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Abstract

Knowing the relationship between the input and out-
put variables of a process is critical to process mon-
itoring, prediction, and optimization. Powerful meth-
ods for multivariate process modeling, which address
the large volumes of data available in modern man-
ufacturing environments, have been developed by
chemometricians and are being applied within the
chemical process industries. This paper provides an
introduction to these methods, which are based on
projection to latent structures. It discusses the imple-
mentation of these methods with the SAS® System
and illustrates them with financial indicators used to
monitor firms in a regulatory system.

Introduction

In manufacturing the keys to successful process mon-
itoring and optimization are identifying the critical in-
put and output variables, and understanding their re-
lationships. Because modern manufacturing opera-
tions have invested heavily in automated data acqui-
sition and measurement technology, vast quantities
of process measurements are potentially available for
modeling these relationships. However, these data
are seldom fully exploited. Typically, the variables
for a particular process step are examined in isola-
tion, without accounting for their impact on subse-
guent steps or the final outcome of the process.

There are two main barriers to analyzing data across
multiple process steps and developing the knowledge
needed to manage an entire process. First, because
such data live in a diversity of transactional or legacy
systems (such as LIMS, MRP, ERP, and SPC), they
are unavailable in analysis-ready form. SAS Institute
is addressing this problem with the development of
analytical data warehouse solutions for quality and
process knowledge management, as discussed in a
recent white paper; refer to SAS Institute Inc. (1999).

This paper addresses the second barrier, which is
the complexity of the data once it is ready for anal-

ysis. Successful process knowledge discovery and
management requires the power to analyze hundreds
or even thousands of variables that are correlated
and reflect multiple sources of variation, including
changes over time.

During the past 15 years, powerful methods for mul-
tivariate process modeling and monitoring have been
developed by chemometricians, and these methods
have been applied successfully within the chemical
process industries and in the field of analytical chem-
istry. The applications range from modeling the qual-
ity of paper pulp from digester process variables to
development of structure-activity relationships for pre-
dicting the biological activity of new drug compounds
from their chemical properties; refer to Dayal et al.
(1994) and Wold (1995), respectively.

The first goal of this paper is to expose SAS users to
the basic concepts and techniques in this area by pro-
viding simple examples along with the relevant SAS
code. The second goal is to show that these meth-
ods are applicable to business processes, as well as
industrial processes, by illustrating how they can be
used to monitor financial indicators of firms in a regu-
latory system.

The field of chemometrics has grown so rapidly that a
comprehensive survey of the literature is outside the
scope of this presentation. Two papers by Kourti and
MacGregor (1995, 1996) are strongly recommended
as a starting point for readers who wish to learn more
about multivariate process monitoring. The book by
Beebe, Pell, and Seasholtz (1998) provides a good
introduction to chemometrics.

Principal Components: A Brief Review

The key idea behind the methods illustrated in this
paper is the use of projection to examine and model
high-dimensional data in a low-dimensional “latent
variable” subspace that describes most of the variabil-
ity in the data. This section discusses how to deter-
mine this subspace using principal components anal-



ysis (PCA), a well-known technique in psychometrics,
econometrics, market research, and many other ar-
eas. Refer to Jackson (1991) for a comprehensive
reference on PCA.

Principal components analysis is particularly appro-
priate for solving problems in analytical chemistry and
chemical engineering, where the number of mea-
sured variables or sensors is often greater than the
number of samples, and where it is believed that a
relatively small number of independent, unobservable
factors or events dictate the behavior of the system.
PCA is also appropriate in this setting because it han-
dles highly correlated variables, each of which con-
tributes a small amount of information about the latent
factors.

To understand the concept of a principal component,
consider Figure 1, which represents a cloud of points
in a high-dimensional space. Most of the variation lies
along a line, which is not parallel to any of the variable
axes. This line, referred to as the first principal com-
ponent, passes through the average of the points, and
it is chosen so that the projections of the points onto
the line minimize their distances to the data in a least
squares sense.
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Figure 1. Data Cloud Projected to a Line

The second principal component is the line that
passes through the average and minimizes the pro-
jection distances in a direction that is orthogonal to
the first principal component. The first and second
principal components define a plane, as illustrated in
Figure 2.

