data. For example, how can
you compute the rate of decrease in count per month and
per year for each ID. The answer is a trivial SQL
problem, when the data are stored as they were originally
given.

select id ,
 (max(count)-min(count))/
intck('month',min(date),max(date))
 as decpmon,
 calculated decpmon * 12
 as decpyr
 from origdata
 group by id
;

After arraying it becomes a harder problem. Perhaps if
SAS programmers learned SQL, and how to solve
problems without arrays, then they would also learn the
advantages of storing data in a non-arrayed form. With
SQL training, one comes to realize the importance of
putting the information into the data instead of the
variable names. Of course, this also means that the
usefulness of SQL is highly dependent on how well the
data are stored, but it would be wrong to conclude that
one might as well avoid learning SQL because of bad
data management practices.

Macro Lists Via PROC SQL

PROC SQL's ability to assign a whole column of values
to a macro variable has drastically changed how one
writes macro code. Consider the splitting problem.
Given a data set ALL with a variable SPLIT naming a
member, split ALL by the variable SPLIT. Before version
6.11 one had to use CALL SYMPUT to create an array of
data set names and values and then write a monster
SELECT statement. The whole thing had to be in a
macro in order to repetitively process the array. Now one
might view it as a problem to produce two lists

Beginning Tutorials

1. The names of data sets
2. WHEN / OUTPUT statements for a SELECT

block

The first case is easily handled by

select distinct 'lib.'||split
 into :datalist separated
by ' '
 from all ;

The second is more of the same, only harder.

select distinct
 'when ('
 || split
 || ') output lib.'
 || split
 into :whenlist
 separated by ';'
 from all
;

Now the code to produce the split is trivial and need not
even be housed in a macro.

data &datalist ;
 set all ;
 select (split) ;
 &whenlist ;
 otherwise ;
 end ;
run ;

In the section on the Cartesian product, we postponed
discussion of the data set SPECS. It could be generated
from one of the "dictionary" files documented in the
Technical Report P-222. Suppose we are interested in
making a codebook for the data set LIB.MYDATA, then
the following code could generate SPECS.

create specs as
select name as variable
 , case
 when format=''
 and type='char'
 then $char
 when format=''
 and type= 'num'
 then best
 else format
 end as format
 from dictionary.columns
 where libname = 'LIB' and
 memname = 'MYDATA'
;

To prepare for doing the frequencies needed to make the
data set FREQ we could use the array form of generating
variables from a column.

select variable ,
 format ,
 into :var1 - var9999 ,
 :fmt1 - fmt9999
 from specs
;
%let nvar = &sqlobs ;

The frequency data sets can then be generated in a
PROC FORMAT with the macro code

proc freq data = lib.mydata ;
 %do i = 1 %to &nvar ;
 table &&var&i /out=&&var&i ;
 format &&var&i &&fmt&i... ;
 %end ;
run ;

We still have not combined the frequency data sets into
one data set, but that task can be left to a competent
macro programmer, even one who doesn't know SQL
(assuming that that is not a contradiction in terms).

Macro - SQL Interaction

The previous section showed how the making of lists has
had a dramatic effect on the way one codes macro
problems involving lists. Now we consider a more
complex interaction between PROC SQL and macro,
where macro code is used to write the SQL code in a loop
and the whole problem is much easier, precisely because
it is SQL code.

Suppose we have a data set, W, containing the variables
NAME and GROUP.

NAME GROUP

A 1
B 1
B 2
C 2
D 2
D 3
E 3
F 4
G 4
G 5
H 5

Beginning Tutorials

We want to collapse groups to the lowest level. For
example, since A and B belong to group 1, and B and C
belong to group 2, then all members of group 2 are part
of group 1 because the groups have the common
member B. Once this is seen one can add group 3 to the
new group 1 because of the common member D. Thus
group 1 covers A, B, C, D and E. Similarly F, G, and H
ultimately belong to group 4. More formally, two groups
are in the same chain if there is a sequence of groups
containing the given groups such that each consecutive
pair of groups contains a common name. Using this
definition the data set consists of disjoint chains. The
problem is to write a program identifying each chain by
the minimum group number in the chain.

