
Paper 93-26

Performing Multiple Statements for Each Record in a SAS® Data Set
Edward Moore, Highmark Blue Cross Blue Shield, Pittsburgh, PA

ABSTRACT
A mainstay of database languages is the SCAN loop. This feature
allows a programmer to loop through a table and perform tasks using
the information in each record. SAS has similar functionality with
the built-in loop of the DATA step. However, the constraints of
DATA step programming greatly limit what tasks a programmer can
perform. A programmer cannot, for example, begin a PROC step or
another DATA step while looping within a DATA step. The
limitations inherent in the DATA step can be frustrating constraints,
but it is possible to create a work-around using macros and the
%DO loop. To do this, a SAS program must pull one record at a
time from a data set and then store any fields of interest within
macro variables. Any program step can now access the contents of
a record. Performing these tasks within a %DO loop provides a
good simulation of the SCAN loop available in other database
languages.

PROCEDURE
A programmer can loop through each record in a SAS data set using
a DATA step, but the programmer cannot begin any other program
steps while within this loop. Similarly, a programmer can repeat a
series of DATA and/or PROC steps a number of times using the
%DO loop, but she lacks access to the contents of the records of
another data set. By using both of these constructs, a programmer
can read each record in a table and perform any number of program
steps using the contents of the record.

In order to do this, a programmer must first obtain the number of
records in a table and store this value to a macro variable. A %DO
loop will be incremented once for each record, and it is necessary to
know how many times this counter must be incremented. This
following bit of code (modified from a similar bit of code from In the
Know… SAS Tips & Techniques From Around the Globe)
accomplishes that.

DATA _NULL_;
IF 0 THEN SET FileName NOBS=X;
CALL SYMPUT('RECCOUNT',X);
STOP;

RUN;

This code stores the number of records in the data set FileName
into a macro variable named RECCOUNT. Note that “IF 0 THEN”
code was used to increase program efficiency. As noted in Mason’s
book, NOBS (number of observations) is set at compile time, and it
is not actually necessary to perform the SET statement to obtain the
number of observations.

Now that the programmer knows the number of observations in a
table, she can use a %DO loop to increment from one to the number
of observations. For each increment of the loop, one observation is
drawn from the table. The proper observation is drawn using the
FIRSTOBS option on the DATA step. Any variables that the
programmer wishes other program steps to access can be stored to
macro variables using CALL SYMPUT.

STEPS TO IMPLEMENTING A SCAN LOOP IN SAS
1. Store the number of observations in a data set to a macro

variable (RECCOUNT)
2. Increment a variable (I) from one to RECOUNT using a %DO

loop

3. Use the FIRSTOBS option in a DATA step to advance to the
record I

4. Store record values to macro variables using CALL SYMPUT
5. Perform any desired PROC and DATA steps

EXAMPLE
In the following example, a log file (DATALOG) has been created of
all the data sets in a library named TEST. Periodically, it is
necessary to print the contents of these data sets into a series of
quick reports. DATALOG consists of two columns, FILENM (the file
name) and DESC (a short description). The reports should be
formatted with a standard PROC PRINT and have a title consisting
of the table description. The following piece of code accomplishes
that task.

/* Macro to SCAN through DATALOG */
%MACRO SCANLOOP(SCANFILE,FIELD1,FIELD2);

/* First obtain the number of */
/* records in DATALOG */
DATA _NULL_;

IF 0 THEN SET &SCANFILE NOBS=X;
CALL SYMPUT('RECCOUNT',X);
STOP;

RUN;

/* loop from one to number of */
/* records */
%DO I=1 %TO &RECCOUNT;

/* Advance to the Ith record */
DATA _NULL_;

SET &SCANFILE (FIRSTOBS=&I);

/* store the variables */
/* of interest in */
/* macro variables */
CALL SYMPUT('VAR1',&FIELD1);
CALL SYMPUT('VAR2',&FIELD2);
STOP;

RUN;

/* now perform the tasks that */
/* wish repeated for each */
/* observation */

PROC PRINT DATA=&VAR1;
TITLE "&VAR2";

%END;
%MEND SCANLOOP;

/* Call SCANLOOP */
%SCANLOOP(DATALOG,FILENM,DESC);
RUN;

The macro SCANLOOP provides a general framework for looping
through a data set and performing a set of steps at each record.
SCANLOOP is passed three variables: SCANFILE (the data set to be
scanned), FIELD1 (a variable in SCANFILE that you want to make
available to other steps) and FIELD2 (another variable that you want
to make available). As described in the previous section, the
number of records in the passed file name is stored to a macro

Coders' Corner



2

variable RECOUNT. The variable I is incremented from one to
RECOUNT. A data step is used to advance to the Ith record of the
data set, and a number of values are stored in macro variables using
SYMPUT. Finally, the desired task (in this case a PROC PRINT) is
performed, and the whole cycle is repeated.

It should be noted that this example is quite simple, and this
procedure can be generalized to any number of situations. A useful
extension would be to use the %IF..%ENDIF statements to create
the branching structures common in other database languages. For
example, if DATALOG contained file size in addition to name and
description, the above structure could be used to print only data sets
of a certain size.

REFERENCES
Mason, Phil; In the Know… SAS Tips & Techniques From Around
the Globe; Cary, NC: the SAS Institute, 1996.

ACKNOWLEDGMENTS
SAS is a registered trademark of SAS Institute Inc. in the United
States and other countries. ® indicates registration in the United
States.

I would like to thank Kathleen Maloney, JoAnn Matthews and Sharon
Kijowski of Highmark Blue Cross Blue Shield and Kristin Corwin of
the US Census Bureau for their suggestions and revisions.

CONTACT INFORMATION
Edward Moore
Customer Consulting
Highmark Blue Cross Blue Shield
Fifth Avenue Place
120 Fifth Avenue, Suite P2501
Pittsburgh, PA 15222
(412) 544-2503
edward.moore@highmark.com

Coders' Corner


	SUGI 26 Title Page