In matrix notation, PCA is described as follows: De-
note the ith measurement on the jth variable as X;;
fori =1,2,...,n, where n is the number of measure-
ments, and j = 1,2,...,k, where k is the number of
variables. Then the ith sample can be represented as

avector X; = [X;1, X42, . .., Xi], and the average of
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Figure 2. Data Cloud Projected to a Plane

the sample vectors is X,, = [X;, Xa,..., X;], where
X; =15 | X;;. PCA decomposes the data matrix

X = [XZJ ] as
ank = 1n><1 Xlxk + Tn><p P’p><k + Enxk

Here p is the dimension of the projection space (p <
k), T is referred to as the score matrix, P is referred
to as the loading matrix, and E is the residual matrix.

An important practical consideration in PCA is how
the measurements are scaled prior to the decomposi-
tion. You should scale the data so that the variances
of the variables reflect their importance. You can use
uniform scaling (sometimes called autoscaling) when
the variables are believed to be equally important. A
second consideration is the choice of p, which you can
make by examining the cumulative percent of varia-
tion explained by the decomposition or with statistical
methods such as cross-validation. Refer to Jackson
(1991) for further discussion.

The principal components are the column vectors of
T, and they are p new variables, each of which is a
linear combination of the original & variables. These
vectors, ti,tz,...,tp, are customarily listed in de-
creasing order of importance with respect to their abil-
ity to describe variation in the data. Figure 1 illustrates
the first principal component, t; = Xpi. The ele-
ments of T provide the coordinates of the projected
observations along the p principal component axes
and are referred to as scores. The k rows of P pro-
vide the loadings or weights of the original variables
in the principal components.

A simple example drawn from geochemistry is helpful
for understanding the roles of these statistics. One



of the most extensive volcanic fields in the United
States is the Zuni-Bandera field, which can be viewed
at El Malpais National Monument in New Mexico. This
landscape was formed three million years ago by lava
flows from over thirty volcanoes. A geological field
guide by Laughlin et al. (1993) provides the chemi-
cal compositions of basalts sampled from eight lava
flows at El Malpais. Figure 3 tabulates these mea-
surements. The columns, which you can think of as
the “process variables” in this example, correspond to
10 oxides, and the rows correspond to the samples.

Chemical Composition of Lava Flows

Flow Sio2 Ti02 Al203 Fe203 MnO
Bluewater 51.62 1.25 15.13 11.49 0.16
Laguna 50.23 1.53 14.50 1.82 0.17
McCartys 51.48 1.41 15.18 11.87 0.16
TwinCraters 48.86 1.44 14.84 12.48 0.17
Bandera 44.47 3.04 15.22 4.39 0.15
RamahNavajo 50.70 1.17 15.05 11.66 0.16
FenceLake 50.03 1.38 14.92 12.24 0.17
NorthPlains 52.06 1.45 15.72 10.95 0.15

Flow Mgo Ca0O Na20 K20 P205
Bluewater 7.42 9.30 2.60 0.42 0.15
Laguna 9.45 8.83 2.91 0.77 0.22
McCartys 8.29 9.11 2.78 0.69 0.19
TwinCraters 9.15 8.87 2.81 0.74 0.22
Bandera 9.30 8.80 3.38 1.60 0.58
RamahNavajo 8.34 9.57 2.44 0.36 0.14
FenceLake 9.00 9.16 2.74 0.64 0.19
NorthPlains 6.34 9.99 2.79 0.66 0.22

Figure 3. Chemical Compositions of Basalts

Although this is a small table, it is not easy to com-
pare and classify the samples because the oxides
are correlated, and the samples represent points in
10-dimensional space. You can use the PRINCOMP
procedure to compute a PCA for the data, which have
been saved in a SAS data set named BASALT.

ods output eigenvectors = eigen;
proc princomp data=basalt out=prin std;
var SiO2 TiO2 Al1203 Fe203 MnO
MgO CaO Na20 K20 P205;
run;

The output, shown in Figure 4, indicates that 59% of
the variation is explained by the first principal com-
ponent, and a further 31% is explained by the sec-
ond principal component, leaving only 10% to be ex-
plained by the remaining principal components. Con-
sequently, you can use the first two components to
interpret the data.