The intuitive argument given in the previous paragraph
uses two kinds of minimization.

1. Find the minimum group (call it MINGROUP)
for all names having the same value (e.g.
NAME = 'B' has MINGROUP = 1).

2. Find the minimum of all MINGROUP values
for all names in a common group (e.g.
GROUP = 2 has MINGROUP = 1).

PROC SQL is very suitable to both types of minimization.
In the first case we might have

create table t as
select name, group,
 min (group) as mingroup
 from dataset
 group by name ;

In the second case we might have

create table t as
select name, group,
 min (mingroup) as mingroup
 from t
 group by group ;

These two operations must be repeated over and over
until no new minimums are found, since each new
extension of a group may mean further collapsing. To
express the iteration of this code to an arbitrary level, we
need a macro %DO-loop. This time we will present the
complete macro, %GROUPIT.

For generality, we make parameters to name the input
and output data sets, and the variables represented by
NAME, GROUP, and MINGROUP. The parameter MAX
is added to insure that the macro does not execute for an
excessively long time. (Since the algorithm does
converge one could do away with this parameter or set it
to the number of observations.)

%macro groupit
 (data=&syslast,/*input data */
 out=_DATA_, /*output data*/
 name=name, /* name var */
 group=group, /* group var */
 mingroup=mingroup,
 /* minimum var*/
 max=20 /*limit #iterations*/
) ;

/* -------------------------------
 minimize group on name and
 then group repeat until max
 iterations or done
------------------------------- */
%local i done ;

proc sql ;
 /* -------------------------
 initial set up - get first
 minimums, start numbered
 sequence of data sets
 ------------------------- */

 create table __t0 as
 select &name
 , &group
 , min (&group)
 as &mingroup
 from &data
 group by &name
 ;

 create table __t0 as
 select &name
 , &group
 , min (&mingroup)
 as &mingroup
 from __t0
 group by &group
 ;

 /* ----------------------------
 iterate until done or too
 many iterations
 ------------------------- */

 %do %until (&done
 or &i > &max) ;
 %let i = %eval (&i + 1) ;

 create table __t&i as
 select &name
 , &group
 , min (&mingroup)
 as &mingroup

Beginning Tutorials

 from __t%eval(&i-1)
 group by &name

 ;
 create table __t&i as
 select &name
 , &group
 , min (&mingroup)
 as &mingroup
 from __t&i
 group by &group
 ;

 /* are we finished? */
 reset noprint ;
 select w1.&name
 from __t%eval(&i-1)
 as w1
 , __t&i as w2
 where w1.&name=w2.&name
 and &group=w2.&group
 and w1.&mingroup
 ^= w2.&mingroup
 ;

 %let done =
 %eval (not &sqlobs) ;
 reset print ;
 drop table __t%eval(&i-1);
 %end ;/*end iterative loop*/

 %if not &done %then
%put WARNING(GROUPIT):Process
 stopped by condition MAX=&max;
 %else
 %do ;
 create table &out as
 select &name
 , &group
 , &mingroup
 from __t&i
 order by &name
 , &group
 ;
 drop table __t&i ;
 %end ;

 quit ;
%mend groupit ;

%groupit (data = w
 , name = name1
 , group = group1
 , out = w2)

proc print data = w2 ;
run ;

Conclusion

I have pointed out six areas where SQL code excels. My
conclusion is that a good SAS programmer can no longer
ignore PROC SQL and remain good.

The author can be contacted by mail at:

Westat Inc.
1650 Research Boulevard
Rockville, MD 20850-3129

or by e-mail at:

whitloi1@westat.com

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Beginning Tutorials

	SUGI 26 Title Page