The output data set PRIN contains the original data
together with variables named Prinl to Prin10, which
correspond to tq,...,t10 and provide the scores for
the samples. The following statements plot the first
two scores.

Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
1 5.91766199 2.80458742 0.5918 0.5918
2 3.11307457 2.49141767 0.3113 0.9031
3 0.62165690 0.41853630 0.0622 0.9652
4 0.20312060 0.10349710 0.0203 0.9856
5 0.09962351 0.05921690 0.0100 0.9955
6 0.04040661 0.03595079 0.0040 0.9996
7 0.00445582 0.00445582 0.0004 1.0000
8 0.00000000 0.00000000 0.0000 1.0000
9 0.00000000 0.00000000 0.0000 1.0000
10 0.00000000 0.0000 1.0000

Figure 4. Eigenvalues for Basalt Data

data pltanno; set prin;
length text $ 11;
retain function ’label’ position ‘1’
hsys '3’ xsys ’2’ ysys ’'2’
color ’black’ style ’swiss’;
text = flow; x = prinl; y = prin2;
run;

title "Score Plot for Basalt Samples";

symbol v=dot i=none;

proc gplot data=prin;

plot prin2 * prinl / anno=pltanno

vaxis=axisl haxis=axis2 frame;

axisl label=(a=90 r=0
"Score on Second Component")
minor=none;

axis2 label=("Score on First Component")
minor=none;

run;

The display in Figure 5 reveals that the samples from
Bandera and Laguna are strongly differentiated from
the other samples by their scores for the first princi-
pal component. The samples from Fence Lake and
North Plains have nearly identical scores on this axis.
In fact, Laughlin et al. (1991) point out that these flows
are chemically very similar (although they do not indi-
cate how they arrived at this conclusion.)
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Figure 5. Score Plot for Basalt Data



You can use loading plots such as the one in Figure 6
to relate principal components back to the variables.
These plots display the eigenvalues (saved in the data
set EIGEN) corresponding to the variables for pairs of
principal components. Figure 6 shows that the first
two components are composed of contrasts between
the oxides SiO2 and Fe203 and the average of the
other oxides.
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Figure 6. Loading Plot for Basalt Data

In applications to process monitoring discussed in the
next section, score plots serve as “windows” for re-
vealing relationships, outliers, and changes in multi-
variate process samples. Loading plots, combined
with engineering knowledge or business rules, are
helpful for determing causes for unusual behavior.

The SAS System offers a variety of facilities for com-
puting principal components. For example:

1. If you are exploring your data interactively, you
can request a PCA with the Multivariate Analysis task
in SAS/INSIGHT®software. In this environment, you
can create score plots that are dynamically linked to
other graphical views of the data and to a data table.

2. You can also obtain a PCA with the PLS procedure
(as demonstrated later in this paper) by specifying the
variables on both sides of the MODEL statement:

proc pls data=basalt;
model Si0O2 TiO2 Al203 Fe203 MnO
MgO CaO Na20 K20 P205 =
Si02 TiO2 Al203 Fe203 MnO
MgO CaO Na20 K20 P205;
run;

The next section applies PCA to the problem of mon-
itoring a process over time.

Multivariate Process Monitoring Based
on Principal Components

Although the term process is most often associ-
ated with manufacturing, a process is any sequence
of interconnected activities with inputs and outputs.
Whether the final output is a manufactured product or
a service, variation is present in all aspects of a pro-
cess. Knowledge of the natural or “common cause”
variation in the process is the basis for identifying
unusual or “special” causes of variation, and statis-
tical control of a process is brought about by elimi-
nating such causes. Once the process is stable, its
quality costs are predictable, and quality can be im-
proved by reducing common cause variability in the
system. Likewise, knowledge of the relationships be-
tween process and product variables can be lever-
aged to optimize the process.

The Shewhart chart is the most widely used statisti-
cal tool for establishing control and monitoring a pro-
cess. The control limits indicate the expected com-
mon cause variation, and a point outside the limits
signals a special cause; refer to Montgomery (1996).
Extensions of the Shewhart chart for multivariate pro-
cess measurements based on Hotelling’s 7 statistic
were first proposed in the 1940s, and they continue
to be developed; refer to Alt (1985) and Lowry and
Montgomery (1995).

The T? chart is appropriate for situations where the
process measurements are continuous, and where it
is important to detect changes in their linear relation-
ships as well as in their means and variances. Denote
the measurement on the jth variable at time ¢ as X;;
fort = 1,2,...,n, where n is the number of time pe-
riods, and j = 1,2,... k, where k is the number of
variables. A T? chart plots the statistic

T? = (X — X,)S, (X — X,)'

attime ¢, where X; = [X4; ... Xu), X = [X1 ... X},

Xj =452, Xij, and

Control limits for 7}? are derived by assuming that X;
has a k-dimensional multivariate normal distribution.
The control limits for 77 are computed as percentiles
of a x2, F, or beta distribution, depending on whether

e X, and S, represent estimates or known values
of the mean and covariance of the distribution

e X;; is an individual measurement or a sample
mean



You can construct 72 charts with the SHEWHART
procedure in SAS/QC®software; refer to the chapter
on “Specialized Control Charts” in the SAS/QC User’s
Guide, Version 8 (1999).

In practice, the T2 chart has two major drawbacks.
First, it does not scale well to large numbers of pro-
cess variables (k > 20), particularly when the vari-
ables are collinear. Second, it is difficult to interpret
a point outside the control limits. Several useful ap-
proaches have been proposed for interpreting out-
of-control points; refer to Doganaksoy et al. (1991),
Hawkins (1991, 1993), Mason, Tracy, and Young
(1995), and Mason and Young (2001).

The approach described here was proposed by Kourti
and MacGregor (1995, 1996) to deal with both limita-
tions. Because it is based on a PCA model, it can
handle hundreds or even thousands of process vari-
ables. The model can be extended to deal with time
series effects and to incorporate the relationship be-
tween process and product (quality) variables (see
the next section). You can quantify the common cause
variability of the process with an ellipsoid in a low-
dimensional score space, as illustrated in Figure 7. A
point outside the ellipse, like a point outside the con-
trol limits on a T2 chart, signals a change that you
should investigate. This approach also offers a num-
ber of diagnostic tools for interpreting the point.
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Figure 7. Control Ellipse in Projection Plane

To illustrate this approach, consider the problem faced
by NASD Regulation (NASD-R), an independent sub-
sidiary of the National Association of Security Dealers
(NASD) charged with regulating the securities mar-
ket and Nasdag. NASD-R oversees 6,000 securities
firms, each of which reports more than 100 variables
at regular time intervals. The firm variables range
from financial indicators to the frequency of customer

complaints. NASD-R examiners use the data to se-
lect firms for the investigation of customer complaints,
financial problems, and questionable sales practices.
To decide how to allocate regulatory resources, statis-
tical process control methods are used to find unusual
patterns and sources of variation.

The illustrative data set PEERFIRMS used here con-
tains seven variables, a small subset of the variables
reported by a peer family of 54 firms for 12 quarters.
A patrtial listing is shown in Figure 8.

CompPer
firmkey peerkey timekey Sales NReps
7870 42 92 0.6135 904
7870 42 183 0.2724 1049
7870 42 275 0.4384 1117
7870 42 367 0.4624 1117
MeritSales CompPer Excess
Comp MeritTerms Rep RevPerRep Capital
27 0 2.9867 68596.86 43387669
9 0 0.8580 46791.96 25965370
17 0 1.5219 49815.30 32599669
23 0 2.0591 0.00 6053815

Figure 8. Partial Listing of Firm Variables

You can build a PCA model for these variables using
the PLS procedure as follows:

proc pls data=peerfirms nfac=3;
model CompPerSales NReps MeritSalesComp
MeritTerms CompPerRep RevPerRep
ExcessCapital =
CompPerSales NReps MeritSalesComp
MeritTerms CompPerRep RevPerRep
ExcessCapital;
output out=pcastats tsquare=t2
stdysse=sse yscore=yscr;
run;

The output, shown in Figure 9, shows that three fac-
tors (principal components) account for 82% of the
variation.

The PLS Procedure

Percent Variation Accounted for
by Partial Least Squares Factors

Number of
Extracted Model Effects Dependent Variables
Factors Current Total Current Total
1 41.2846 41.2846 41.2846 41.2846
2 25.5462 66.8308 25.5462 66.8308
3 14.8343 81.6651 14.8343 81.6651

Figure 9. PCA Model for All Firms in Peer Family



The output data set PCASTATS contains a variable
named T2, which is the sum of squares of the scores
for the first three principal components, scaled by their
variances:

2 2 2
ot
2 2 2
Stl Stz Stg

T? =
When all £ terms are included in the sum, this statistic
is equivalent to 77 plotted on a traditional 72 chart.

Now, suppose you are interested in monitoring Firm
7870 by making a control chart for T2. Begin by
augmenting PCASTATS with the special variables re-
quired by the TABLE= input data set for PROC SHE-
WHART,; refer to “Input Data Sets” in the chapter
on “Specialized Control Charts” the SAS/QC User’s
Guide, Version 8 (1999).

proc means data=pcastats noprint;
var CompPerSales NReps MeritSalesComp
MeritTerms CompPerRep RevPerRep
ExcessCapital;
output out=count (keep=_ freq ) n=nl-n7;
run;

data pcastats (rename=(t2=_subx ));
length var § 8;
if n = 1 then set count;
rename _freq = n;
set pcastats;

_var_

’tsquare’;

_alpha = 0.05;

_subn_ = 1;

_limitn = 1;

P = 3;
run;

Next, add control limit variables computed with the
beta distribution, which is appropriate since the princi-
pal components are estimates, and X;j is an individ-
ual measurement; refer to Tracy, Young, and Mason
(1992).

data pcastats;
set pcastats;

_lelx = ((n-1)*(n-1)/n)*

betainv(_alpha /2, p/2, (n-p-1)/2);

proc shewhart table=pcastats;
where firmkey=7870;
xchart tsquare * timekey /

xsymbol = ’'Median’
npanel = 1300
nolegend;
label subx = ’'T-squared’
timekey = ’‘Time in Days’;
run;
2 )
T Chart for Firm 7870
«=.05 Limits
For n=1:
50 7
40
el
© 30
©
3
g
1 -
JL 20
°] .\ /0“0—0//\\‘ ueL=93
r Median
0 T T T T T T T LCL=2
0 200 400 600 800 1000 1200
Time in Days

Figure 10. T2 Chart for Firm 7870

The chart reveals unusual variation for Firm 7870 in
the three most recent quarters. You can visualize how
this variation departs from the normal pattern for the
other firms in the family by making a scatter plot of the
scores t; and t. for all the firms and adding a 95%
confidence ellipse. These are saved in PCASTATS as
the variables YSCR1 and YSCR2. In Figure 11, the
points for Firm 7870 are connected and identified.

95% Confidence Ellipse for t1 and t2
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_mean_ = ((n-1)*(n-1)/n)*
betainv (0.5, p/2, (n-p-1)/2);
_uclx_ = ((n-1)*(n-1)/n)*
betainv(1l-_alpha /2, p/2, (n-p-1)/2);
run;

Now you can read PCASTATS with PROC SHE-
WHART to create the chart for T2, which is shown
in Figure 10.

symbol value=dot;
title 'T’ m=(+0, +0.6) '2’
m=(+0, -0.6) ’ Chart for Firm 7870’;

Figure 11. Score Plot for Firm 7870



Figure 12 shows only the points for Firm 7870 and re-
veals more clearly how its process is wandering away
from the normal region of variability for its peers. Of
course, you should also examine plots of ¢; versus t3
and ¢, versus t3, which are not shown here.
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Figure 12. Score Plot for Firm 7870

There are two explanations to consider for this behav-
ior. The firstis that the process has moved outside the
control ellipse but is still within the hyperplane defined
by the PCA model. The second is that the process
has moved off the hyperplane and has changed in a
way that is not captured by the model.

You can check for the second possibility by plotting the
distance of each time point to the model hyperplane,
or equivalently, the squared prediction error (SPE).
This statistic is saved as the variable SSE in the data
set PCASTATS, and you can create an SPE chart as
follows:

data sse; set pcastats;

keep timekey firmkey sse;
proc sort data=sse;

by timekey;

proc means noprint data=sse;
var sse;
output out=spelimits (drop=_ freq _type )
n=n mean=mean vars=var;
by timekey;

data spelimits;
set spelimits;

_var_ = ’'spe’

_alpha_ = 0.05;

_limitn = 2;

_subn_ = 2;

lels. = (var / ( 2.0 * mean ) ) *
cinv(_alpha /2,2*mean*mean/var);

_s_ = (var / ( 2.0 * mean ) ) *
cinv(0.5,2*mean*mean/var) ;

_ucls. = (var / ( 2.0 * mean ) ) *

cinv(1.0-_alpha /2,2*mean*mean/var);

data sse;

rename sse = _subs_;

merge sse spelimits;

by timekey;

if firmkey = . then delete;
run;

symbol value=dot;
title ’‘SPE Chart for Firm 7870’;

proc shewhart table=sse;
where firmkey=7870;
schart spe * timekey /
ssymbol = ’‘Median’

llimits = 1
npanel = 1300
nolegend;
label subs_ = ’SPE’

timekey = ’‘Time in Days’;
run;

Note that the control limits for SSE are computed us-
ing all the firms in the peer family as a reference nor-
mal data set; refer to Nomikos and MacGregor (1995).
Alternatively, you can compute the limits using the
method of Jackson and Mudholkar (1979), which as-
sumes a multivariate normal distribution for the mea-
surements.

The SPE chart displayed in Figure 13 indicates that
the process has moved off the model plane. Not only
is this firm's behavior diverging from the control re-
gion, it is also diverging in a new way with variation
not observed in the data that was used to develop
the model. If this behavior persists and is stable, you
should consider constructing a new model.
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Figure 13. SPE Chart

Another way to diagnose the behavior in Figure 12
is with a contribution plot, which tells you which vari-
ables contribute to the “gap” between a point such as




the one at TIMEKEY=1097 and the center of the el-
lipse. For each variable in the model, the contribution
plot displays a root sum of squares of weighted resid-
uals.

You can compute these quantities by applying scale
factors, available in an ODS output data set from
PROC PLS, to the PCA residuals as follows:

ods output YVariableCenScale=YCS;
ods listing close;
proc pls data=peerfirms nfac=3 censcale;
model CompPerSales NReps MeritSalesComp
MeritTerms CompPerRep RevPerRep
ExcessCapital =
CompPerSales NReps MeritSalesComp
MeritTerms CompPerRep RevPerRep
ExcessCapital;
output out=stdres
stdy=stdy stdysse=stdysse
yresidual=yresl-yres7;
run;

You can do the rescaling with PROC IML:

proc iml;
use stdres;
read all var ("timekey") into TIME;
read all var ("yresl":"yres7") into YR;
use YCS;
read all var {Scale} into ¥S;

YR = YR*diag(1/Y¥S);

data = TIME || YR;
create Contribution
var ( "timekey" || ("yresl":"yres7"));
append from data;
quit;

The following statements arrange the contributions in
a form suitable for plotting.

data ContribPlot; set Contribution;
if ( timekey = 1097 );
proc transpose data=ContribPlot out=TContribPlot;
var yresl-yres7;
run;
data TContribPlot;
rename Coll = Contribution;
merge ycs TContribPlot;
run;

You can use the GCHART procedure to create the
contribution plot, which is displayed in Figure 14.

title "Contribution Plot for Time 1097";
patternl value=solid color=1ligr;

proc gchart data=TContribPlot;
hbar variable /
sumvar=Contribution
nostats

href = -2 2
lref =3
clipref

raxis = axisl
maxis = axis2;

axisl label=("Contribution")
major= (number=5) minor=none;

axis2 label=none;

run;

The plot shows that two complaint variables and
a variable measuring merit terminations contributed
to the jump at TIMEKEY=1097. Events related to
these variables should be examined to determine the
causes for this variation.
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Figure 14. Contribution Plot for TIMEKEY=1097

PLS Modeling

As discussed in the preceding sections, PCA is a
method for describing the variation among many vari-
ables with a few latent factors. Now, suppose that in
addition to describing a block of variables X, you want
to use X to predict another block of variables Y. For
example, in a manufacturing process X might repre-
sent a set of process variables, and Y might repre-
sent a set of quality variables. Or, in the case of the
NASD-R data, X might represent the financial vari-
ables for a set of firms, and 'Y might represent the
complaint variables.

There are many ways to approach this problem when
Xs and Ys have relatively few variables, and mul-
tiple linear regression (MLR) is one of the most
common techniques. However, when X and Y
have many variables—perhaps more than you have
observations—or when there are strong correlations
among the variables, then most common techniques
(including MLR) will fail.



Partial least squares (PLS)—also known as projection
to latent structures—is a method for predicting Y vari-
ables from X variables that works when you have
many correlated variables. Like PCA, PLS extracts
latent factors that are functions of all the variables,
but PLS extends PCA by extracting factors from both
X and Y. After centering and scaling, both X and Y
are individually modeled with so-called outer relation-
ships

= TP +E

X
Y UQ +F

and the relationship between X and Y is modeled
through the so-called inner relationship

U = bT

The latent X factors are selected with the goal of ex-
plaining both X and Y variation, and the part of Y
that a certain X factor predicts is given by the corre-
sponding Y factor.

The PLS procedure implements partial least squares
regression and related prediction techniques; refer to
the chapter on the PLS procedure in the SAS/STAT
User’'s Guide, Version 8 (1999) for syntax and algo-
rithms.

Historically, PLS emerged as an econometric and
psychometric technique when Herman Wold devel-
oped the NIPALS algorithm in the 1960s as a general
approach for relating any number of blocks of vari-
ables; refer to Wold (1966). In the 1980s, researchers
in chemometrics (among them Herman Wold’s son,
Svante Wold) found two-block PLS useful for predict-
ing chemical properties (Y) from highly multivariate
chemical measurements (X), such as spectra; refer
to Wold, Martens, and Wold (1983). More recently,
chemical process engineers have applied PLS to pre-
dict process quality characteristics based on the hun-
dreds or even thousands of process variables that are
measured in a modern industrial plant.

The following statements use PROC PLS to construct
a PLS model with NFAC=4 latent factors for all the
firms in a peer family for the current time period. The
MODEL statement specifies a Y block of complaint
variables and an X block of financial variables. The
OUTPUT statement saves the extracted factors in a
data set for subsequent processing and display.

proc pls data=firms nfac=4;
model MeritSalesComp CompPerRep
CompPerSales =
NTransBERreports MeritTerms
NReps NSelectNetOrders
PerAlertsSelectNetOrders

PerAlertsTransBEReports
RevPerRep ExcessCapital ;

output out=outpls xscore

run;

xscr
yscr;

yscore

The output shown in Figure 15 analyzes how much
variation is individually and cumulatively explained by
the first four PLS factors. Each factor explains suc-
cessively less variation in both X and Y. Cumula-
tively, the four factors account for most of the varia-
tion, so you can have some confidence in the predic-

tive model.
The PLS Procedure
Percent Variation Accounted for
by Partial Least Squares Factors
Number of
Extracted Model Effects Dependent Variableg
Factors Current Total Current Total
1 46.6854 46.6854 33.5840 33.5844(
2 19.2238 65.9092 11.5366 45.1206
3 11.6540 77.5632 9.3138 54.4344
4 6.4592 84.0224 4.1806 58.615(
Figure 15. Output from PROC PLS

Most of what PLS has to say about the data is best
displayed graphically. Figure 16 and Figure 17 depict
the first and second inner PLS relationships, with the
two PLS scores for X plotted against the correspond-
ing PLS scores for Y. Given how much variation the
first factor explains in both X and Y (see Figure 15),
the strong linear trend in Figure 16 is expected. How-
ever, note the apparent influence of the two observa-
tions in the lower left of this plot. They are extreme for
both axes, indicating that they are highly informative

for the PLS analysis and should be confirmed.
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Figure 16.

Score Plot for PLS Analysis
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Figure 17. Score Plot for PLS Analysis

Another way to examine a PLS model is to plot the X
scores against each other. Conceptually, this is much
like PCA, except that the scores are selected not only
because they account for X variation, but also be-
cause they predict Y well. Figure 18 displays this plot
for the first two PLS factors, with the peer key again
used as the plotting symbol.
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Figure 18. Score Plot for PLS Analysis

There is fairly good separation between firm peer
groups in this plot.  However, the PLS model
distinguishes between two groups of firms with
PEERKEY=42, namely, those that appear in the up-
per and lower right corners of the plot. This indicates
that the PLS model is tracking the same features as
those that went into composing the peer groups, but it
has discovered additional features useful for predict-
ing complaints, or perhaps for subdividing the peer
group into two groups. As in PCA, the extracted fac-

tors in PLS are linear combinations of the centered
and scaled X variables. Figure 19 displays the coeffi-
cients of this linear combination for the first factor, the
one that explains the most X and Y variation.
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Figure 19. First X-weights for PLS Analysis

You can see that five variables contribute most
strongly to this factor. However, you should not con-
clude that the model depends only on these terms,
since PLS factors (like PCA factors) are functions of
all the variables.

A critical step in formulating a PLS regression model
is choosing the proper number of factors. You can
add more factors to fit the training data better, but if
you add too many you risk overfitting—that is, tailoring
the model too closely to the data at hand and making
it unfit for predicting new data. You can choose the
number of factors by validation—training the model on
one set of data and testing how well it predicts another
set—or cross-validation—where the training and test
data sets are selected from the same set of original
data. The CV= and CVTEST options in PROC PLS
implement various kinds of validation.

Extensions of PLS Models

The PLS algorithm was originally devised to relate
more than just two blocks of variables, and such multi-
block methods have been used to analyze complex
processes; refer to Wangen and Kowalski (1988). An-
other extension of PLS comes from the fact that mea-
surements sometimes have more than two indices
(“variables” and “observations”). For example, in the
NASD-R data, measurements are indexed by finan-
cial indicator, firm, and time. In this case, three-way
(or more generally, multiway) PLS may be appropri-
ate for process monitoring. Multiway models analyze
variation in all the dimensions that index the data, po-




tentially providing greater intuition about interrelation-
ships between measurements over each dimension;
refer to Wold et al. (1987).

Summary

You can use PCA methods to describe and monitor
large numbers of process variables over time. You
can summarize the process behavior with a small
number of displays, including a 72 chart, score charts,
and an SPE chart. Contribution plots are helpful for
diagnosing points outside the control limits. You can
use PLS methods to predict quality variables from
process variables. As in PCA, you can interpret the
results using a small number of displays. These tech-
niques are highly developed within the field of chemo-
metrics, but they deserve to be explored and applied
to process data in other areas.
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